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Abstract—Fractional curl operator has been utilized to study the
fractional waveguide. The fractional waveguide may be regarded as
intermediate step between the two given waveguides. The two given
waveguides are related through the principle of duality. Behavior of
field lines in fractional waveguides are studied with respect to fractional
parameter α.

1. INTRODUCTION

Fractional calculus is a branch of mathematics that deals with
operators having non-integer and/or complex order, e.g., fractional
derivative and fractional integral [1]. Tools of fractional calculus have
various applications in different disciplines of science and engineering,
e.g., Optics, Control and Mechanics etc. Discussion on recent
applications of tools of fractional calculus in science and engineering is
available in [2]. Mathematical recipe to fractionalize a linear operator is
available in [3, 4]. Recently, while exploring the roles and applications
of fractional calculus in electromagnetics, a new fractional operator
has been introduced [3]. The new fractional operator is termed as
fractional curl operator.

Fractional curl operator has been utilized to find the new set of
solutions to Maxwell’s equations by fractionalizing the principle of
duality [3]. New set of solutions is named as fractional dual solutions
to the Maxwell equations. In electromagnetics, principle of duality
states that if (E, ηH) is one set of solutions (original solutions) to
Maxwell equations, then other set of solutions (dual to the original
solutions) is (ηH,−E), where η is the impedance of the medium. The
solutions which may be regarded as intermediate step between the
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original and dual to the original solutions may be obtained using the
following relations [3]

Efd =
1

(jk)α
(∇×)αE

ηHfd =
1

(jk)α
(∇×)αηH

where (∇×)α means fractional curl operator and k = ω
√

µε is the
wavenumber of the medium. It may be noted that fd means fractional
dual solutions. It is obvious from above set of equations that for α = 0,

Efd = E, ηHfd = ηH

and for α = 1
Efd = ηH, ηHfd = −E

Which are two sets of solutions to Maxwell’s equations. The solutions
which may be regarded intermediate step between the above two
sets of solutions may be obtained by varying parameter α between
zero and one. Naqvi et al. [5] afterward extended the work [3] and
discussed the behavior of fractional dual solutions in an unbounded
chiral medium. Lakhtakia [6] derived theorem which shows that a
dyadic operator which commutes with curl operator can be used to
find new solutions of the Faraday and Ampere-Maxwell equations.
Veliev and Engheta [7] utilized the fractional curl operator to a fixed
solution and obtained the fractional fields that represent the solution
of reflection problem from an anisotropic surface. Naqvi and Abbas
studied the behavior of fractional curl operator for complex and higher
orders [8] and fractional dual solutions in metamaterial having negative
permittivity and permeability [9]. Naqvi and Rizvi determined the
sources corresponding to fractional dual solutions [10]. Recently
Hussain and Naqvi [11], introduced the idea of fractional transmission
lines. Naqvi et al. modelled the transmission through chiral layer using
fractional curl operator [12].

Our interest is to connect two given waveguides through a
fractional operator, and to determine solutions corresponding to the
new waveguide which may be regarded as intermediate step between
the two given waveguides. In present work, we have considered the
fractional curl operator, 1

(jk)α (∇×)α, as an operator which connects the
two given waveguides. Parallel plate waveguides have been considered
as given waveguides. It is the requirement of fractional curl operator
that two given problems should be related through the principle of
duality. Therefore, it is considered that one waveguide is composed
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of perfect electric conductors (PEC) and it supports TM-mode while
other waveguide is composed of perfect magnetic conductors (PMC)
and it supports TE-mode. In this way we are proposing the solutions
for fractional waveguides which may be regarded as intermediate step
between the two given dual waveguides.

