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Abstract—The classical soft-and-hard surface boundary conditions
have previously been generalized to the form a · E = 0 and b · H = 0
where a and b are two complex vectors tangential to the boundary.
A realization for such a boundary is studied in terms of a slab of
special wave-guiding anisotropic material. It is shown that analytic
expressions can be found for the material parameters and thickness of
the slab as functions of the complex vectors a and b. Application of
a generalized soft-and-hard boundary as a polarization transformer is
studied in detail.

1. INTRODUCTION

Soft-and-hard surface (SHS) characterizes a certain class of electromag-
netic boundary surfaces imposing symmetric conditions for the electric
and magnetic fields of the form [1, 2]

v · E = 0, v · H = 0. (1)

Here v denotes a real unit vector tangential to the boundary surface,
i.e., it satisfies n · v = 0 when the unit vector normal to the boundary
is denoted by n. Originally, SHS was defined as a useful model
approximating boundary structures with tuned metallic corrugations
introduced in 1944 [3–5], which have found early applications in
antenna design [6]. Later, interest in realizing the SHS boundary by
other physical structures has been of interest.

The condition (1) also defines a subclass of ideal boundaries [7]
defined by the property that the complex Poynting vector does not
have a component normal to the boundary,

n · E × H∗ = 0. (2)
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The most general class of anisotropic ideal boundaries can be expressed
in the form [7]

a · E = 0, a∗ · H = 0, (3)

in terms of a tangential complex unit vector a satisfying n · a = 0 and
a · a∗ = 1. Because (3) generalizes the SHS condition (1), it appears
natural to introduce the even more general condition

a · E = 0, b · H = 0, (4)

in terms of two complex vectors a,b satisfying n · a = n · b = 0 and

a · b = 1. (5)

The class of media defined by (4) was labeled as that of generalized
soft-and-hard surfaces (GSHS) in [8]. It turns out that media defined
by (4) belong to the class of ideal media only in the special case b = a∗
[7]. In [7] it was demonstrated that the GSHS boundary can be tailored
to change any given polarization of an incident plane wave to any other
given polarization for the reflected field by choosing the vectors a and
b properly. This and any other possible application in mind gives
motivation for finding a realization of the GSHS boundary.

Since the realization of the basic SHS boundary applies a structure
composed of metal corrugations along the real v direction on the
surface, such a structure cannot be generalized to the case when a and
b are complex vectors. In the present study, another form of realization
is studied with a slab of wave-guiding structure introduced in [9] and
applied to the general surface impedance dyadic in [10]. Because the
GSHS boundary involves zero and infinite impedance parameters, it
must be handled through a certain limiting process. The purpose of
this study is to find how this can be done in the general theory given
in [10] in order to find a structure which satisfies the GSHS conditions
(4) at its boundary. The realization is different from that given in
[11] where certain alternatives were discussed to obtain a boundary
satisfying the condition (3). The structures proposed were, however,
designed for (3) to be valid for normally incident plane waves only,
which restricts their application. The present realization is valid for
arbitrary plane waves or any other fields.

2. VECTOR BASES

The vectors a and b do not make a basis in the two-dimensional space
of vectors transverse to n. However, due to (5) the vector triples
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n,a, (n×b) and n,b, (n×a) make two three-dimensional vector bases
because we have

n · a × (n × b) = n · b × (n × a) = (n × a) · (n × b) = a · b = 1. (6)

The two vector bases n,a,a′ = (n × b) and n,b,b′ = (n × a) are not
orthogonal in general, because a · a′ = −b · b′ = −n · a × b may take
any value. Instead, they are bi-orthogonal because of

a · b = a′ · b′ = 1, a · b′ = b · a′ = 0. (7)

This allows one to expand the unit dyadic as [12, 13, 8]

I = nn + ab + (n × b)(n × a) = nn + ba + (n × a)(n × b). (8)

The expansions can be applied when expanding to a given vector c in
either of the vector bases. For example, we can write

c = I · c = n(n · c) + b(a · c) + (n × a)(n · b × c). (9)

3. BOUNDARY ADMITTANCE

Impedance-boundary condition is a mathematical restriction to ensure
unique solutions for differential equations in a region terminated by the
boundary. For electromagnetic fields it takes on the form of a linear
relation between the electric and magnetic field components tangential
to the boundary surface. Let us consider the form

n × H = Ys · E, (10)

in terms of a two-dimensional surface admittance dyadic Ys satisfying

n · Ys = Ys · n = 0. (11)

