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Abstract—In the Part I of this work general introduction to the
transient impedance assessment of simple grounding systems has been
presented. Part I also deals with the analysis of the vertical grounding
electrode, while this paper analyses a more demanding case of the
horizontal electrode. The mathematical model is based on the thin wire
antenna theory featuring the Pocklington integro-differential equation.
The Pocklington equation is solved using the Galerkin-Bubnov indirect
Boundary Element Method. The details are available in Appendix.
The formulation of the problem is posed in the frequency domain,
while the corresponding transient response of the grounding system is
obtained by means of the inverse Fourier transform. Some illustrative
numerical results are shown throughout this work.

1. INTRODUCTION

Transient electromagnetic behaviour of horizontal grounding electrode
is of widespread interest in protection of electrical and electronic
systems [1–4]. In Part I of this work [5] the transient analysis of vertical
grounding electrode has been carried out. The mathematical model
presented there employs the thin wire antenna theory, Pocklington
integral equation for buried wires with a modified kernel to account
for the earth-air interface reflected electromagnetic field, as well as the
usual infinite’s medium Green function.

This paper deals with the transient impedance calculation of the
horizontal grounding electrode, respectively, as a simple grounding
systems. In principle, the procedure presented in this paper is quite
similar to the one for the vertical electrode though the parts of
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formulation regarding the current distribution and input impedance
are more demanding in the case of horizontal wire.

This model also poses problem in the frequency domain, and
transient analysis of the grounding systems is obtained by applying
the inverse Fourier transform, while the linear surge-protection
components are modelled in the time domain. In general, it is not
easy to collect these models [4].

Recently, a direct time domain analysis of a straight wire antenna
embedded in a dielectric half-space has been presented in [6] and
can be regarded as an opener to the subject. Further work on the
subject will deal with the full time domain model including the ground
conductivity.

The method presented in this paper is based on the Pocklington
integro-differential equation formulation [1, 6] and related reflection
coefficient approximation to account for the presence of a lossy
half-space (instead of analytically demanding and numerically time
consuming Sommerfeld integral approach [1, 7, 9]).

The current along the horizontal grounding electrode is obtained
by solving the corresponding integro-differential equation via the
indirect scheme of the Galerkin-Bubnov Boundary Element Method
(GB-BEM) [9–11].

The feed point voltage can be obtained by analytically integrating
the normal electric field from the electrode surface to infinity.

The input impedance of the horizontal electrode is obtained as a
ratio of evaluated voltage and injected current at the feed point.

The frequency response of the electrode is obtained multiplying
the input impedance spectrum with Fourier transform of the given
lightning current waveform.

Finally, the transient impedance of the horizontal grounding
electrode is computed by means of the inverse Fourier transform.

Some illustrative numerical results for the input impedance
spectrum and transient impedance are presented in the paper.

2. INTEGRAL EQUATION FOR THE CURRENT
ALONG THE HORIZONTAL ELECTRODE

The horizontal grounding electrode is represented by the straight end-
fed wire of length L and radius a, buried in a lossy medium at depth d
as shown in Fig. 1. The electrode is assumed to be perfectly conducting
and its dimensions satisfy the well known thin wire approximation
[1, 7, 9–11].

The Pocklington integro-differential equation for the horizontal
electrode can be derived by expressing the electric field in terms of
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Figure 1. Horizontal grounding wire energized by a current source Ig.

the Hertz vector potential and by satisfying the appropriate boundary
conditions for the tangential field components at the electrode surface,
in the same manner as it was done for vertical electrode.

The complete electric field induced in the vicinity of the straight
thin wire of finite length buried in an imperfectly conducting half-space
can be expressed in terms of Hertz vector potential Π [8]:

�E = ∇
(
∇�Π

)
+ k2

1
�Π (1)

where k1 is the phase constant of a lossy ground:

k2
1 = −ω2µεeff (2)

and εeff denotes the complex permittivity of the lossy ground:

εeff = εrε0 − j
σ

ω
(3)

where and εr and σ are relative permittivity and conductivity of the
ground respectively, and ω denotes the operating frequency.