2. GENERAL WAVE BEHAVIOR ALONG GUIDING
STRUCTURE

Consider a straight guiding structure having uniform cross-section
and lying along z-axis. Assume that a wave is propagating in z-
direction. For harmonic time dependence with an angular frequency
ω, the dependency on z and t for all field components can be described
by the exponential factor exp(−jβz) exp(jωt). Hence in using a
phasor representation in equations relating field quantities we may
replace partial derivatives with respect to t and z by (jω) and (−jβ)
respectively. As an example, for a cosine reference we may write the
instantaneous expression for E field in Cartesian coordinates as

E (x, y, z, t) = Re [E(x, y) exp(jωt − jβz)] (1)

where E(x, y) is a two dimensional vector phasor that depends only
on cross sectional coordinates. The instantaneous expression for the
H field can be written in a similar way. The electric and magnetic
field intensities in source free dielectric region satisfy the following
homogeneous vector Helmholtz’s equations

∇2E + k2E = 0
∇2H + k2H = 0

where E and H are three dimensional vector phasors and k = ω
√

µε is
the wavenumber.

Manipulating following two Maxwell curl equations,

∇× E = −jωµH
∇× H = jωεE

the transverse components can be expressed in terms of longitudinal
components (Ez, Hz), that is

Ex = − 1
h2

(
jβ

∂Ez

∂x
+ jk

∂ηHz

∂y

)
(2a)

Ey = − 1
h2

(
jβ

∂Ez

∂y
− jk

∂ηHz

∂x

)
(2b)
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Hx = − 1
h2

(
jβ

∂Hz

∂x
− jk

η

∂Ez

∂y

)
(2c)

Hy = − 1
h2

(
jβ

∂Hz

∂y
+

jk

η

∂Ez

∂x

)
(2d)

It may be noted that β =
√

k2 − h2.
Using fractional operator 1

(jk)α (∇×)α, our objective is to study
the new guiding structures which may be described by the following
set of expressions

Efd
x = − 1

h2

(
jβ

∂Efd
z

∂x
+ jk

∂ηH fd
z

∂y

)
(3a)

Efd
y = − 1

h2

(
jβ

∂Efd
z

∂y
− jk

∂ηH fd
z

∂x

)
(3b)

ηH fd
x = − 1

h2

(
jβ

∂ηH fd
z

∂x
− jk

∂Efd
z

∂y

)
(3c)

ηH fd
y = − 1

h2

(
jβ

∂ηH fd
z

∂y
+ jk

∂Efd
z

∂x

)
(3d)

where (Efd
z , ηH fd

z ) is the new pair of longitudinal components in
the new guiding structure. The guiding structures which contain
(Efd

z , ηH fd
z ) as longitudinal components has been termed as fractional

guiding structures in the next sections.
In studies related to fractional calculus, it is often assumed that

two problems are given and the problems are related through an
operator. This means that without operator we have quantities related
to one given problem. Application of operator yields quantities related
to another given problem. By fractionalizing the operator, our interest
is to explore how quantities related to one problem are changing into
the quantities related to the other problem. In present work, we are
interested to consider two guiding structures which are related to each
other through principle of duality. For α = 0

Efd = E ηHfd = ηH

set of equations given in (3) reduce to set of equations given in (2) and
it is assumed that it corresponds to one given guiding structure. For
α = 1

Efd = ηH ηHfd = −E

as a result equations (3a) and (3b) reduce to (2c) and (2d) while
equations (3c) and (3d) reduce to negative of equations (2a) and
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plate waveguide structure 

Figure 1. PEC walls parallel plate waveguide structure.

(2b) respectively and it is assumed that it corresponds to other given
guiding structure. For 0 < α < 1, set of equations (3) may provide us
solutions for guiding structure which may be regarded as intermediate
step between the two given guiding structures. In next section we shall
apply the fractional curl operator on parallel plate waveguides.

