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Abstract—In four-dimensional differential-form representation linear
medium relations can be expressed in terms of a medium dyadic
mapping the electromagnetic two-form involving the B and E fields
to the two-form involving the D and H fields. There does not seem
to exist a method to invert the medium dyadic in a coordinate-free
manner for the general bi-anisotropic medium. Such an inversion is
introduced here for the special class of skewon media which is a 15
parameter subclass of previously studied IB media. The resulting
compact analytic expression is verified through two simple tests and
an expansion in eigenvectors.

1. INTRODUCTION

Differential-form formalism offers a coordinate-free alternative for the
analysis of electromagnetic problems[1–7]. When compared to the
classical three-dimensional Gibbsian vector and dyadic formalism, four-
dimensional differential forms allow a more compact representation
of expressions. In particular, when working with general linear (bi-
anisotropic) media, the medium parameters can be represented in
terms of bivector dyadics in simple form, see, e.g., [8, 9]. The
simplification is based on an extension of the three-dimensional dyadic
algebra introduced by Gibbs [10, 11] to four dimensions [6]. A short
introduction to the notation applied here is also given in [7, 12]

In differential-form representation the electromagnetic fields are
represented as two-forms Φ,Ψ, elements of the six-dimensional space
F2,

Φ = B + E ∧ dτ, Ψ = D − H ∧ dτ, (1)

where τ = ct is the normalized time variable. In a linear
(bi-anisotropic) medium the electromagnetic two-forms are related
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through the medium dyadic M mapping two-forms to two-forms:

Ψ = M|Φ. (2)

The dyadic M corresponds to a collection of four Gibbsian medium
dyadics ε, ξ, ζ, µ. The simplest possible medium is represented as
M = M I(2)T where I(2)T is the unit dyadic mapping two-forms to
themselves and M is a scalar admittance factor. Properties of such a
medium were recently studied and the medium was labeled as PEMC,
perfect electromagnetic conductor because of it is a generalization of
PEC and PMC [13, 14].

A useful classification of bi-anisotropic media can be made when
instead of the medium dyadic M we consider the modified medium
dyadic Mg defined by the transformation through a quadrivector
eN = e1234 as

Mg = eN�M. (3)

Mg is an element of the dyadic space E2E2 and it maps two-forms to
bivectors [6]. In fact, a decomposition of Mg in three parts was defined
by Hehl and Obukhov in [5] as

Mg = Mg0 + Mg1 + Mg2. (4)

Here Mg0 +Mg1 equals the symmetric part and Mg2 the antisymmetric
part of Mg. The transformed multiple of the unit dyadic

Mg0 =
1
6
trM eN�I(2)T (5)

was called the axion part while

Mg1 =
1
2
(Mg + MT

g ) − Mg0 (6)

was called the principal part. The corresponding M1 dyadic is trace
free. Finally, the antisymmetric part

Mg2 =
1
2
(Mg − MT

g ) (7)

was called the skewon part. Physically, the skewon part is responsible
to the Faraday-rotation and chiral properties of the medium. For
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Mg1 = 0 and Mg2 = 0 the medium consists of its bare axion part
and coincides with the PEMC medium.

To be able to perform all possible operations with the medium
dyadic in terms of the four-dimensional dyadic algebra, an analytic
expression for the inverse of the medium dyadic is required. The inverse
allows one to write the medium equation (2) as

Φ = M−1|Ψ. (8)

It is known that the inverse of a dyadic D ∈ E1F1 mapping one-forms
to one-forms has the analytic form [6]

D−1 =
I(4)T ��D(3)T

trD(4)
. (9)

Unfortunately, it appears that there does not exist an analytic
coordinate-free expression for the inverse of the general medium
dyadic mapping two-forms to two-forms. In the previously obtained
results the temporal coordinate has been separated and the inverse is
expressed in terms of the four three-dimensional medium dyadics [6].
In the present paper a first step towards the general result is taken,
and the inverse is derived for the skewon medium characterized by 15
scalar parameters.

2. IB-MEDIA

A medium with vanishing principal part, i.e., consisting of the axion
and skewon parts only, was labeled as an IB-medium in another
approach [15]. It was shown that the corresponding medium dyadic
involving 16 parameters can can be represented as

M = (I∧∧B)T (10)

in terms of a dyadic B ∈ E1F1. Because of the form (10), the class
was labeled as that of IB media. Instead of having 6 × 6 = 36
free parameters corresponding to the general dyadic M, IB media are
defined by a dyadic B possessing only 4 × 4 = 16 free parameters.
Expressing

B = BI + Bo, (11)

where Bo is the trace-free part of B:

trBo = Bo||IT = 0, trB = 4B, (12)
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the IB-medium dyadics can be expanded as

M = M I(2)T + Mo, M = 2B, (13)

where Mo is a trace-free dyadic satisfying

Mo = (I∧∧Bo)T , trMo = 0. (14)

The class of IB media is split in (13) to two parts corresponding to
those called axion (multiple of the unit dyadic) and skewon (trace-free
part) media in [5].

