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Abstract—In this paper the classical boundary value approach
employing the separation of variable technique is used to analyze the
properties of elliptic dielectric resonator antennas. In this approach,
the fields inside the resonator are expanded in terms of Mathieu and
modified Mathieu functions. Numerical results are given for resonant
frequencies of different modes as well for fields distribution inside
the resonator. Series Green’s functions are used to calculate the
fields inside the cavity and also far field patterns for a given feed.
Using the Green’s function method provides more accurate results
compared to a pure cavity model technique. The analysis and design
are verified through numerical simulations. A parametric study has
been performed to show effects of the elliptical dielectric resonator
antennas (EDRAs) parameters on far field patterns.

1. INTRODUCTION

Dielectric Resonators (DRs) have been used in many applications, such
as microwave devices and antennas. Open dielectric resonators are
potentially useful antenna elements [1]. They offer several attractive
features such as small size, high radiation efficiency [1–3], compatibility
with MIC’s, intrinsic mechanical simplicity, and the ability to obtain
different radiation patterns using different modes. Many of the
concepts used in the design of microstrip antennas can also be used
in the design of dielectric resonator antennas. Dielectric resonator
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antennas have many similarities with microstrip antennas, such as
small size, many possible geometries, lightweight, and ease of excitation
with different excitation mechanisms. Several modes can also be
excited. Each mode has different radiation characteristic. Dielectric
resonator antennas have some advantages over microstrip antennas,
such as wider bandwidth, higher radiation efficiency, wider range of
dielectric materials, more geometrical parameters, and higher power
capabilities [4].

Elliptically shaped devices are employed in many applications
such as antennas, waveguides, fiber optic cables, horns and accelerator
beam tubes. The elliptic structures have found increasing applications
in several microwave devices, for example, microstrip antenna,
dielectric resonator antenna (DRA), resonators and coaxial probe [5–
9]. In particular, the elliptic geometry is becoming more popular
as it allows a better control of the polarization characteristics and
facilitates the design by changing both eccentricity and focal length
to tune the parameters of interest. For the analysis of such devices
the homogeneous Helmholtz equation in the elliptic coordinates
is employed. Solving field problems of structures with elliptical
geometries requires the computation of Mathieu and modified Mathieu
functions [10]. These are the eigen solutions of the wave equation in
elliptical coordinates.

The purpose of this paper is to present the properties of elliptical
dielectric resonator antennas using analytical approach based on
Mathieu functions and taking advantage of efficient numerical methods
to calculate fields inside and outside the cavity. The analytical
development of the solution for excitation modes and far field patterns
of EDRA are presented. More accurate results are obtained by
combining perfect magnetic conductor (PMC) approximation with a
special Green’s function to analyze EDRA. The effects of different
design parameters on radiation characteristics are studied. Finally
conclusions are summarized.

2. WAVE AND HELMHOLTZ EQUATION IN ELLIPTIC
COORDINATES

In this section we express the three-dimensional wave equation
in elliptic coordinates and investigate its solution for an elliptical
dielectric resonator (EDR). The geometry of EDR is shown in Fig. 1.
The EDR is mounted on a ground plane with a and b are the semi-
major and semi-minor axes, respectively, and h is the height of the
EDR. Image theory can be immediately applied where the ground
plane is replaced by an image portion of the cylinder extending to
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0ξ

Figure 1. EDR geometry.

z = −h. For a DR with very large dielectric permittivity, the dielectric-
air interface can be approximated by a hypothetical perfect magnetic
conductor (PMC), which requires that the tangential components of
the magnetic field vanish on that surface. In elliptical coordinate the
scalar Helmholtz equation can be written in the form [11]:
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R and S are, respectively, the radial and angular Mathieu function, ξ is
the radial coordinate, and the coordinate η is the angular coordinate.
k is the wavenumber of the EDR and kz is the wave number of the
EDR in the z direction. The left- and right-hand sides of (2) must be
equal to a separation constant, g. Thus (2) can be written as

∂2S/∂η2 + (g − 2q cos 2η)S = 0 (3)
∂2R/∂ξ2 − (g − 2q cosh 2ξ)R = 0 (4)
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Where ATE
onmp

, ATE
enmp

, ATM
enmp

and ATM
onmp

are unknown expansion
coefficients. We will use the subscript e and o to refer to even and
odd modes respectively.