A corresponding integral equation formulation for the horizontal
grounding electrode using Sommerfeld and RC approach is presented
in Subsections 2.1 and 2.2, respectively.

2.1. Sommerfeld Integral Approach

The scattered tangential electric field in the vicinity of the straight
horizontal thin wire buried at depth d in the earth expressed by vector
Equation (1), can be written in terms of the Hertz vector potential
components Πx and Πz [6]:

EH
x (x, z) =

[
∂2

∂x2
+ k2

1

]
ΠH

x +
∂2ΠH

z

∂x∂z
(4)
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EH
z (x, z) =

∂2ΠH
z

∂x∂z
+

[
∂2

∂z2
+ k2

1

]
ΠH

z (5)

where superscript H emphasize the horizontal grounding electrode
electrode.

The vector potential components for the straight horizontal buried
wire are given by [7]:

ΠH
x =

1
j4πωµεeff

L/2∫
−L/2

[
gH
0 (x, x′, z) − gH

i (x, x′, z) + U11

]
I(x′)dx′ (6)

ΠH
z =

1
j4πωεeff

L/2∫
−L/2

∂W11

∂x
I(x′)dx′ (7)

where I(x′) is current distribution along the wire, gH
0 (x, x′, z) denotes

the free space Green function of the form:

gH
0 (x, x′, z) =

e−jk1R1h

R1h
(8)

while gH
i (x, x′, z) arises from the image theory and is given by:

gH
i (x, x′, z) =

e−k2R2h

R2h
(9)

where R1h and R2h are the distances from the horizontal wire in the
lossy ground and from its image in the air to the observation point in
the lower medium, respectively.

The influence of the imperfectly conducting ground is taken into
account by the attenuation terms in the form of Sommerfeld integrals
U11 and W11, defined as follows [1]:

U11 = 2
∞∫
0

e−µ1(d−z)

µ1 + µ2
J0(λρ)λdλ (10)

W11 = 2
∞∫
0

(µ1 − µ2)e−µ1(d−z)

k2
2µ1 + k2

1µ2
J0(λρ)λdλ (11)

where J0(λρ) is zero order Bessel function of the first kind, while µ1, µ2

and ρ are given by:

µ1 =
(
λ2 − k2

1

)1/2
, µ2 =

(
λ2 − k2

1

)1/2
ρ = |x− x′| (12)
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Assuming the perfectly conducting wire [1, 7], the total tangential
electric field, vanishes along the perfectly conducting electrode surface,
i.e.,

Eexc,H
x (x, a) + Esct,H

x (x, a) = 0 (13)

where Eexc,H
z is the excitation function and Esct,H

z is the corresponding
scattered field along the electrode surface.

Taking into account the Sommerfeld integrals property:

∂W11

∂z
= k2

1V11 − U11 (14)

Combining the relations (4) to (14) yields:

Eexc,H
x = − 1

j4πωεeff




L/2∫
−L/2

∂2

∂x2

[
gH
0 (x, x′)−gH

i (x, x′)+k2
1V11

]
I(x′)dx′

+k2
1

L/2∫
−L/2

[
gH
0 (x, x′) − gH

i (x, x′) + U11

]
I(x′)dx′




(15)

Solving the integral Equation (15) the current distribution along the
horizontal electrode is obtained.

2.2. Simplified Reflection Coefficient Approach

The evaluation of the Sommerfeld integrals (10), (11) is rather difficult
task [1, 7, 9]. Namely, this approach requires repeated evaluation of
Sommerfeld integrals and matrix inversion on several frequencies, for
spectrum calculation purposes which is rather time consuming.

A simplified approach based on the modified image theory was
proposed in [2] for handling the grounding systems and in [12]
for the treatment of the plane wave coupling to horizontal buried
cables. However, the modified image theory is based on a quasi-
static approximation of the phenomena and takes into account only the
electrical properties of the soil but not the burial depth as a parameter.

