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Abstract—The paper deals with the transient impedance calculation
for simple grounding systems. The mathematical modelmodel is
based on the thin wire antenna theory. The formulation of the
problem is posed in the frequency domain, while the corresponding
transient response of the grounding system is obtained by means
of the inverse Fourier transform. The current distribution induced
along the grounding system due to an injected current is governed by
the corresponding frequency domain Pocklington integro-differential
equation. The influence of a dissipative half-space is taken into
account via the reflection coefficient (RC) appearing within the integral
equation kernel. The principal advantage of the RC approach versus
rigorous Sommerfeld integral approach is simplicity of the formulation
and significantly less computational cost.

The Pocklington integral equation is solved by the Galerkin
Bubnov indirect boundary element procedure thus providing the
current distribution flowing along the grounding system. The outline
of the Galerkin Bubnov indirect boundary element method is presented
in Part II of this work.

Expressing the electric field in terms of the current distribution
along the electrodes the feed point voltage is obtained by integrating
the normal field component from infinity to the electrode surface.

The frequency dependent input impedance is then obtained as
a ratio of feed-point voltage and the value of the injected lightning
current. The frequency response of the grounding electrode is obtained
multiplying the input impedance spectrum with Fourier transform of
the injected current waveform.

Finally, the transient impedance of the grounding system is
calculated by means of the inverse Fourier transform. The vertical
and horizontal grounding electrodes, as simple grounding systems, are
analyzed in this work. The Part I of this work is related to the vertical
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electrode, while Part II deals with a more demanding case of horizontal
electrode.

1. INTRODUCTION

Grounding systems, such as buried vertical or horizontal electrodes
and large grounding grids are important part of safety and electrical
equipment protection in industrial and power plants.

The principal task of such grounding systems is to ensure
the safety of personnel and prevent damage of installations and
equipment, i.e., the configuration of grounding systems should avoid
the values of transient step and touch voltages which determines the
health hazard. The secondary purpose of grounding systems is to
provide common reference voltage for all interconnected electrical and
electronic systems.

Local inequalities of this reference potential and disturbances
distributed along the grounding systems are a source of malfunction
or even destruction of various components electrically connected with
grounding systems. In particular, the induced transient voltages may
cause serious damage of electronic equipment with low-signal levels
sensitive to various types of electromagnetic interfaces.

Consequently, the analysis of the space-time distribution of
transients along the grounding systems is necessary. One of the
most important parameters arising from the transient analysis of a
grounding system is the transient impedance.

In general, the transient response of any linear system could
be obtained directly, by solving the time domain equations, or by
frequency domain approach and inverse Fourier transform. The former
approach is valid as far as the soil ionization effect can be neglected.

While the stationary behaviour of grounding systems is well
investigated the transient analysis has been performed to a significantly
less extent. Until now, there have been some studies dealing with the
transient analysis of grounding systems based on analytical approaches,
transmission line models and electromagnetic models [1–5].

Analytical approaches can be referred to as the network concept
being based on the empirical approach, and the lumped circuit theory,
respectively. However, these models approaches in definitely suffer
from too many approximations. In particular, the calculation of
the equivalent electrical network parameters, due to conductive or
inductive coupling is rather difficult, in particular for the grounding
systems of complex geometry.

A number of conventional approaches for transient analysis of
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grounding systems are usually related to the transmission line method
(TLM) [2, 3]. TLM approach is, however, valid for long horizontal
conductors, but not convenient for modelling vertical and especially
interconected conductors. Moreover, the effect of the air-earth
interface has often been neglected assuming the conductors to be buried
at a very large depths [6]. Finally, TLM approach is not valid for low
values of ground conductivity and it also neglects the effect of mutual
coupling amoung the parts of the grounding system generating some
errors.

The rigorous electromagnetic field approach to the analysis of the
grounding system is based on wire antenna theory and is considered
to be the most accurate approach [4, 5, 7]. This model is based on
solving the corresponding thin electric field integral equation (EFIE)
for half-space problems.