3. BOUNDARY CONDITIONS

For both TE and TM waves, the boundary conditions are given by:

Hη (ξ = ξ0,−1 ≤ η ≤ 1, 0 ≤ z ≤ h) = 0 (8a)
Hη (1 ≤ ξ ≤ ξ0,−1 ≤ η ≤ 1, z = h) = 0 (8b)
Hξ (1 ≤ ξ ≤ ξ0,−1 ≤ η ≤ 1, z = h) = 0 (8c)
Hz (ξ = ξ0,−1 ≤ η ≤ 1, 0 ≤ z ≤ h) = 0 (8d)
Eη (1 ≤ ξ ≤ ξ0,−1 ≤ η ≤ 1, z = 0) = 0 (8e)
Eξ (1 ≤ ξ ≤ ξ0,−1 ≤ η ≤ 1, z = 0) = 0 (8f)

where ξ0 defines the lateral surface of the EDR. Using the boundary
condition (8c) gives the resonant frequencies and can be written in the
form
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cos(kzh) = 0 → kzp =
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where c is velocity of light, εr is the permittivity of dielectric
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is the elliptical cross-section wavenumber. The cutoff
wavenumbers are obtained by setting the functions or their derivatives,
depending on the boundary conditions in (8). Since fields should be
single valued then the first boundary condition is given by[
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in this case. The elliptic boundary of the membrane is given by
ξ = ξ0=constant, and the eccentricity e of the ellipse is defined as
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On the elliptic boundary (ξ = ξ0) the membrane is fixed, therefore
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If we choose a certain harmonic n we have an infinite set of possible
values of q that satisfy (13) and (14). Let qTE
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Except for the first harmonic n = 0, all modes can be even or odd.
Table 1 shows some resonant frequencies of an EDR and a circular
cylinder dielectric resonator (CDR) with the same height and same
cross section area and different e. As shown in the table, for the same
range of frequency the number of resonant frequencies of EDR is more
than the number of resonant frequencies of CDR with the same volume.
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Table 1. Resonant frequencies of an EDR and a CDR with cross
section area of 157 mm2 and height of 20 mm (same volume) and
permittivity of 12.

Mode e = fo/a Resonant Frequency (GHz)

TM110 3.748

TM111 4.840

TE010 6.051

TM210 6.494

TE011 6.781

TM112 7.547

TM211 8.046

TE012 8.144

TM113 8.260

TE013

0 (Circle)

8.809

Even TM110 3.371

Even TM210 5.188

Odd TM110 5.334

Even TE010 5.636

Odd TM210 6.756

Even TM111 6.990

Even TM310 7.132

Even TE110 7.234

Even TM211 8.026

Odd TM111 8.121

Even TE011 8.323

Odd TM310 8.339

Even TE020 8.990

Odd TM211 9.118

Even TM410 9.245

Even TM311 9.400

Even TE111 9.478

Even TM010 9.572

Odd TE110 9.684

Odd TM311

0.866

10.346



Progress In Electromagnetics Research, PIER 64, 2006 87

=0 with 3 portions of EDR for even TE

Figure 2. Hz field contour plot of TE modes.

Figs. 2 and 3 show field contours of the four lowest TM and TE
modes, which are calculated using Mathieu functions. The confocal
annular elliptic structure is a very versatile configuration and offers
a reasonable controllability over the positions of its resonant modes.
Such field’s distribution patterns maybe used to determine the feed
location for a special mode excitation. Mode contour patterns can also
be used to recognize paths on which electric or magnetic fields are zero.
This allows the study of different EDR portions for different modes.
For example, in Fig. 2(c) there are 2 paths with Hz = 0 with 3 portions
of EDR for even TE02P mode.

4. FAR FIELD PATTERN

The radiation patterns of the EDRA, shown in Fig. 4, are calculated
using a two-step process.

4.1. Current Distribution on the Probe

In the first step the electric field integral equation for the current
distribution on the probe’s equivalent wire (2l) is formulated in terms
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Figure 3. Ez Field contour plot of TM modes.

0ξ

Figure 4. EDRA geometry and feed Configuration.



Progress In Electromagnetics Research, PIER 64, 2006 89

of the specialized Green’s functions. The integral equation is then
solved using the method of moments with piecewise sinusoidal bases
and testing functions. The moment method is applied to calculate
the current distribution on the probe. Since the eigen-functions of
the media are known, the series form Green’s function can be used.
The eigen-function of elliptical cylinder dielectric resonator can be
expressed in the form:
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Thus the Green’s function of the EDR can be represented as a series
of eigen functions:
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Tmn is a normalization factor.
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To calculate the probe current distribution, the magnetic frill

generator is applied as a source and piecewise sinusoids subdomain
functions are used as the basis functions.