This work deals with a reflection coefficient (RC) approach by
which the angle of electric field reflection from the earth-air interface
and the burial depth of the grounding electrode are both taken into
account. The principal advantage of the RC approach versus rigorous
Sommerfeld integral approach is a simplicity of the formulation and
significantly less computational cost.
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For convenience, the integro-differential Equation (15) can be
written in the form:

Eexc
x = − 1

j4πωεeff

L/2∫
−L/2

GH(x, x′)I(x′)dx′ (16)

where G(x, x′) is the total Green function given by:

GH(x, x′) =
∂2

∂x2

[
gH
0 (x, x′) − gH

i (x, x′) + k2
1V11

]
+k2

1

[
gH
0 (x, x′) − gH

i (x, x′) + U11

]
(17)

According to the RC approximation the simplified Green function for
the horizontal grounding electrode is given by:

GH(x, x′) =

[
∂2

∂x2
+ k2

1

] [
gH
0 (x, x′)−gH

i Γ(x, x′)
]

=

[
∂2

∂x2
+ k2

1

]
gH(x, x′) (18)

while Γ is the corresponding reflection coefficient for the TM
polarization [11]:

Γ =

1
n

cos θ −
√

1
n
− sin2 θ

1
n

cos θ +

√
1
n
− sin2 θ

(19)

where θ and n are given by:

θ = arctg
|x− x′|

2d
; n =

εeff

ε0
(20)

Also, the Pocklington integro-differential equation for the straight
horizontal wire buried in the lossy ground is:

Eexc,H
x = − 1

j4πωεeff

L/2∫
−L/2

[
∂2

∂x2
+k2

1

] [
gH
0 (x, x′)−ΓgH

i (x, x′)
]
I(x′)dx′

(21)
Solving the integral Equation (21) via Galerkin-Bubnov indirect
Boundary Element Method the equivalent current distribution along
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the horizontal electrode is obtained. The mathematical details are
available in Appendix.

Though the RC approximation is found to be an asymptotically
correct form of the Sommerfeld integrals in the far-field region the
relationship between the rigorous and approximate field expressions is
not in general so simple [8].

On the other hand the RC approach provides a more efficient
algorithm compared to the rigorous method. One possible way of doing
a trade off between the approximate and rigorous approach could be the
comparison of numerical results, rather than analytical considerations
[5, 8].

2.3. Imposed Boundary Conditions

In the analysis of the grounding electrodes, the excitation function
cannot be defined in the form of an incident electric field, as this field
vanishes along the perfectly conducting (PEC) wire surface, i.e.,

Eexc
x = 0 (22)

so the integral Equation (15) and (21) have become homogeneous [1, 7].
The horizontal grounding electrode is energized by the injection of

a current pulse of an arbitrary waveform produced by an ideal current
source with one terminal connected to the grounding electrode with
the other one grounded at infinity.

The excitation can be defined by the current flowing into the wire.
This current source is incorporated into the integral equation scheme
through the boundary condition:

I(−L/2) = Ig (23)

where Ig denotes the current generator.
This unit current source is often used in the frequency domain

calculations as it is the counterpart of the time domain current pulse.

3. THE EVALUATION OF THE INPUT IMPEDANCE
SPECTRUM

As the horizontal grounding electrode is represented by the wire
antenna model the calculation of antenna input impedance against
the grounding system input impedance presented in this work should
be discussed and a corresponding trade off should be made.

The calculation of the wire antenna input impedance is relatively
a simple task, because the terminal points of the voltage generator are
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very close, i.e., one deals with the so-called delta-function generator
[1, 7].

The calculation of grounding system input impedance is more
demanding than in the antenna case, primarily because the input
terminals are placed between ground electrode point and remote soil,
and the integration on the infinite integral cannot be avoided.

The input impedance is given by the ratio:

Zin =
Vg

Ig
(24)

where Vg and Ig are the values of the voltage and the current at the
driving point.

The feed-point voltage can be calculated by integrating the normal
electric field component from the electrode surface to infinity, i.e.:

Vg = −
a∫

∞

�Ed�s (25)

Hence, as in the case of vertical electrode the problem of obtaining the
input impedance is referred to the calculation of feed-point voltage.
The input impedance spectrum is obtained by repeating this this
procedure in the wide frequency band.