3. FRACTIONAL PARALLEL PLATE WAVEGUIDE

Consider a parallel plate waveguide consisting of two perfect electric
conducting plates separated by a dielectric medium with constitutive
parameters ε and µ. The separation between the two parallel plates is
b as shown in Figure 1. One plate is located at y = 0, while other plate
is located at y = b. The plates are assumed to be of infinite extent.
Let us suppose that a TM wave (Hz = 0) is propagating in z-direction.
The axial component of electric field is given by

ẑEz(y, z) = ẑAn sin (hy) exp(−jβz)

= ẑ
An

2j
[exp(jhy − jβz) − exp(−jhy − jβz)] (4a)

where h = nπ
b . The transverse components of the fields are

ŷEy(y, z) = −ŷ
jβ

h
An cos (hy) exp(−jβz)
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= −ŷ
jβ

h

An

2
[exp(jhy − jβz) + exp(−jhy − jβz)] (4b)

x̂ηHx(y, z) = x̂
jk

h
An cos (hy) exp(−jβz)

= x̂
jk

h

An

2
[exp(jhy − jβz) + exp(−jhy − jβz)] (4c)

where β =
√

k2 − h2 and k = ω
√

µε. Fields inside the waveguide may
be considered as combination of two TEM plane waves bouncing back
and forth obliquely between the two conducting plates as shown in
Figure 2. That is

E = E1 + E2 (5a)
ηH = ηH1 + ηH2 (5b)

where (E1,H1) are the electric and magnetic fields associated with one
plane wave and are given below

E1 =
An

2

(
−jẑ − jβ

h
ŷ

)
exp(jhy − jβz) (6a)

ηH1 = x̂
jk

h

An

2
exp(jhy − jβz) (6b)

while electric and magnetic fields (E2,H2) associated with second plane
wave and are given below

E2 =
An

2

(
jẑ − jβ

h
ŷ

)
exp(−jhy − jβz) (7a)

ηH2 = x̂
jk

h

An

2
exp(−jhy − jβz) (7b)

Fields E1 and H1 given by equations (6) are related through the
Maxwell equations as

∇× E1 = −jωµH1

j(hŷ − βẑ) × E1 = −jωµH1

1
(jk)

(−jhŷ + jβẑ) × E1 = ηH1

k1 × E1 = ηH1 (8a)

Similarly

1
(jk)

(−jhŷ + jβẑ) × ηH1 = −E1

k1 × ηH1 = −E1 (8b)
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Figure 2. TM mode propagating in a PEC parallel plates waveguide,
α = 0, α = 4.

where k1 = 1
(jk)(−jhŷ + jβẑ).

Fields E2 and H2 given by equations (7) are also related through
Maxwell equation as given below

∇× E2 = −jωµH2

−j(hŷ + βẑ) × E2 = −jωµH2
1

(jk)
(jhŷ + jβẑ) × E2 = ηH2

k2 × E2 = ηH2 (9a)

Similarly

1
(jk)

(jhŷ + jβẑ) × ηH2 = −E2

k2 × ηH2 = −E2 (9b)

where k2 = 1
(jk)(jhŷ + jβẑ). It may be noted that |k1| = |k2|. It may

also be deduced from above expressions that for set of fields (E1,H1),
the operator

(
1

jk1
∇×

)
is equivalent to cross product operator (k1×)

while for set of fields (E2,H2), the operator
(

1
jk2

∇×
)

is equivalent
to cross product operator given by (k2×). It is also obvious that if
(E1, ηH1) is one set of solutions to Maxwell’s equation then other
set of solutions to Maxwell’s equations is (ηH1,−E1). Similarly if
(E2, ηH2) is one set of solutions to Maxwell’s equation then other set
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of solutions to Maxwell’s equations is (ηH2,−E2). Our interest is to
determine the fields which may be regarded as intermediate step of the
field (E, ηH) and (ηH,−E), that is, new set of solutions (Efd, ηHfd).
For this purpose solutions sets (Eifd, ηHifd) with i = 1, 2 are required.
(Eifd, ηHifd) may be obtained by using the following relations

Eifd =
1

(jk)α
[(∇×)αEi] (10a)

ηHifd =
1

(jk)α
[(∇×)αηHi] , i = 1, 2 (10b)

Solutions (Efd, ηHfd) may be obtained by linear combination of
(E1fd, ηH1fd) and (E2fd, ηH2fd), that is

Efd = E1fd + E2fd (11a)
ηHfd = ηH1fd + ηH2fd (11b)