4.2. Calculations of the Radiated Field

In the second step, once the current distribution on the probe is
computed, the magnetic vector potential inside the cavity can be
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derived easily in the form:
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Using the magnetic vector potential, the electric and magnetic fields
can be computed everywhere inside the EDR. The surface magnetic
current on the cavity walls is defined as

#M = #E × n̂ (20)

where n̂ is a unit normal pointing out of the dielectric. The electric
vector potential is then expressed as
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∫
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where R represents the distance from any point on the EDR surface to
the observation point. The far electric field components are obtained
using:

Eϕ = +jωFθ (22)
Eθ = −jωFϕ (23)

5. NUMERICAL RESULTS

Results for the far field patterns, based on our developed technique
and those obtained using Ansoft HFSS [12] program, are shown in
Figs. 5 and 6. The results are computed at two resonance frequencies
of an elliptical DRA with a = 15 mm, b = 11.25 mm, h = 16.5 mm,
relative permittivity of 9.8, d = 7.5 mm and l = 7 mm. In general,
good agreement is noticed between the present method and simulation
results except for the cross polarization results.

Next, a parametric study has been conducted to determine
the influence of various design parameters on directivity patterns of
EDRAs. Due to a large number of possible combinations, only selected
values are considered for this study. For the fixed probe position on
the x-axis and at 4 mm from the center, Fig. 7 shows the directivity
patterns in ϕ = 0 and ϕ = 90 planes for different elliptic axial
ratios. By changing the axial ratio of the ellipse, excited modes
change and therefore far field pattern and its nulls can be controlled by
controlling the axial ratio. The influence of the EDRA height (h) on
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(a)

(b)

Figure 5. Radiation Patterns at frequency 3.04 GHz (a) ϕ = 0, (b)
ϕ = 90, a = 15 mm, b = 11.25 mm, h = 16.5 mm, εr = 9.8, d = 7.5 mm,
l = 7 mm.
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(a)

(b)

Figure 6. Radiation Patterns at frequency 7.41 GHz (a) ϕ = 0, (b)
ϕ = 90 a = 15 mm, b = 11.25 mm, h = 16.5 mm, εr = 9.8, d = 7.5 mm,
l = 7 mm.
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(a) 

(b) 

Figure 7. Far field pattern of EDRAs with h = 7 mm, d = a/2 and
εr = 12 at frequency 5.8 GHz (a) ϕ = 0, (b) ϕ = 90.

the beamwidth can be clearly seen in Fig. 8. For different heights, the
radiation pattern in ϕ = 0 plane does not have a noticeable change but
in ϕ = 90◦ we can see variations in the beamwidth with h. Increasing
the height does not change the elliptic cross-section exited modes.
It only affects the z direction modes. Fig. 9 shows the calculated
directivity patterns for identically sized cylinders with different values
of the dielectric constant. Effect of increasing permittivity is similar to
increasing the equivalent electric volume of EDRA. Another important
design parameter is the position of the probe inside the EDRA. Fig. 10
shows the directivity patterns for different positions of probe. With
different locations of probe we can control excitation of special modes.
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(a)

(b)

Figure 8. Far field pattern of EDRAs with a = 10 mm, a/b = 2,
d = 4 mm and εr = 12 at frequency 5.8 GHz (a) ϕ = 0, (b) ϕ = 90.
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(a)

(b)
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ε
ε
ε
ε

Figure 9. Far field pattern of EDRAs with a = 10 mm, a/b = 2,
d = 4 mm and h = 7 mm at frequency 5.8 GHz (a) ϕ = 0, (b) ϕ = 90.



96 Tadjalli, Sebak, and Denidni

(a)

(b)

Figure 10. Far field pattern of EDRAs with a = 10 mm, a/b = 2,
h = 7 mm and εr = 12 at frequency 5.8 GHz (a) ϕ = 0, (b) ϕ = 90.
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6. CONCLUSION

In this paper we presented the solution of the wave equation in
elliptic coordinates including the characteristic frequencies and mode
equation in EDRs. The excitation modes can be expressed in terms
of a linear combination of Mathieu functions. The modes and
resonant frequencies of propagation of EDRAs have been investigated
theoretically in this paper. The mode-matching method has been
used to derive the characteristic equation of the antenna configuration,
and the source-free resonant modes and frequencies are computed.
To study the radiation characteristics of the EDRA, the Green’s
function for the structure is derived and presented. The current
distribution on the probe has been found using the MoM. The concepts
presented here are general enough and enable us to recognize different
excitation modes and their corresponding radiation patterns which are
not possible using CAD tools. Numerical results are presented for
several modes, and some calculated resonance frequencies of a sample
EDR are shown. Numerical results are also presented for several
configurations to show the dependence of the directivity patterns on
various design parameters.
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