Dyadics M of the form (10) satisfy the identity (A4) in the
Appendix, which for a trace-free dyadic A = Bo reduces to the
particularly simple form

I(4)��(I∧∧Bo)T = −I∧∧Bo ⇒ I(4)��Mo = −MT
o . (15)

Considering the modified dyadic of the IB medium,

Mg = eN�M = eN�(I∧∧B)T ∈ E2E2, (16)

one can easily show that for B = Bo it is antisymmetric. In fact, (15)
can be rewritten as

eN�Mo = −MT
o �eN = −(eN�Mo)T ⇒ Mgo = −MT

go. (17)

Conversely, any antisymmetric dyadic D ∈ E2E2 can be expressed in
the form D = eN�(I∧∧Bo)T for some trace-free dyadic Bo ∈ E1F1.

It is the purpose of this paper to find the inverse of the dyadic
I∧∧Bo satisfying

(I∧∧Bo)|(I∧∧Bo)−1 = (I∧∧Bo)−1|(I∧∧Bo) = I(2). (18)

The derivation is based on a set of dyadic identities, a list of which is
given in the Appendix.

3. CONSTRUCTING THE INVERSE

Let us start from the identity (A6) which for the trace-free dyadic
A = Bo reduces to

B(3)
o ��IT = −Bo

∧
∧B2

o. (19)
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Combination of (A13) and (A14) for X = B
(3)
o can be expressed as

B(3)
o = I(4)��(I(4)T ��B(3)

o ) = I(4)��(trB(3)
o I − B(3)

o ��I(2)T )T , (20)

which inserted in (19) yields

Bo
∧
∧B2

o = −(I(4)��(trB(3)
o IT − B(3)T

o ��I(2)))��I
= −2I(2)trB(3)

o + I(4)��((B(3)T
o ��I(2))∧∧IT ). (21)

Applying now the expansion (A4), (21) can be expressed as

Bo
∧
∧B2

o = −2I(2)trB(3)
o + tr(B(3)

o ��I(2)T )I(2) − (B(3)
o ��I(2)T )∧∧I. (22)

Here we must insert from (A5), (A6) and (A2)

B(3)
o ��I(2)T =

1
2
(B(3)

o ��IT )��I = −1
2
(Bo

∧
∧B2

o)��IT

= −1
2
(BotrB2

o − 2B3
o) = BotrB(2)

o + B3
o (23)

with
tr(B(3)

o ��I(2)T ) = trB3
o. (24)

Combining these we have

Bo
∧
∧B2

o = −2I(2)trB(3)
o + trB3

oI
(2) − (BotrB(2)

o + B3
o)

∧
∧I. (25)

Finally we make use of the expansion

(I∧∧Bo)|(I∧∧B2) = Bo
∧
∧B2

o + B3
o
∧
∧I, (26)

which is a special case of the more general identity (A1). With this
(25) is reduced to

(I∧∧Bo)|(I∧∧B2
o) = B3

o
∧
∧I − 2I(2)trB(3)

o + trB3
oI

(2) − (BotrB(2)
o + B3

o)
∧
∧I

= −2I(2)trB(3)
o + trB3

oI
(2) − trB(2)

o Bo
∧
∧I

= I(2)trB(3)
o − trB(2)

o Bo
∧
∧I. (27)

Reformulating this as

(I∧∧Bo)|(I∧∧B2
o + trB(2)

o I(2)) = I(2)trB(3)
o , (28)

and assuming trB(3)
o 	= 0 we can identify the expression for the inverse

as

(I∧∧Bo)−1 =
I∧∧B2

o + trB(2)
o I(2)

trB(3)
o

. (29)
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This is the main result of the present paper. The form of (29) suggests
that the inverse can be written as

(I∧∧Bo)−1 = I∧∧Ao (30)

where Ao is a trace-free dyadic:

Ao =
B2

o +
1
2
trB(2)

o I

trB(3)
o

=
B2

o −
1
4
trB2

o I

trB(3)
o

, (31)

trAo = 0. (32)

4. CHECKING THE RESULT

To obtain confidence in the inverse formula (29), let us make two
verifying checks. Because from (30) we must have