According to this approach the grounding system of interest is
represented by a corresponding configuration of straight thin wire
antennas buried in the surrounding soil. The soil is represented as
a linear and homogeneous half-space characterized by its electrical
parameters.

Through this rigorous approach the effect of an imperfectly
conducting half-space is taken into account by the Sommerfeld
integrals, appearing in the integral equation kernel. This approach,
however, suffers from too long computational time for the evaluation of
broadband frequency spectrum, consesquently, the rigorous approach
is often regarded as too complex for practical applications, especially
for large grounding grids and it should be avoided wherever is possible
[8]. A useful study on validity of quasistatic theory compared to full
wave theory was presented in [8]. One possible way of avoiding the
computation of Sommerfeld integral is the use of modified image theory
(MIT) [5, 9]. The MIT approach takes into account only the electrical
properties of the soil, but not the burial depth as a parameter and it
is stated to be valid up to 1 MHz.

This work deals with the transient impedance calculation of the
vertical and horizontal grounding electrode, respectively, as simple
grounding systems geometries. However, the approach can be
readily extended to more complex geometries related to more realistic
grounding systems.

The first part of this work deals with the vertical grounding
electrode, while consideration of a more demanding case of horizontal
electrode is taken up in Part II.

The analysis method presented in this paper is based on the
Pocklington integro-differential equation formulation [4, 7] arising from
the antenna theory, and also proposes a simplified reflection coefficient
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approach for the treatment of the half-space problem (instead of
analytically demanding and numerically time consuming Sommerfeld
integral approach [4, 5, 7–11]) is also proposed.

The current along the vertical grounding electrode is obtained by
solving the corresponding integro-differential equation via the indirect
scheme of the Galerkin-Bubnov Boundary Element Method (GB-BEM)
[7, 9–11] and some illustrative numerical results are presented.

Further contribution of this work is a convenient procedure for
the feed-point voltage evaluation. Firstly, the near electric field is
expressed in terms of the current induced along the vertical electrode.
The feed point voltage can be obtained by integrating the normal
electric field from the electrode surface to infinity. The integration
is avoided by utilizing the weak formulation of the problem.

The input impedance of the grounding electrode, i.e., the transfer
function of the linear system, is defined as a ratio of evaluated voltage
and injected lightning current at the feed point.

The frequency response of the grounding electrode is obtained
multiplying the input impedance spectrum with Fourier transform of
the lightning current waveform.

Finally, the transient impedance of the gounding electrode is
computed by means of the inverse Fourier transform.

Some illustrative numerical results for the input impedance
spectrum and transient impedance are presented in the paper.

2. INTEGRAL EQUATION FOR THE INDUCED
CURRENT ALONG THE ELECTRODE

The geomatry of interest is a vertical straight wire of length L and
radius a, buried in a lossy medium at depth d shown in Fig. 1. The wire
is assumed to be perfectly conducting and the wire dimensions satisfy
the well known thin wire approximation [4, 7, 8, 11], so the current
along the wire is z-directed only.

The starting point in the mathematical model is the assessment
of the current distribution induced along the vertical electrode due to
a time-harmonic excitation and for a number of frequencies within a
frequency band of interest. This current distribution is goverened by
the Pocklington integro-differential equation. This integro-differential
equation can be derived by expressing the electric field in terms of the
Hertz vector potential and by satisfying the boundary conditions for
the tangential field components at the electrode surface.

The complete electric field induced in the vicinity of the straight
thin wire of finite length buried in an imperfectly conducting half-space
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Figure 1. Vertical grounding electrode energized by a current source
Ig.

can be expressed in terms of Hertz vector potential Π [7]:

�E = ∇(∇�Π) + k2
1
�Π (1)

where k1 is the phase constant of a lossy ground:

k2
1 = −ω2µεeff (2)

and εeff denotes the complex permitivity of the lossy ground:

εeff = εrε0 − j
σ

ω
(3)

where εr and σ are the relative permitivity and conductivity of the
ground respectively, and ω denotes the operating frequency.