For the case of horizontal grounding electrode the integral (25)
becomes:

Vg = −
a∫

∞
EH

z (x, z)dz (26)

The radial electric field component, normal to the electrode, is
now given by:

EH
z (x, z) =

∂2ΠH
x

∂x∂z
=

1
j4πωεeff

L/2∫
−L/2

I(x′)
∂2gH(x, x′, z)

∂x∂z
dx′ (27)

The kernel GH has the following symmetry property:

∂gH(x, x′, z′)
∂x

= −∂g
H(x, x′, z)
∂x′

(28)

and performing the integration by parts expression (28) becomes:

Ez(x, z) = − 1
j4πωεeff

d

dz

[
I(x′)gH(x, x′, z)

∣∣∣x′=L/2

x′=−L/2
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−
L/2∫

−L/2

∂I(x′)
∂x′

gH(x, x′, z)dx′
]

(29)

It can be observed that the differentiation over x variable is avoided
while a differentiation over z variable, is replaced outside the integral
sign.

Substituting the Equation (29) into (26) it follows:

Vg = − 1
j4πωεeff

∞∫
a

d

dz

[
I(x′)gH(x, x′, z)

∣∣∣z′=L/2

z′=−L/2

−
L/2∫

−L/2

∂I(x′)
∂x′

gH(x, x′, z)dx′
]
dz (30)

simply leading to:

Vg =
1

j4πωεeff

[
I(−L/2)gH(x,−L/2, z)

−
L/2∫

−L/2

∂I(x′)
∂x′

gH(x, x′, z)dx′
]∣∣∣∣z=∞

z=a
(31)

The tedious numerical integration over infinite domain in (31) is
avoided and the desired input impedance of the buried wire is
determined by the relation:

Zin =
1

j4πωεeffIg

[
I(−L/2)gH(x,−L/2, z)

−
L/2∫

−L/2

∂I(x′)
∂x′

gH(x, x′, z)dx′
]∣∣∣∣z=∞

z=a
(32)

However, the approximation of Sommerfeld integrals with Fresnel
reflection coefficient (RC) should be performed very carefully, and
validity limits of this approach should be clarified, as well.

The Sommerfeld integral approach has found to be numerically
stable for buried horizontal wire brought to within 10−6 wavelengths
of the interface [6–8]. In addition, the RC approach produces results
roughly within 10% of these obtained via rigorous Sommerfeld integral
approach.
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3.1. The Transient Impedance Calculation

The transient impedance of the horizontal grounding electrode is
defined as a ratio of time varying voltage and current at the input
terminals [1]:

z(t) =
v(t)
i(t)

(33)

where i(t) is the current injected at an end of the horizontal electrode,
Fig. 1.

This injected current is related to the lightning channel current
given by:

i(t) = I0 ·
(
e−αt − e−βt

)
, t ≥ 0 (34)

where pulse rise time is determined by constants α and β, while I0
denotes the amplitude of the current waveform.

The calculation procedure for v(t) is the same as in the case of the
vertical electrode and the details are available in Part I of this work
[5].

4. NUMERICAL RESULTS

Figures 2 and 3 show the frequency spectrum of the input impedance
for the grounding electrode of length L = 1 m, and radius a = 5 mm,
buried at depth d = 1 m in the ground with εr = 10. Ground
conductivity is σ = 0.001 S/m (dry sand, gravel) and σ = 0.01 S/m
(loam, clay), respectively. The obtained results are compared with
results available from [13]. The agreement between results calculated
via different approaches is found to be satisfactorily.

Fig. 4 shows the transient impedance for the grounding electrode
of same dimensions buried at depth d = 1 m compared to the results
from [13].

Grounding electrode is excited by the double exponential current
pulse with parameters I0 = 1.1043 A, α = 0.07924 · 106 s−1, β =
4.0011 · 106 s−1. The agreement is judged to be satisfactorily again.

At this point, the choice of the parameters α and β are determined
by rise time (time-to-maximum value of the current waveform) and
duration time (time-to-half maximum). Thus, values α = 0.07924 ·
106s−1, β = 4.0011 · 106s−1 correspond to time-to-maximum 1µs and
time-to-half maximum 10µs [13, 14].