To approach the GSHS boundary, let us consider the following form of
a normalized surface admittance dyadic:

jηoYs =
A

δ
ba + Bδab×

×nn, (12)

where A �= 0 and B �= 0 are two scalar admittance parameters and
δ is a dimensionless scalar parameter. The normalizing factor jηo =
j
√

µo/εo taken for convenience anticipates imaginary components for
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Ys when the boundary is lossless. The double-cross product and
double-dot product between two dyads ab and cd are defined as [12, 13]

ab×
×cd = (a × c)(b × d), (13)

and

ab : cd = (a · c)(b · d). (14)

Inserting (12) in (10) gives us the component equations

b · H = (n × b) · (n × H) = Bδ(n × b · E)/jηo, (15)

jηoδa · (n × H) = A(a · b)(a · E) = A(a · E). (16)

If we now let δ → 0, from (15) we obtain b ·H → 0 while from (16) we
have a · E → 0. This means that, in the limit δ → 0, the admittance
dyadic (12) will correspond to the GSHS boundary with conditions (4)
valid for any nonzero values of A and B. Because this limit would
imply zero and infinite components in (12) making it rather useless in
analysis, it is better to work first with finite δ and take the limit at the
end.

4. REALIZATION OF GSHS

In [9] a structure involving a layer of gyrotropic anisotropic material
was introduced to realize a special impedance surface called the perfect
electromagnetic conductor (PEMC). The material was generalized in
[10] for the realization of the general impedance surface and the same
structure will be considered here. Let us assume a slab of anisotropic
medium defined by permittivity and permeability dyadics of the form

ε = εo(εt + εnnn), µ = µo(µt + µnnn), (17)

with εn → ∞, µn → ∞. The thickness of the slab is d and it is
terminated by a PEC plane. The medium (17) with infinite normal
components can be called wave guiding because a field of any functional
dependence in the transverse plane is guided along the n direction
with the same dependence, which resembles wave propagation along a
collection of parallel waveguides. Such a medium can be realized by
parallel PEC and PMC wires embedded in an anisotropic host medium
and, approximately, by thin well conducting iron cylinders with high
conductivity and permeability values [9]. It was shown in [10] that in
the medium (17) the wave is split in two eigenwaves propagating along
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the normal direction with propagation factors β1, β2 depending on the
medium dyadics as

β2
1,2 =

k2
o

2

(
εt

×
×µT

t : nn ±
√

(εt
×
×µT

t : nn)2 − 4∆(εt)∆(µt)
)

. (18)

Here ∆ denotes determinant of a two-dimensional dyadic (2×2 matrix)
which can be computed in terms of dyadic algebra as [12, 13]

∆(εt) =
1
2
εt

×
×εt : nn, ∆(µt) =

1
2
µt

×
×µt : nn, (19)

and

εt
×
×µT

t : nn = ∆(εt + µT
t ) − ∆(εt) − ∆(µt). (20)

In [10] a relation was derived between the transverse permittivity
and permeability dyadics and thickness of the slab on one hand and
the surface admittance dyadic at the interface of the slab on the other
hand. The resulting analytic expression has the form

Ys =
β1 cot β1d − β2 cot β2d

jkoηo(β2
1 − β2

2)
k2

oεt

+
β2β

2
1 cot β2d − β1β

2
2 cot β1d

jkoηo(β2
1 − β2

2)
(µ−1

t
×
×nn) (21)

when assuming β2
1 �= β2

2 .
The expression (21) is now applicable for realizing the GSHS

boundary. The basic question is how to determine the medium dyadics
εt, µt and the thickness d of the slab to obtain the GSHS admittance
(12) in the limit δ → 0. This appears possible because zero and infinite
admittance components can be realized by certain resonances in the
structure corresponding to zero and infinite values of the two cotangent
functions. Let us assume that the thickness of the slab is depends on
the parameter δ so that, originally the thickness is d′ and approaches
d as

d′ = d(1 + δ) → d (22)

when δ → 0. Let us rewrite (21) as

Ys = β1 cot β1d
′k

2
oεt − β2

2µ−1
t

×
×nn

jkoηo(β2
1 − β2

2)
− β2 cot β2d

′k
2
oεt − β2

1µ−1
t

×
×nn

jkoηo(β2
1 − β2

2)
(23)
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and identify termwise with (12) as