A corresponding integral equation formulation for the vertical
grounding electrode using the both Sommerfeld and RC approach is
presented in Subsections 2.1 and 2.2, respectively.
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2.1. Sommerfeld Integral Approach

For the case of vertical grounding electrode energized by a current
source Ig the vector equation (1) can be written as a set of two scalar
equations for the normal x-component and tangential z-component of
the electric field due to the vertical electrode:

EV
x (x, z) =

∂2ΠV
z

∂x∂z
(4)

EV
z (x, z) =

[
∂2

∂z2
+ k2

1

]
ΠV

z (5)

where superscript V denotes the vertical electrode.
The vector potential z-component is given by [7]:

ΠV
z =

1
j4πωµεeff

−d∫
−d−L

[
gV
0 (x, z, z′) − gV

i (x, z, z′) + k2
2V11

]
I(z′)dz′

(6)
where I(z′) is the unknown current distribution along the vertical
straight wire, g0(x, z, z′) denotes the free space Green function of the
form:

gV
0 (x, z, z′) =

e−jkR1vI

R1v
(7)

while gi(x, z, z′) arises from the image theory and is given by:

gV
i (x, z, z′) =

e−jk2R2v

R2v
(8)

where k2 is the phase constant of free space:

k2
2 = ω2µε0 (9)

and R1v and R2v are the distances from the wire in the ground and
from its image in the air to the observation point in the lower medium,
respectively.

The attenuation effect of the lossy ground is taken into account
by the Sommerfeld integral term V11 [4]:

V11 = 2
∞∫
0

e−µ1(h−z)

k2
2µ1 + k2

1µ2
J0(λρ)λdλ (10)

where J0(λρ) is zero-order Bessel function of the first kind, while µ1, µ2

and ρ are given by:

µ1 =
(
λ2 − k2

1

)1/2
, µ2 =

(
λ2 − k2

2

)1/2
, ρ = |z − z′| (11)
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The Pocklington integro-differential equation for the vertical straight
wire buried in a lossy ground can now be obtained by enforcing the
boundary conditions for the tangential electric field components on the
perfectly conducting (PEC) wire surface. The total tangential electric
field on the PEC wire surface at x = a vanishes, i.e.,

Eexc,V
z (a, z) + Esct,V

z (a, z) = 0 (12)

where Eexc,V
z denotes the excitation function and Esct,V

z is the scattered
field along the electrode surface.

Combining the relations (5) to (12) leads to the Pocklington
integro-differential equation for the vertical grounding electrode:

Eexc,V
z = − 1

j4πωεeff

−d∫
−d−L

[
∂2

∂z2
+ k2

1

]

·
[
g0(z, z′) − gi(z, z′) + k2

2V11

]
I(z′)dz′ (13)

Solving the integral equation (13) the current distribution along the
electrode is obtained.

2.2. Reflection Coefficient Approach

The repeated evaluation of the Sommerfeld integral (10) at several
frequencies, by which the earth-air attenuation effect is taken into
account, is rather difficult and time consuming task [4, 7–12].

Therefore, this work deals with a reflection coefficient (RC)
approach which principal advantage versus rigorous Sommerfeld
integral approach is simplicity of the formulation and significantly less
computational cost.

For convenience, the integro-differential equation (13) can be
written in the form:

Eexc
z = − 1

j4πωεeff

−d∫
−d−L

GV (z, z′)I(z, z′)dz′ (14)

where G(z, z′) is the total Green function given by:

GV (z, z′) =

[
∂2

∂z2
+ k2

1

] [
gV
0 (z, z′) − gV

i (z, z′) + k2
0V11

]
(15)
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According to the RC approximation [7] the rigorous Green function
simplifies into:

GV (z, z′) =

[
∂2

∂z2
+ k2

1

] [
g0(z, z′) + Γgi(z, z′)

]

=

[
∂2

∂z2
+ k2

1

]
gv(z, z′) (16)

where Γ is the corresponding reflection coefficient [6] for the TM
polarization:

Γ =

1
n
−

√
1
n

1
n

+

√
1
n

(17)

and n is given by:
n =

εeff

ε0
(18)