This excitation current pulse is chosen in a way to be as close
as possible to the realistic lightning pulse. In realistic scenarios the
rise time of the current pulse varies from 0.1µs to a few µs, while the
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Figure 2. Input impedance spectrum of the grounding electrode:
L = 1 m, a = 5 mm, d = 1 m, εr = 10, σ = 0.001 S/m.
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Figure 3. Input impedance spectrum of the grounding electrode:
L = 1 m, a = 5 mm, d = 1 m, εr = 10, σ = 0.01 S/m.

duration time, defined as a time required for the current magnitude
decrease to the 50% of maximal value ranges from 5µs to 2000µs.

The computational details regarding the use of inverse Fourier
Transform have already discussed in Part I of this work [5].

Fig. 5 and 6 show the input impedance spectra for horizontal
grounding electrode of length L = 1 m and L = 10 m, respectively
buried at depth d = 0.5 m in the lossy ground with εr = 10 and
conductivity σ = 0.00185 S/m (specific resistivity ρ = 5400 Ωm).

Fig. 7 shows the frequency spectrum of the lightning strike current
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Figure 4. Transient impedance of the grounding electrode buried
in the lossy ground: L = 1 m, a = 5 mm, d = 1 m, εr = 10,
σ = 0.001 S/m.

Figure 5. Input impedance spectrum (L = 1 m, d = 0.5 m, ρ =
5400 Ωm).

pulse. It is visible that this pulse practically vanishes for frequencies
higher than 2 MHz. However, to obtain the proper information about
the early time behaviour of the transient response higher harmonics
need to be taken into account. As the Inverse Fast Fourier Transform
(IFFT) requires ∆t = 1/2fmax it follows for fmax = 100 MHz, ∆t =
5 ns.

The frequency spectrum of the voltage induced at the grounding
electrode input is obtained by multiplying the input impedance
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Figure 6. Input impedance spectrum (L = 10 m, d = 0.5 m,
ρ = 5400 Ωm).

Figure 7. Frequency spectrum of the current pulse.

spectrum and the spectrum of the current pulse. Applying the
IFFT the transient voltage at the input of the grounding electrode
is obtained. Fig. 8 shows the normalized injected current and induced
voltage waveform for the horizontal grounding electrode of length
L = 1 m. A shift between the current excitation function and induced
voltage clearly demonstrates the reactive character of the grounding
impedance, contrary to the widely adopted assumption of the resistive
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Figure 8. Normalized values of the current pulse and induced voltage.

Figure 9. Transient impedance of the horizontal grounding electrode:
L = 1 m, d = 0.5 m, ρ = 5400 Ωm.

grounding electrode behavior.
The ratio of time dependent voltage and current gives the transient

impedance of the grounding electrode. Figures 9 to 11 show the
transient impedance waveform for various electrode lengths. It is
obvious that greater is the conductor length the lower is the value of
the transient impedance. Generally, the transient impedance at instant
t = 0 has the zero value and reaches the stationary value after some
time. The waveform presented in Fig. 11 is due to the signal reflection
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Figure 10. Transient impedance of the horizontal grounding
electrode: L = 10 m, d = 0.5 m, ρ = 5400 Ωm.

Figure 11. Transient impedance of the horizontal grounding
electrode: L = 30 m, d = 0.5 m, ρ = 5400 Ωm.

from the wire ends. The physical explanation to the differences in the
values of the transient impedance visible in Fig. 9 to 11 is related to the
energy loss of the grounding electrode due to the radiation mechanism.
Namely, in accordance to the implemented model arising from the thin
wire antenna theory the horizontal grounding electrode behaves as the
end-driven antenna immersed in a lossy medium.

Figure 12 shows the results for the various burial depths. It is
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Figure 12. Transient impedance of the horizontal grounding
electrode: L = 10 m, ρ = 5400 Ωm.
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Figure 13. Transient impedance of the horizontal grounding
electrode: L = 1 m, d = 0.5 m.

visible that the impedance decreases as the burial depth increases. In
particular, the impedance reaches the lowest value at d = 10 m where
the influence of the earth-air interface is negligible. In realistic case the
soil at greater burial depth may have a higher humidity which would
additionally decrease of the input impedance.