Aba = β1δ cot β1d
′k

2
oεt − β2

2µ−1
t

×
×nn

ko(β2
1 − β2

2)
, (24)

Bab×
×nn = −β2

δ
cot β2d

′k
2
oεt − β2

1µ−1
t

×
×nn

ko(β2
1 − β2

2)
. (25)

The limit δ → 0 can now be handled by requiring

β1d
′ = π(1 + δ) → π, β2d

′ =
π

2
(1 + δ) → π

2
, (26)

whence

β1d = π, β2d = π/2. (27)

It is also easy to find finite limits for the two quantities in (24), (25)
as

δ cot(β1d
′) = δ cot(πδ) → 1

π
, (28)

1
δ

cot(β2d
′) = −1

δ
tan(πδ/2) → −π

2
. (29)

Solving the medium dyadics from (24) and (25) in the form

εt =
β1/ko

δ cot β1d′
Aba +

β2/ko

cot β2d′/δ
Bab×

×nn (30)

µ−1
t

×
×nn =

ko/β1

δ cot β1d′
Aba +

ko/β2

cot β2d′/δ
Bab×

×nn (31)

and taking the limits (28), (29) with (27) we obtain

εt =
1

kod

(
π2Aba − Bab×

×nn
)

(32)

µ−1
t

×
×nn = kod(Aba − 4

π2
Bab×

×nn). (33)

To find the dyadic µt, we must form the determinant

∆(µ−1
t ) = ∆(µ−1

t
×
×nn) = − 4

π2
AB(kod)2 = 1/∆(µt), (34)

and apply the rule [13]

µ−1T
t

×
×nn = µt∆(µ−1

t ), (35)
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which produces the permeability dyadic

µt =
1

kod

(
−π2

4
1
B

ab +
1
A

ba×
×nn

)
. (36)

The expressions (32) and (36) can be considered as forming the solution
for the realization problem. Because the GSHS boundary conditions
are obtained for any values of the scalars A and B, their choice depends
on the realizability of the medium dyadics εt and µ.

5. VERIFYING THE THEORY

To verify the previous theory let us assume that the transverse medium
dyadics have the form

εt = εt(Aπ2ba − Bab×
×nn), (37)

µt = µt

(
π2

4B
ab − 1

A
ba×

×nn
)

. (38)

Forming the determinants

∆(εt) = −ε2t ABπ2, ∆(µt) = −µ2
t

π2

4AB
, (39)

from (35) we have

µ−1
t

×
×nn =

1
∆(µt)

µT
t =

1
µt

(
−Aba +

4
π2

Bab×
×nn

)
. (40)

To find the propagation constants we first must construct

εt
×
×µT

t : nn =
5π2

4
µtεt, ∆(εt)∆(µt) =

π4

4
µ2

t ε
2
t , (41)

whence the two roots of (18) can be expressed as

β1 = πkt, β2 =
π

2
kt, (42)

when we denote

kt = ko
√

µtεt. (43)

Now the thickness of the slab is determined by the two resonance
conditions (27) which for the present medium can be represented by
the single condition

ktd = 1, ⇒ d = 1/kt. (44)
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Inserting the above expressions in the surface admittance dyadic
expression (23) with d replaced by d′ = d(1 + δ), after a number of
algebraic steps the following limiting expression can be obtained:

Ys →
1

jηo

√
µt/εt

(
1
δ
Aba + δBab×

×nn
)

. (45)

Since this is of the form of the GSHS boundary admittance dyadic
(12), the transverse medium dyadics of the form (37), (38) and the slab
thickness determined by (44) will be sufficient for the realization of the
generalized SHS boundary. Numerical values of the scalar parameters
εt, µt, A, B do not affect the GSHS property but will determine its
bandwidth.