Finallly, the resulting Pocklington integro-differential equation for the
vertical straight wire buried in a lossy half-space is given by:

Eexc,V
z = − 1

j4πωεeff

−d∫
−d−L

[
∂2

∂z2
+ k2

1

] [
gV
0 (z, z′) + ΓgV

i (z, z′)I(z′)dz′
]

(19)
In this paper, the integro-differntial equation (19) is solved by means of
the indirect Galerkin-Bubnov scheme of the Boundary Element method
(GB-BEM). An outline of the applied numerical method is available in
Part II of this work. Solving the integral equation (19) the equivalent
current distribution is obtained.

2.3. Imposed Boundary Conditions

In the analysis of the grounding electrodes, the excitation function is
not given in the form of electric field, as the wire is not illuminated
by the plane wave [4]. Thus, the left-hand side of the equation (19)
vanishes along the perfectly conducting (PEC) wire surface, i.e.,

Eexc
x = 0 (20)

and the integro-differential equation (19) becomes homogeneous.
The vertical electrode is energized by the injection of an arbitrary

waveform current pulse produced by an ideal current generator with
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one terminal connected to the grounding electrode and the other one
in the remote soil.

Thus, the excitation is given in the form of the current flowing into
the electrode. This current source is included into the integral equation
scheme through the simple boundary condition applied at the top of
the electrode:

I(−d) = Ig (21)
where Ig denotes the actual current generator.

In the frequency domain the unit current generator is always
chosen, as its time domain counterpart is Dirac impulse.

3. THE EVALUATION OF THE INPUT IMPEDANCE
SPECTRUM

The calculation of the vertical electrode input impedance is more
demanding than in the antenna case, primarily because the input
terminals are placed between electrode point and remote soil, and the
tedious integration on the infinite integral cannot be avoided.

By solving the integral equations (19) the equivalent current
distribution along the vertical electrode is obtained and the input
impedance can be computed. It is worth noting that this input
impedance depends only on the grounding system geometry and on
the electrical properties of the surrounding soil.

The input impedance is simply defined by ratio [4]:

Zin =
Vg

Ig
(22)

where Vg and Ig are the values of the voltage and the current at the
driving point, respectively.

The feed-point voltage is obtained by integrating the normal
electric field component from the remote soil to the electrode surface,
i.e.,

Vg = −
a∫

∞

�Ed�s (23)

Thus, the problem of obtaining the input impedance is related to the
calculation of the feed-point volatge. The spectrum of input impedance
is obtained by repeating this procedure in the wide frequency band.

For the given geometry of the vertical electrode integral (23)
becomes:

Vg = −
a∫

∞
EV

x (x, z)dx (24)
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Since only the Πz component of the Hertz vector potential exists the
Ez component of the electric field is given by:

EV
x (x, z) =

∂2ΠV
z

∂x∂z
=

1
j4πωεeff

−d∫
−d−L

I(z′)
∂2gV (x, z, z′)

∂x∂z
dz′ (25)

Numerical treatment of the expression (25) can be simplified by
featuring the weak formulation of the problem [7, 9–11]. Namely,
utilizing the property of Green functions for the source and image
wire, respectively:

∂gV
0 (x, z, z′)
∂z

= −∂g
V
0 (x, z, z′)
∂z′

(26)

∂gV
i (x, z, z′)
∂z

=
∂gV

i (x, z, z′)
∂z′

(27)

and performing the integration by parts it follows:

EV
x (x, z) = − 1

j4πωεeff

d

dx


I(z′)gV (x, z, z′)

∣∣∣∣∣
z′=−d

z′=−d−L

−
−d∫

−d−L

∂I(z′)
∂z′

gV
0 (x, z, z′)dz′ +

−d∫
−d−L

∂I(z′)
∂z′

ΓgV
i (x, z, z′)dz′




(28)

Obviously, the mixed second-order differential operator is removed
from the integral equation kernel GV .