(I∧∧Ao)−1 = I∧∧Bo, (33)

let us check this for inner consistency. (33) is equivalent to requiring
that the expression (31) be valid with Bo and Ao interchanged:

Bo =
A2

o −
1
4
trA2

o I

trA(3)
o

. (34)

Substituting Ao in terms of Bo in the right side of (34) yields

A2
o − 1

4trA2
o I

trA(3)
o

= trB(3)
o




(B2
o −

1
4
trB2

oI)
2 − 1

4
tr(B2

o −
1
4
trB2

oI)
2I

tr(B2
o −

1
4
trB2

oI)
(3)


 . (35)

In expanding the right-hand side we invoke the Cayley-Hamilton
equation (A15) for Bo and (A8), (A7). After some algebraic steps
we find

tr(B2
o −

1
4
trB2

oI)
(3) = (trB(3)

o )2, (36)

and
(B2

o −
1
4
trB2

oI)
2 − 1

4
tr(B2

o −
1
4
trB2

oI)
2I = BotrB(3)

o , (37)

whence the right-hand side of (35) reduces to Bo as required.
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As a second check let us substitute in (29) the simple trace-free
dyadic

Bo =
B

2
(e1ε1 + e2ε2 + e3ε3 − 3e4ε4) (38)

satisfying

B2
o =

B2

4
(e1ε1 + e2ε2 + e3ε3 + 9e4ε4) =

BBo

2
+ 3B2e4ε4, (39)

trB(2)
o = −3B2

2
, trB(3)

o = −B3. (40)

After some steps we obtain from (31)

Ao = − 1
B3

(B2
o−

3B2

4
I) =

1
2B

(e1ε1 +e2ε2 +e3ε3−3e4ε4) =
Bo

B2
. (41)

To verify (29) we expand

(I∧∧Bo)|(I∧∧Ao) =
1

B2
(I∧∧Bo)2

=
1
4
((e1ε1 + e2ε2 + e3ε3 − 3e4ε4)∧∧

∑
eiεi)2 =

∑
i<j

eijεij = I(2). (42)

5. VERIFYING IN EIGENEXPANSIONS

In principle, the inverse expression could also be derived by expanding
the medium dyadic applying suitable vector bases. However, to compile
the result in coordinate-independent form is not a straightforward
task. It is instructive to verify the derived result (29) by using
eigenexpansions. Let us assume that the right eigenvectors of the
dyadic Bo are ei and that they form a four-dimensional basis. The
corresponding reciprocal basis of one-forms is denoted by εi. Denoting
the eigenvalues by Bi we can write the eigenexpansions [15]

Bo =
4∑

i=1

Bieiεi, (43)

I∧∧Bo =
∑
i<j

(Bi + Bj)eijεij . (44)

Because of the trace-free property we have

B4 = −(B1 + B2 + B3) (45)
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whence
I∧∧Bo = (B1 + B2)(e12ε12 − e34ε34)

+(B2 + B3)(e23ε23 − e14ε14) + (B3 + B1)(e31ε31 − e24ε24). (46)

The inverse of this is quite simply

(I∧∧Bo)−1 = (B1 + B2)−1(e12ε12 − e34ε34)

+(B2 + B3)−1(e23ε23 − e14ε14) + (B3 + B1)−1(e31ε31 − e24ε24). (47)

Now let us try to verify the right-hand side of (29) by finding
its eigenexpansion. Applying (45) the two scalar invariants have the
expansions

trB(3)
o = B1B2B3 + B1B2B4 + B1B3B4 + B2B3B4

= −(B1 + B2)(B2 + B3)(B3 + B1), (48)

trB(2)
o = B1B2 + B2B3 + B3B1 + B1B4 + B2B4 + B3B4

= −(B2
1 + B2

2 + B2
3 + B1B2 + B2B3 + B3B1)

= −(B3 + B1)(B1 + B2) − B2
2 − B2

3 . (49)

The last expression can be rewritten as

B2
2 + B2

3 = −trB(2)
o − (B3 + B1)(B1 + B2) (50)

and it is equally valid for all permutations of the indices. Starting now
from

Bo
2 =

4∑
i=1

B2
i eiεi, (51)

we can write in analogy with (44)

I∧∧Bo
2 =

∑
i<j

(B2
i + B2

j )eijεij . (52)

This can be expanded as

I∧∧Bo
2 = (B2

1 + B2
2)e12ε12 + (B2

2 + B2
3)e23ε23 + (B2

3 + B2
1)e31ε31

+
3∑

i=1

(B2
i + (B1 + B2 + B3)2)ei4εi4. (53)

Inserting

B2
1 + (B1 + B2 + B3)2 = 2(B1 + B2)(B1 + B3) + B2

2 + B3
3 (54)
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and similarly permutating the indices we have

I∧∧Bo
2 = (B2

1 + B2
2)(e12ε12 + e34ε34) + (B2

2 + B2
3)(e23ε23 + e14ε14)

+(B2
3 + B2

1)(e31ε31 + e24ε24) + 2(B3 + B1)(B1 + B2)e14ε14

+2(B1 + B2)(B2 + B3)e24ε24 + 2(B2 + B3)(B3 + B1)e34ε34.