6. APPLICATION: A POLARIZATION TRANSFORMER

The motivation for finding a realization for the GSHS boundary rests
largely on the possible applications. One of the most interesting
properties of the GSHS is its effect on the polarization of elliptically
and linearly polarized plane waves upon reflection [7]. We will study a
special case of the GSHS boundary and its application as a polarization
transformer as well as the medium dyadics required to obtain such a
boundary. Let us assume that the boundary coincides with the xy
plane with n = uz and consider a special class of boundaries defined
by

a = ux cos ϕ + juy sinϕ,

b = ux cos ϕ − juy sinϕ = a∗,
(46)

where the parameter ϕ is assumed to vary between −π/2 · · ·π/2.
The complex vectors a,b define two similar elliptic polarizations with
opposite handedness. For sin 2ϕ = 0 (ϕ = 0,±π/2) the vectors are
linearly polarized corresponding to the classical SHS boundary, for
cos 2ϕ = 0 (ϕ = ±π/4) the two vectors are circularly polarized (see
Fig. 1).

The reflected field Er can be computed with the help of the
reflection dyadic R as

Er = R · Ei, (47)

where the reflection dyadic of the GSHS surface is given by [8]

R = − 1
J

(
1
k2

[kr × (b × kr)][ki × (a × ki)] + (a × kr)(b × ki)
)

,

(48)
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(a) (b) (c)

Figure 1. Different polarizations of vectors a and b, with (a) ϕ = π/4,
(b) 0 < ϕ < π/4, and (c) ϕ = 0.

with

J = a · kr × (b × kr) �= 0. (49)

The reflection dyadic R is a function of the incident direction, which
makes studying the polarizations of the reflected fields in analytic form
quite difficult. The analysis is made easier if we restrict ourselves
to some special direction, notably the normal direction. For normal
incidence, with kr = uz = −ki, the reflection dyadic becomes

R = ab×
×uzuz − ba = ab×

×uzuz − (ab)T . (50)

The following dyadic products can be expanded as

ab =
1
2
(It + K cos 2ϕ + jJ sin 2ϕ), (51)

ab×
×uzuz =

1
2
(It − K cos 2ϕ + jJ sin 2ϕ), (52)

with the two-dimensional basis dyadics defined as

It = uxux + uyuy, K = uxux − uyuy, J = uz × I = uyux − uxuy.
(53)

Writing the reflection dyadic for normal incidence (50) with the aid of
(53), it then becomes simply

R = −K cos 2ϕ + jJ sin 2ϕ. (54)

For a general elliptically polarized field,

Ei = cos β(ux cos α + uy sinα) + j sinβ(−ux sinα + uy cos α), (55)

where β = 0 · · ·π/2, the reflected field vector can be written

Er = − ux(cos α(cos 2ϕ cos β − sin 2ϕ sinβ)
− j sinα(cos 2ϕ sinβ − sin 2ϕ cos β))

+ uy(sinα(cos 2ϕ cos β + sin 2ϕ sinβ)
+ j cos α(cos 2ϕ sinβ + sin 2ϕ cos β)),

(56)
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from which we can easily obtain the reflected field of a linearly polarized
incident field, with β = 0,

Er = − ux(cos 2ϕ cos α + j sin 2ϕ sinα)
+ uy(cos 2ϕ sinα + j sin 2ϕ cos α),

(57)

and similarly we can obtain the reflected field of a circularly polarized
incident field with β = π/4 (omitting constant 1/

√
2),

Er = − ux(cos 2ϕ − sin 2ϕ)(cos α − j sinα)
+ uy(cos 2ϕ + sin 2ϕ)(sinα + j cos α).

(58)

Depending on the values of the parameters α and ϕ, the reflected
field can be either elliptically, circularly or linearly polarized. For a
linearly polarized incident field, with α = 0 and ϕ = π/8, i.e., for
cos 2ϕ = 1/

√
2 = sin 2ϕ, which corresponds to elliptically polarized

vectors a and b, it is easy to see that the reflected field is a circularly
polarized field. For ϕ = 0, or ϕ = π/4, which correspond to linearly
and circularly polarized vectors a and b, the terms sin 2ϕ or cos 2ϕ are
zero, respectively, and the reflected field vector is linearly polarized for
all values of α, i.e., the polarization type is not changed. For α = π/4,
the reflected field is linearly polarized for all values of ϕ.

Similarly we can see that for a circularly polarized incident
field, the reflected field is linearly polarized for all values of α if
cos 2ϕ − sin 2ϕ = 0, i.e., cos 2ϕ = 1/

√
2 = sin 2ϕ, with ϕ = π/8.