In order to determine the fractional dual solutions (Eifd, ηHifd),
the eigenvalues and eigenvectors of the two cross product operators
(k1×,k2×) are required. Eigenvectors and eigenvalues of the operator
(k1×) are

A1 =
1√
2

[
x̂ − j

β

k
ŷ − j

h

k
ẑ

]
, a1 = j

A2 =
1√
2

[
x̂ + j

β

k
ŷ + j

h

k
ẑ

]
, a2 = −j

A3 = −j
h

k
ŷ + j

β

k
ẑ, a3 = 0

Fields (E1,H1) may be expressed in terms of the eigenvectors of the
operator, that is

E1 = [PA1 + QA2 + RA3] exp(jhy − jβz) (12)

The coefficients are given below

P =
An

2
√

2
k

h

Q = − An

2
√

2
k

h

R = 0

The expression for Efd is obtained by applying fractional curl operator
on vector E. Fractionalization of curl operator means fractionalization
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of the equivalent cross product operator. Fractionalization of
cross product operator means fractionalization of eigenvalues of the
operator. Fractionalizing the eigenvalues of the operator yields

E1fd = [(a1)αPA1 + (a2)αQA2 + (a3)αRA3] exp(jhy − jβz) (13)

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E1, ηH1) and solutions
set (ηH1,−E1) are given by

E1fd = (k1×)α E1

=
An

2
k

h

[
j sin

(
απ

2

)
x̂ − j

β

k
cos

(
απ

2

)
ŷ

−j
h

k
cos

(
απ

2

)
ẑ

]
exp(jhy − jβz) (14a)

ηH1fd = (k1×)α ηH1

=
An

2
k

h

[
j cos

(
απ

2

)
x̂ + j

β

k
sin

(
απ

2

)
ŷ + j

h

k
sin

(
απ

2

)
ẑ

]
× exp(jhy − jβz) (14b)

Which shows that electric field vector and magnetic field vectors are
rotated counterclockwise by an angle απ/2.

Eigenvectors and eigenvalues of the operator (k2×) are

A1 =
1√
2

[
x̂ − j

β

k
ŷ + j

h

k
ẑ

]
, a1 = j

A2 =
1√
2

[
x̂ + j

β

k
ŷ − j

h

k
ẑ

]
, a2 = −j

A3 = j
h

k
ŷ + j

β

k
ẑ, a3 = 0

Fields may be expressed in terms of eigenvectors of the operator k2×
E2 = [PA1 + QA2 + RA3] exp(−jhy − jβz) (15)

where coefficients are

P =
An

2
√

2
k

h

Q = − An

2
√

2
k

h

R = 0

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E2, ηH2) and solutions
set (ηH2,−E2) are given by
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E2fd = (k2×)α E2

=
An

2
k

h
exp (−jαπ)

[
−j sin

(
απ

2

)
x̂ − j

β

k
cos

(
απ

2

)
ŷ

+j
h

k
cos

(
απ

2

)
ẑ

]
exp(−jhy − jβz) (16a)

ηH2fd = (k2×)α ηH2

=
An

2
k

h
exp (−jαπ)

[
j cos

(
απ

2

)
x̂ − j

β

k
sin

(
απ

2

)
ŷ

+j
h

k
sin

(
απ

2

)
ẑ

]
exp(−jhy − jβz) (16b)

Which shows that electric field vector and magnetic field vectors are
rotated counter-clockwise by an angle απ/2.

Solutions to the Maxwell equations, which may be regarded as
intermediate step between the solutions set (E, ηH) and solutions set
(ηH,−E) may be obtained by substituting results by (14) and (16) in
(11) and are given below

Efd = An
k

h
exp

(
−j

απ

2

) [
− sin

(
απ

2

)
sin

(
hy +

απ

2

)
x̂

−j
β

k
cos

(
απ

2

)
cos

(
hy+

απ

2

)
ŷ+

h

k
cos

(
απ

2

)
sin

(
hy+

απ

2

)
ẑ

]
× exp(−jβz) (17a)