In Fig. 13 results for two different values of soil resistivity are
compared. As expected, a lower value of a soil resistivity implies the
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Figure 14. Transient impedance of the horizontal grounding
electrode: L = 10 m, d = 10 m, ρ = 100 Ωm.

Figure 15. Input impedance spectrum (L = 10 m, d = 10 m,
ρ = 100 Ωm).

lower value of the transient impedance.
In all examples presented so far, the transient impedance

continuously grows from zero value to the stationary value (maximum
value). Fig. 14 shows a transient impedance wave-form for the case of
low soil resistivity. Reached grounding resistance equals 9 Ω. However
observing the transient impedance it is obvious that the maximal value
of the transient impedance is around 37 Ω, i.e., four times higher. From
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this example it is visible that transient impedance calculation is very
important especially the early time transient response. The low value
of the grounding resistance does not ensure the lightning protection in
the case of lightning strike.

Fig. 15 shows the freq. spectrum of the input impedance.
Comparing to spectrum shown in Figs. 1 and 2 it is visible that this
spectrum is not monotonically decreasing.

5. CONCLUSION

The transient impedance calculation of the horizontal grounding
electrode based on the antenna theory approach is presented in this
paper. The problem is formulated in the frequency domain while
the time domain results are computed by using the inverse Fourier
transform.

The horizontal grounding electrode is represented by the straight
end-fed wire antenna, buried in a lossy ground.

The equivalent current distribution along the electrode is obtained
by solving the corresponding Pocklington integro-differential equation
via the indirect Galerkin-Bubnov variant of the boundary element
method (GB-BEM).

The influence of the nearby earth-air interface is taken into
account by the reflection coefficient appearing within the integro-
differential equation kernel.

Electric field in the surrounding soil is determined from the
previously calculated current distribution. Input impedance is
obtained by analytically integrating the radial electrical field from the
remote soil to the electrode surface.

The frequency response of the horizontal electrode is obtained by
multiplying the Fourier transform of the current pulse with the input
impedance spectrum.

The transient impedance of the electrode is computed using
the Inverse Fast Fourier Transform (IFFT). Obtained numerical
results show that the transient impedance of the horizontal grounding
electrode is strongly dependent on the variation of electrode length, its
burial depth and the specific resistance of the ground.

The advantage of the proposed RC approach over rigorous
approaches based on Sommerfeld integrals is primarily simplicity and
computational efficiency. Further extension of this method to the
treatment of complex grounding systems consisting of interconnected
conductors will be reported subsequently. This analysis is anticipated
as Part III of this work.
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APPENDIX A. BOUNDARY ELEMENT SOLUTION OF
POCKLINGTON INTEGRO-DIFFERENTIAL
EQUATION

The Pocklington integro-differential equation types, such as Equation
(21), are usually handled by the point matching technique [1, 15]
which principal feature is simplicity. However, the point-matching
approach suffers from relatively poor convergence rate and the kernel
quasisingularity problem also arises [11].

To overcome these disadvantages an indirect Galerkin-Bubnov
scheme of the Boundary Element Method is used in this paper. This
numerical approach has been promoted in [9], where the method was
applied to the problem of dipole antenna radiating over lossy half space.

For the sake of completeness, the numerical method is outlined
below.

It is convenient to start this procedure with an operator form of
(21) which can be symbolically written as:

KI = Y (A1)

where K is a linear operator, I is the unknown function to be found
for a given excitation Y .