It is also easy to see that for ϕ = 0, π/4, the reflected field would
be a circularly polarized field, so there would be no change in the
polarization type.

For a general elliptical incident field finding the values α and ϕ
which would yield a desired polarisation is not quite as straightforward
as for linearly or circularly polarized incident fields. For example, to
obtain a linearly polarized reflected field for α = 0, requiring that
cos 2ϕ cos β − sin 2ϕ sinβ = 0 gives us to the condition

ϕ =
1
2

arctan(cotβ), (59)

which, marking β = π/2− β′ and using cot(π/2− β′) = tanβ′, can be
reduced to

ϕ =
π

4
− β

2
. (60)

Similarly, for α = 0, requiring that

cos 2ϕ cos β − sin 2ϕ sinβ = cos 2ϕ sinβ + sin 2ϕ cos β, (61)
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which gives us a circularly polarized reflected field, leads to the
condition

ϕ =
1
2

arctan
(

cos β − sinβ

cos β + sinβ

)
, (62)

which, marking β = β′ + π/4 and using addition formulas for
trigonometric functions, can be reduced to

ϕ =
π

8
− β

2
. (63)

As an example, for an elliptically polarized incident field with β = π/8,
the values of ϕ which yield a linearly polarized reflected field and
a circularly polarized reflected field are ϕ = 3π/16, and ϕ = π/16,
respectively. One must also bear in mind that the handedness of the
reflected wave may have changed, or the reflected field may be rotated,
compared to the incident field, even though the polarization type may
not have changed. The change of polarization of the reflected field
compared to the incident field can be studied using the polarization
match factor [13]. In the Fig. 2 are plotted the ellipticities of the
reflected fields for linearly (β = 0), circularly (β = π/4), and elliptically
(β = π/8) polarized incident fields, for ϕ = 0 · · ·π/2, α = 0.

It is possible to compute the analytic expressions of the reflected
field for any incident direction but these expressions are quite
complicated. It is easier to study the polarization properties of the
reflected fields numerically, if one wishes to consider any arbitrary
direction. In the Figures 3, 4, and 5 are plotted the ellipticities of
the reflected fields for linearly, elliptically (β = π/8), and circularly
polarized incident fields for the angles (θ, φ) = (π/8, π/4), (π/4, π/4),
and (3π/8, π/4), with ϕ = 0 · · ·π/2. As can be seen from the figures,
the dependency of the reflected field polarization on the incident
direction is quite strong for all incident polarization types.

7. MEDIUM DYADICS FOR SOME SPECIAL CASES

As seen by previous examples, interesting choises for the parameter
ϕ for the vectors vectors a and b defined in (46) seem to be ϕ = 0,
π/4, and π/8, which correspond to linearly, circularly, or elliptically
polarized vectors, respectively. The medium dyadics for the GSHS
boundary defined by vectors a, b, obtained from (37) and (38), are

εt =
εt

2

(
(Aπ2 − B)It + (Aπ2 + B)(K cos 2ϕ − jJ sin 2ϕ)

)
, (64)

µt =
µt

2

(
(
π2

4B
− 1

A
)It + (

π2

4B
+

1
A

)(K cos 2ϕ + jJ sin 2ϕ)
)

. (65)
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Figure 2. Ellipticities of the reflected fields of linearly, circularly, and
elliptically (β = π/8) polarized normal incident fields as a function of
ϕ = 0 · · ·π/2, with α = 0.
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Figure 3. Ellipticity of the reflected field for linearly, circularly, and
elliptically polarized (β = π/8) incident fields with θ = π/8, φ = π/4,
and ϕ = 0 · · ·π/2.
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Figure 4. Ellipticity of the reflected field for linearly, circularly, and
elliptically polarized (β = π/8) polarized incident fields, with θ = π/4,
φ = π/4, and ϕ = 0 · · ·π/2.
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Figure 5. Ellipticity of the reflected field for linearly, circularly, and
elliptically polarized (β = π/8) incident fields, with θ = 3π/8, φ = π/4,
and ϕ = 0 · · ·π/2.
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By choosing the parameters A and B in a suitable manner it is possible
to make either εt or µt transversely isotropic, i.e., a multiple of It. In
fact, choosing B = −Aπ2 we have εt = Aπ2εtIt while for A = −4B/π2

we have µt = (π2µt/4B)It. Another simplification is obtained for the
choice B = π2A/2:

εt = ε′t(It + 3K cos 2ϕ − 3jJ sin 2ϕ), ε′t =
π2Aεt

4
, (66)

µt = µ′
t(It − 3K cos 2ϕ − 3jJ sin 2ϕ), µ′

t = − µt

4A
, (67)

in which case the two medium dyadics have some similarity.