Furthermore, substituting the equation (25) into (24) the following
expression for the feed point voltage is obtained:

Vg = − 1
j4πωεeff

∞∫
a

d

dx


I(z′)gV (x, z, z′)

∣∣∣∣∣
z′=−d

z′=−d−L

−
−d∫

−d−L

∂I(z′)
∂z′

gV
0 (x, z, z′)dz′ +

−d∫
−d−L

∂I(z′)
∂z′

gV
i (x, z, z′)dz′


 dx

(29)

which simply leads to the expression:

Vg =
1

j4πωεeff


I(−d)gV (x,−d, z) −

−d∫
−d−L

∂I(z′)
∂z′

gV
0 (x, z, z′)dz′
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+
−d∫

−d−L

∂I(z′)
∂z′

gV
i (x, z, z′)dz′

∣∣∣∣∣
x=∞

x=a


 (30)

in which the tedious numerical integration over infinite domain is
avoided.

The desired input impedance of the vertical grounding electrode
is finally defined by the relation:

Zin =
1

j4πωεeffIg


I(−d)gV (x,−d, z) −

−d∫
−d−L

∂I(z′)
∂z′

gV
0 (x, z, z′)dz′

+
−d∫

−d−L

∂I(z′)
∂z′

gV
i (x, z, z′)dz

∣∣∣∣∣
x=∞

x=a


 (31)

Calculating this relation in a wide frequency range gives the frequency
spectrum of the input impedance.

4. CALCULATION OF THE TRANSIENT IMPEDANCE

The transient impedance, an essential parameter in grounding system
design, is defined as a ratio of time varying voltage and current at the
driving point [4]:

z(t) =
v(t)
i(t)

(32)

where i(t) represents the excitation function, i.e., the injected current
at a top of the vertical electrode, as shown in Fig. 1.

This injected current represents the lightning channel current
usually expressed by the double exponential function:

i(t) = I0 · (e−αt − e−βt), t ≥ 0 (33)

where pulse rise time is determined by constants α and β, while I0
denotes the amplitude of the current waveform.

The Fourier transform of the excitation function is defined by
integral [13]:

I(f) =
∞∫

−∞

i(t)e−j2πftdt (34)
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Integral (34) can be evaluated analytically [11]:

I(f) = I0 ·
(

1
α+ j2πf

− 1
β + j2πf

)
(35)

The frequency components up to few MHz are meaningfully present
in the lightning current Fourier spectrum with strong decreasing
importance from very low to highest frequencies.

Multiplying the excitation function I(f) with the input impedance
spectrum Zinfj provides the frequency response of the grounding
system:

V (f) = I(f)Zin(f) (36)
Applying the Inverse Fourier Transform (IFT), a time domain voltage
counterpart is obtained. IFT of the function V (f) is defined by the
integral [13]:

v(t) =
∞∫

−∞

V (f)ej2πftdω (37)

As the frequency response V (f) is represented by a discrete set of values
the integral (37) cannot be evaluated analytically and the Discrete
Fourier transform, in this case the Fast Fourier Transform algorithm,
is used, i.e.,

v(t) = IFFT(V (f)) (38)
Implementation of this algorithm inevitably causes an error due
to discretization and truncation of essentially unlimited frequency
spectrum. The discrete set of the time domain voltage values is defined
as [13]:

v(n∆t) = F ·
N−1∑
k=0

V (k∆f)ejk∆fn∆t (39)

where F is the highest frequency taken into account, N is the total
number of frequency samples, ∆f is sampling interval and ∆t is the
time step.

Finally, the transient impedance of the vertical grounding
electrode is computed from relation (32). The transient impedance
should be recalculated for each excitation function while the input
impedance spectrum depends only on geometry of the grounding
system and on characteristics of the surrounding soil.

5. NUMERICAL RESULTS

Figure 2 shows the current distribution induced along the grounding
vertical electrode of length L = 1 m and radius a = 5 mm for two
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Figure 2. Current distribution along a grounding electrode (L = 1 m,
f = 1 MHz, ρ = 5400Ωm).

different burial depths. As results clearly demonstrate, the influence
of the burial depth to the induced current is negligible.