ηHfd = An
k

h
exp

(
−j

απ

2

) [
j cos

(
απ

2

)
cos

(
hy +

απ

2

)
x̂

−β

k
sin

(
απ

2

)
sin

(
hy+

απ

2

)
ŷ+j

h

k
sin

(
απ

2

)
cos

(
hy+

απ

2

)
ẑ

]
× exp(−jβz) (17b)

It may be noted that for α = 0

Efd = An

[
−j

β

h
cos(hy)ŷ + sin(hy)ẑ

]
exp(−jβz) = E

ηHfd = An

[
j
k

h
cos(hy)x̂

]
exp(−jβz) = ηH

Which represents a TM mode propagating along a PEC parallel plate
waveguide as given by equation (4). For α = 1

Efd = An

[
j
k

h
cos(hy)x̂

]
exp(−jβz) = ηH
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Figure 3. TE mode propagating in a PMC parallel plates waveguide,
α = 1.

ηHfd = An

[
j
β

h
cos(hy)ŷ − sin(hy)ẑ

]
exp(−jβz) = −E

Which shows that electric field vector and magnetic field vectors are
rotated counterclockwise by an angle π/2 and tangential components
of magnetic field are zero at y = 0 and y = b as shown in Figure 3.
Which represents a TE mode propagating along a PMC parallel plate
waveguide and new situation is dual to the equations given in (4). For
0 < α < 1, it may be considered as parallel plate waveguide which
is of intermediate step of PEC and PMC plates. The propagating
mode contains both electric and magnetic fields in the axial direction.
This means that fractional dual solutions connect two waveguides
which are related through principle of duality and give solutions to
waveguides which are intermediate step between the two waveguides.
The waveguides corresponding to these solutions may be termed as
fractional dual waveguide.

For 1 < α < 2, 2 < α < 3 and 3 < α < 4, there is further rotation
of electric and magnetic field vectors as for range of 0 < α < 1. The
solutions for α = 2 are

Efd = An

[
j
β

h
cos(hy)ŷ − sin(hy)ẑ

]
exp(−jβz) = −E

ηHfd = −An

[
j
k

h
cos(hy)x̂

]
exp(−jβz) = −ηH

and the walls of the waveguide are PEC. The solutions for α = 3 are

Efd = −An

[
j
k

h
cos(hy)x̂

]
exp(−jβz) = −ηH
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ηHfd = An

[
−j

β

h
cos(hy)ŷ + sin(hy)ẑ

]
exp(−jβz) = E

and the walls of the waveguide are PMC. The solutions for α = 4 are

Efd = An

[
−j

β

h
cos(hy)ŷ + sin(hy)ẑ

]
exp(−jβz) = E

ηHfd = An

[
j
k

h
cos(hy)x̂

]
exp(−jβz) = ηH

with walls are PEC. The behaviors are shown in Figures 3 to Figure 5.

Figure 4. TM mode propagating in a PEC parallel plates waveguide,
α = 2.

Figure 5. TE mode propagating in a PMC parallel plates waveguide,
α = 3.
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It is obvious from the results that behavior of solutions with respect to
fractional parameter is periodic with period 4. It may be noted that
results are consistent with the published work [3, 10].

It is obvious from equation (17) that surface impedance of the
walls of fractional waveguide is

Zwalls = −Exfd

Hzfd
=

Ezfd

Hxfd
= ηj tan

(
hy +

απ

2

)
(18)

This means that for α = 0, walls of the waveguide are of perfect electric
conductors while for α = 1, walls of the waveguide are of perfect
magnetic conductor. For non integer values of the fractional parameter
α, the walls of waveguide may be regarded as intermediate step between
the perfect electric conductor and perfect magnetic conductor.

Fractional dual waveguide is a waveguide which carries field as a
combination of two plane waves given by expressions (14) and (16).
These plane waves are propagating in z-direction while bouncing back
and forth obliquely between the two plates. The impedance of the
plates is given by expression (18) and is a function of fractional
parameter α. It may be noted that for integer values of the fractional
parameter α, electric and magnetic fields propagate in the form of
either TM or TE-modes and for non-integer values of α, they propagate
in the form of hybrid modes. The behaviors are consistent with the
previous work [3].