(55)

Inserting (50) we can finally construct the expansion

I∧∧Bo
2 = −trB(2)

o I(2) − (B3 + B1)(B2 + B3)(e12ε12 − e34ε34)
−(B1 + B2)(B3 + B1)(e23ε23 − e14ε14)
−(B1 + B2)(B2 + B3)(e31ε31 − e24ε24), (56)

which together with (48) will finally verify (47). It is obvious that
arriving at (29) through this route would require some knowledge of
the form of the final result.

6. DISCUSSION

Applying dyadic algebra to electromagnetic analysis requires a toolbox
of operational rules or dyadic identities, an example of which is given
in the Appendix A of [6] (its upgraded version is available through
http://www.ismolindell.com/publications/monographs/pdf/iden.pdf).
One of the main shortcomings has been the lack of an analytic
coordinate-free expression for the inverse of a dyadic mapping bivectors
to bivectors or two-forms to two-forms or their modified counterparts.
There exist formulas for some special cases like medium dyadics of the
co-called Q-media [8], i.e., dyadics of the form Q(2), or medium dyadics
of self-dual media [16] which satisfy an algebraic equation of the second
order.

In the present paper a step forward in this direction is taken by
introducing the inverse for dyadics of the form I∧∧Bo with trBo = 0,
which when transposed corresponds to the medium dyadic for the class
of skewon media. It does not appear very straightforward to extend
the result (29) to the class of general IB-media, i.e., for dyadics I∧∧B

with trB 	= 0. However, (29) can be generalized to another extended
class of dyadics D ∈ E2F2 defined by

D = I∧∧Bo + AΠ, trBo = 0, (57)

where A ∈ E2 is a bivector and Π ∈ F2 a two-form. In fact, the
expression for the inverse can be directly written by applying the rule
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[6]

D−1 = (I∧∧Bo)−1 − (I∧∧Bo)−1|AΠ|(I∧∧Bo)−1

1 − Π|(I∧∧Bo)−1|A
. (58)

Medium dyadics defined by M = DT have nonzero principal and axion
parts in the general case.

APPENDIX A. IDENTITIES

In this section we list some dyadic identities required in the analysis
without derivation. Rules for their derivation can be found in [6]. The
dyadics A,B, · · · are elements of the space E1F1, i.e., dyadics mapping
vectors to vectors, unless otherwise specified. The dimension of the
basic vector space is 4 so that trI = 4 and trI(2) = 6.

(A∧
∧B)|(C∧

∧D) = (A|C)∧∧(B|D) + (A|D)∧∧(B|C) (A1)

(A∧
∧B)��CT = (A||CT )B + (B||CT )A − A|C|B − B|C|A (A2)

I(4)��(A∧
∧B)T = tr(A∧

∧B) I(2) − ((A∧
∧B)��IT )∧∧I + A∧

∧B (A3)

I(4)��(I∧∧A)T = trA I(2) − A∧
∧I (A4)

A(3)��I(2)T = A3 − trAA2 + trA(2) A (A5)

A(3)��IT = trAA(2) − A∧
∧A2 (A6)

trA(4) =
1
24

(
(trA)4 − 6(trA)2trA2 + 8trA trA3

+ 3(trA2)2 − 6trA4
)

. (A7)

trA(3) =
1
6

(
(trA)3 − 3trA trA2 + 2trA3

)
(A8)

trA(2) =
1
2

(
(trA)2 − trA2

)
(A9)

I(2)��IT = 3I (A10)

I(3)��IT = 2I(2), I(3)��I(2)T = 3I (A11)

I(4)��IT = I(3), I(4)��I(2)T = I(2), I(4)��I(3)T = I (A12)

The following operation maps a dyadic A ∈ E1F1 to a dyadic X ∈ E3F3:

X = I(4)��AT = trA I(3) − I(2)∧∧A (A13)
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The same mapping is inverted as

A = I(4)��XT = trX I − X��I(2)T (A14)

Cayley-Hamilton identity:

A4 − trAA3 + trA(2) A2 − trA(3) A + trA(4) I = 0. (A15)
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