Figures 3 and 4 show the frequency spectrum of the input
impedance for the grounding electrode of length L = 1 m and L = 2 m,
respectively, and radius a = 5 mm, buried in the ground at depth
d = 0.5 m with εr = 10. The specific resistance of the ground is
ρ = 5400Ωm.

The results clearly demonstrate the influence of the electrode
length to the input impedance.

The transient response of the vertical grounding electrode is
evaluated using the relation (39). To avoid the discretization error,
both the frequency range and the number of frequency samples have
to be increased until satisfactory convergence is achieved. Although
amplitude of the signal almost vanishes for the frequencies higher
then 1 MHz, satisfactory results are obtained for frequency range of
F = 100 MHz and N = 216 samples as higher frequencies contain
some significant information for the early time response. Grounding
electrode is excited by the double exponential current pulse with
parameters I0 = 1.1043 A, α = 0.07924 · 106 s−1, β = 4.0011 · 106 s−1.
Figures 5 to 7 show different curves of the transient impedance of the
vertical electrode for the case of variable wire length, burial depth and
ground specific resistance. Radius of all electrodes is a = 5 mm.
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Figure 3. Input impedance spectrum (L = 1 m, d = 0.5 m, ρ =
5400Ωm).

Figure 4. Input impedance spectrum (L = 2 m, d = 0.5 m, ρ =
5400Ωm).
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Figure 5. Transient impedance of the vertical grounding electrode
with d = 0.5 m, ρ = 5400Ωm computed for various wire lengths.

Figure 6. Transient impedance of the vertical electrode with L = 1 m
and ρ = 5400Ωm, computed for various burial depths.
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Figure 7. Transient impedance of the vertical grounding electrode
with L = 3 m and d = 0.5 m computed for various values of the ground
resistance.

It can be observed that the transient impedance values vary from
zero towards the certain steady state value. Obviously, the transient
impedance values are highly sensitive to the variations of electrode
length, burial depth and properties of the ground resistance. As
the current distribution along the electrode shows the low sensibility
to the variations in burial depth, the high influence of the burial
depth changes to the transient impedances obviously arise from the
calculation of electric field. It is expectable, as the field is normal to
the electrode but tangential to the interface of two different media.

6. CONCLUDING REMARKS

The transient impedance calculation of the vertical grounding electrode
based on the antenna theory approach is presented in this work. The
analysis is carried out in the frequency domain and the time domain
results are obtained by using the inverse Fourier transform.

The vertical grounding electrode is represented by the straight
end-fed wire antenna, buried in a lossy medium.

First step in the analysis is the evaluation of the equivalent current
distribution along the electrode. The current distribution is governed
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by the Pocklington integro-differential equation.
The influence of the nearby air-earth interface is taken into

account by the reflection coefficient appearing within the integro-
differential equation kernel. The integro-differential equation is solved
by the indirect Galerkin-Bubnov variant of the boundary element
method (GB-BEM).

Electric field components at an arbitrary point in the lossy
medium can be in principle evaluated directly from the previously
calculated current distribution. Input impedance is obtained by
analytically integrating the electrical field from the electrode surface
to the infinity.

The frequency response of the grounding electrode is obtained by
multiplying the analytically evaluated Fourier transform of the current
pulse with the input impedance spectrum.

Finally, the transient impedance of the grounding wire is
computed using the Inverse Fast Fourier Transform (IFFT). Obtained
numerical results show that the transient impedance of the vertical
grounding electrode is significantly influenced by the variation of
electrode length, its burial depth and the specific resistance of the
ground.

This procedure shows some advantages over rigorous approaches
based on Sommerfeld integrals, primarily in simplicity and computa-
tional efficiency. The method presented in this work for the case of
vertical grounding electrode is readily applicable to horizontal elec-
trodes and complex grounding systems consisting of interconnected
conductors.

An extension of the reflection coefficient approach to the analysis
of the horizontal grounding electrode is presented in Part II of this
work.
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