4. BEHAVIOR OF FIELD LINES INSIDE THE
FRACTIONAL WAVEGUIDE

In this section our interest is to study the behavior of field lines
with respect to fractional parameter α. We have selected yz-plane
as observation plane. The instantaneous field expressions are obtained
by multiplying the phasor vector expressions (17a) with exp(jωt) and
taking the real part of the product. In the yz-plane of the waveguide,
Efd has both y- and z-components. That is

Eyfd = −An
β

h
cos

(
απ

2

)
cos

(
hy +

απ

2

)
sin

(
βz +

απ

2
− ωt

)

Ezfd = An cos
(

απ

2

)
sin

(
hy +

απ

2

)
cos

(
βz +

απ

2
− ωt

)

Equation describing the behavior of electric field lines at a given t can
be found from the following relation.

dy

Eyfd
=

dz

Ezfd
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For example, at t = 0,

−β cos
(

απ

2

) sin
(
βz + απ

2

)
cos

(
βz + απ

2

)dz = h cos
(

απ

2

) sin
(
hy + απ

2

)
cos

(
hy + απ

2

)dy

Integration gives

− ln cos
(

βz +
απ

2

)
= ln cos

(
hy +

απ

2

)
+ c1

Figure 6. Electric field (Efd) lines behavior at different values of α.
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or [
cos

(
βz +

απ

2

)
cos

(
hy +

απ

2

)]
= c2, 0 < α < 1 (19)

where c1 and c2 are constants. Similarly from Hfd, we have

Hyfd = −An
β

h
sin

(
απ

2

)
sin

(
hy +

απ

2

)
cos

(
βz +

απ

2
− ωt

)

Hzfd = An sin
(

απ

2

)
cos

(
hy +

απ

2

)
sin

(
βz +

απ

2
− ωt

)

Figure 7. Magnetic field (Hfd) lines behavior at different values of α.
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Field lines for Hfd in yz-plane may be obtained using the following
relations[

sin
(

βz +
απ

2

)
sin

(
hy +

απ

2

)]
= c3, 0 < α < 1 (20)

where c3 is constant. Using expressions (19) and (20) field lines are
plotted as given in Figure 6 and Figure 7. It is observed from the plots
that for α = 0, there is no contribution of field lines due to Hfd while
Efd lines are contributing. It is also noted that for α = 0, Efd lines
are normal to the interfaces. Which shows that walls of the waveguide
may be considered of perfect electric conductor. For α = 1, Hfd lines
are contributing while Efd lines disappear and Hfd lines are normal to
the interfaces or tangential components of the field lines are zero at the
boundaries of the parallel plates waveguide. Which shows that walls
of the waveguide may be considered of perfect magnetic conductors.
For 0 < α < 1, both Hfd and Efd lines are contributing. For non-
integer values of the fractional parameter α, both the field lines contain
tangential as well as normal components at the boundaries. Which
shows that walls of the waveguide are of intermediate step between
the perfect electric conductor and perfect magnetic conductor.

5. CONCLUSIONS

It is noted that for α = 0, we are dealing with a perfect electric
conducting parallel plate waveguide carrying TM mode in z-direction.
This may be interpreted as the superposition of two plane waves
bouncing back and forth obliquely between the two conducting plates.
As fractional parameter α takes values from zero towards unity, there
are two activities happening. One is the electric and magnetic field
vectors are being rotated by an angle απ/2 in the counterclockwise
direction. Other is that perfect electric conductor is changing to perfect
magnetic conductor. That is parallel plates are intermediate step of
PEC and PMC conductor. As α becomes equal to unity rotation angle
becomes equal to π/2 and PEC parallel plates waveguide changes
to PMC parallel plates waveguide. The behavior of solutions and
properties of guiding structure has also been studied for values of
fractional parameter greater than unity. It is found that solutions and
properties of guiding structure are periodic with respect to fractional
parameter with period 4.
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