The unknown current is then expanded into a finite sum of
n linearly independent basis functions fi with unknown complex
coefficients Ii:

I ∼= In =
n∑

i=1

Iifi (A2)

Substituting (A2) into (A1) yields:

KI ∼= KIn =
n∑

i=1

αiKfi = Yn = Pn(Y ), (A3)

where Pn(Y ) is called a projection operator [10]. Now the residual Rn

is formed:
Rn = KIn − Y = Pn(Y ) − Y. (A4)

According to the definition of the scalar product of functions in Hilbert
function space the error Rn is weighted to zero with respect to certain
weighting functions {Wj}, i.e.,

〈Rn,Wj〉 = 0; j = 1, 2, . . . , n, (A5)

where the expression in brackets denotes:

〈Rn,Wj〉 =
∫
Ω

RnW
∗
j dΩ, (A6)
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where Ω is the domain of interest.
Since the operator K is linear, one obtains a system of algebraic

equations and by choosingWj = fj for the case of the Galerkin-Bubnov
procedure, yields:

n∑
i=1

αi〈K fi, fj〉 = 〈Y, fj〉 j = 1, 2, . . . , n. (A7)

Equation (A7) is the strong Galerkin-Bubnov formulation of the
Pocklington integral Equation of (A1) [9–11]. Utilizing the integral
equation kernel symmetry and taking into account the boundary
conditions for current at the free ends of the wire, after integration
by parts it follows:

n∑
i=1

Ii
1

j4πωεeff




−
L/2∫

−L/2

dfi(x)
dx

L/2∫
−L/2

dfi(x′)
dx′

gH(x, x′)dx′dx

−k2

L/2∫
−L/2

fj(x)

L/2∫
−L/2

fi(x′)gH(x, x′)dx′dx




= −
L/2∫

−L/2

Eexc
x fj(x)dx, j = 1, 2, . . . , n (A8)

Equation (A8) represents the weak Galerkin-Bubnov formulation of
the integral equation of (A1).

This approach provides some definite advantages over the
commonly used point-matching techniques:

- The second-order differential operator is replaced by trivial
derivatives over basis and test (weight) functions thus avoiding
the problem of quasi-singularity [9–11].

- The basis and test functions can be chosen arbitrarily. The only
requirement to be satisfied by bases and weights is that they must
be chosen from the class of order-one differentiable functions.

- The conditions at the wire ends are subsequently incorporated into
the global matrix of the linear equation system.

Performing the boundary element discretization the solution for the
unknown current Ie(x) along the boundary element can then be written
as:

Ie(x′) = {f}T {I} (A9)
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Assembling the contributions from each element the resulting system
of equations is given by:

M∑
i=1

[Z]ji{I}i = {V }j , and j = 1, 2, . . . ,M (A10)

where M is the total number of wire segments and [Z]ji is the
mutual impedance matrix representing the interaction of the i-th
source boundary element with the j-th observation boundary element:

[Z]ji = − 1
j4πωεeff




∫
∆lj

∫
∆li

{D}j{D′}T
i g

H(x, x′)dx′dx

+k2
∫

∆lj

∫
∆li

{f}j{f}T
i g

H(x, x′)dx′dx



.

(A11)

Matrices {f} and {f ′} contain the shape functions while {D} and {D′}
contain their derivatives, M is the total number of finite elements, and
∆li, ∆lj are the widths of i-th and j-th boundary elements.

{V }j is the voltage vector for the j-th observation boundary
element given by:

{V }j =
∫

∆lj

Eexc
x {f}jdx, (A12)

Throughout this work the linear approximation over a boundary
element is used as it has been shown that this choice provides accurate
and stable results for various wire configurations [9–11]. Since the
functions f(x) are required to be of class C1 (once differentiable), a
convenient choice for the shape functions over the finite elements is the
family of Lagrange’s polynomials given by:

Li(x) =
m∏

j=1

x− xj

xi − xj
, j �= i. (A13)

However, the ground wire, represented by the end-fed monopole
antenna, considered in this paper is neither excited by voltage
generator nor illuminated by plane wave. It is driven at its end by
the equivalent current generator, so the right-side vector is equal to
zero resulting in the homogeneous linear equation system, , i.e.,

M∑
i=1

[Z]ji{I}i = 0, and j = 1, 2, . . . ,M (A14)
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The excitation function in the form of the current generator Ig is taken
into account as a forced condition in the first node of the solution
vector:

I1 = Ig (A15)

and the linear equation system can be properly solved.
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