7.1. Linearly Polarized a and b

Let us now consider the case sin 2ϕ = 0, corresponding to real a and
b vectors. The classical SHS boundary is obtained by choosing a,b as

a = b = ux, uz × a = uz × b = uy. (68)

The medium dyadics obtained from (37) and (38) are then of the simple
form

εt = εxuxux + εyuyuy, (69)

µt = µxuxux + µyuyuy, (70)

with

εx = εtπ
2A, εy = −εtB, µx = µt

π2

4B
, µy = −µt

A
. (71)

It is seen that the parameters of the slab making a SHS boundary must
satisfy the condition

4εy/εx = µy/µx, (72)

which reproduces the result obtained in [10]. Because we have

k2
t = ω2µtεt = − 1

π2
ω2µyεx = − 4

π2
µxεy = 1/d2, (73)

it appears that two of the medium parameters of the wave-guiding
medium εx, εy, µx, µy must have positive values and the other two
negative values for (73) to be satisfied for real d.
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7.2. Circularly Polarized a and b

Let us next consider the GSHS boundary for cos 2ϕ = 0 corresponding
to circularly polarized a and b of opposite handedness:

a =
1√
2
(ux + juy), b =

1√
2
(ux − juy), (74)

so that a · b = 1 is satisfied. Now the normalized GSHS admittance
dyadic (12) becomes

jηoYs =
A

δ
ba + Bδ ab = Aδ a∗a + Bδ aa∗ (75)

=
(

A

δ
√

2
+

Bδ√
2

)
It + j

(
A

δ
√

2
− Bδ√

2

)
J. (76)

To achieve this, we need the material parameter dyadics

εt =
εt

2

[
(π2A − B) It + j(π2A + B) J

]
(77)

µt =
µt

2

[(
π2

4B
− 1

A

)
It + j

(
π2

4B
+

1
A

)
J

]
(78)

Choosing B = −π2A, we can realize the required conditions with
isotropic permittivity, εt = εtπ

2A It, and gyrotropic (ferrite-like)
permeability: µt = µt(−5It + j3uz × I)/(8A).

7.3. Elliptically Polarized a and b

An interesting choise for elliptically polarized a and b, in view of the
previous examples, seems to be the case ϕ = π/8. The medium dyadics
(64), (65) of the GSHS boundary for this case, with cos 2ϕ = 1/

√
2 =

sin 2ϕ, are:

εt =
εt

2

(
(Aπ2 − B)It +

1√
2
(Aπ2 + B)(K − jJ)

)
, (79)

µt =
µt

2

(
(
π2

4B
− 1

A
)It +

1√
2
(
π2

4B
+

1
A

)(K + jJ)
)

. (80)

Again, by choosing B = −π2A, the medium dyadics are reduced to

εt = εtπ
2AIt, (81)

µt =
µt

8A

(
−5It +

3√
2
(K + jJ)

)
, (82)

i.e., the permittivity is again isotropic, but the permeability dyadic is
more complicated.
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8. CONCLUSION

In this paper, a realization for the GSHS boundary in terms of a slab of
special wave-guiding anisotropic material has been studied. Analytic
expressions for the material parameters and thickness of the slab have
been derived in terms of the vectors a, b, using a limiting process.
With these analytic expressions, it is in theory possible to construct
any GSHS boundary defined by (5).

Also the polarization transforming properties of the GSHS
boundary have been studied. We have shown that the GSHS boundary
is able to transform any polarization to another given polarization
for normal incidence, if the parameters defining the boundary are
chosen correctly. The choise of these parameters and the material
parameters required by the boundary have been studied in detail. This
ability makes the GSHS boundary an interesting research subject, since
these polarization transforming properties have numerous real-world
applications in radio and antenna technology.
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