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Abstract—The traditional magnetic field integral equation has been
generalized to the study of antenna radiation and coupling problems
with the feeding lines included. A rigorous proof of the uniqueness
of the new magnetic field integral equation has been presented. Some
numerical examples have been expounded to demonstrate the validity
of the new magnetic field integral equation formulation.

1. INTRODUCTION

The integral equation method has been widely used in electromagnetic
engineering for years and has been investigated by many authors [1–33].
A good summary on the application of integral equation techniques in
electromagnetics can be found in [1–8]. Although the integral equations
have been widely used in the analysis of scattering problems, they suffer
from a major drawback that the scattering solution is not unique at
the interior resonant frequencies [8]. To overcome this difficulty, several
methods have been proposed in the literature including combining the
electric field integral field equation (EFIE) and magnetic field integral
equation (MFIE) and augmenting the equations with the normal
components [21, 22]. A comparison of the proposed methods can be
found in [23, 24]. Since the matrix obtained from the discretization
of integral equations becomes ill-conditioned at the interior resonant
frequencies [25], the matrix condition number can be used to detect
the degree of ill-conditioning, thus providing an indicator for interior
resonant frequency. Another method of avoiding the non-uniqueness
problem is to use the extended boundary condition (EBC) integral
equation [26–30]. EBC is defined as the requirement that a set of field
quantities vanishes over an observation domain in the zero-field region.
The observation domain could be a closed surface, a portion of plane,
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or a portion of line in the zero-field region. A rigorous treatment of
uniqueness problem of integral equations can be found in [31, 32].

Despite the rich literature on the application of integral equation
techniques to the scattering problem, one rarely sees an integral
equation formulation for an antenna connected to a feeding line.
When the integral equations are applied to solve an antenna problem,
approximations of the source region are usually adopted by ignoring
the antenna feeding lines. For example a linear antenna is usually
characterized by an integral equation in which the feeding line is not
involved and the source region is usually modeled by a delta gap
[1, 9]. Such an approximation gives rise to a serious problem, i.e., the
solution based on delta gap cannot be checked experimentally since
every experimental setup in practice involves a feeding line [34, 35]. In
addition, the integral equation based on the delta gap is only valid for
thin wires or low frequency problems. When the frequency is high or
wire is thick the integral equation cannot produce reasonable results,
especially for the antenna input impedance. Therefore a practical
integral equation formulation for the antenna should consider the
influences of the feeding lines.

In this paper, the well-known MFIE for describing the scattering
problem from an isolated conducting object has been generalized to a
metal antenna system with each metal scatter connected to a feeding
line. Since the metal part of the antenna surface does not form a closed
surface due to the introduction of the antenna input terminal, the
MFIE contains both electric current and magnetic current as unknowns
while the latter is only distributed on the antenna terminal, resulting
in an integral equation which is underdetermined. In order to eliminate
the magnetic current on the antenna terminal, the field expansions in
the antenna feeding lines have been used to find an expression for the
magnetic current in terms of electric current. It has been rigorously
proved in the paper that the new MFIE so obtained has a unique
solution. To validate the formulation, the new MFIE has been applied
to the study of antenna radiation and coupling problems, and excellent
numerical results have been obtained.

2. NEW MFIE FOR MULTIPLE METAL ANTENNA
SYSTEM

Let us assume that the antenna system consists of NA metal antennas.
To get a universal integral equation for any operating conditions, the
metal antenna system is assumed to include all possible sources, as
shown in Fig. 1. Each antenna may be in transmitting mode, receiving
mode or in a mode that the antenna transmits and receives at the
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Figure 1. An arbitrary multiple metal antenna system.

same time (e.g., antenna is in transmitting mode but interfered by
an arbitrary incident field from the outside of antenna). The source
region V (q)

0 (q = 1, 2, · · · , NA) of the ith antenna is chosen in such a
way that its boundary ∂V (q)

0 is coincident with the antenna surface,
which is assumed to be a perfect conductor (except for cross sectional
portion Ω(q) where ∂V (q)

0 crosses the antenna terminal). Let ∂V∞ be
a large surface that encloses the whole antenna system. From the
representation theorem for electromagnetic fields, the total magnetic

field in the region bounded by ∂V0 =
NA∑
i=1
∂V

(q)
0 and ∂V∞ can then be

expressed as

H(r) = −j k
η

∫
∂V0

G(r, r′)Jms(r′)ds(r′) +
∫

∂V0

Js(r′) ×∇′G(r, r′)ds(r′)

− 1
jkη

∫
∂V0

∇′
s · Jms(r′)∇′G(r, r′)ds(r′) + Hin

ext(r)

where Js = un ×H; Jms = −un ×E; G(r, r′) = e−jk|r−r′|/4π|r− r′| is
the Green’s function in free space; ∇s represents the surface divergence;
and

Hin
ext(r) = −j k

η

∫
∂V∞

G(r, r′)Jms(r′)ds(r′) +
∫

∂V∞

Js(r′) ×∇′G(r, r′)ds(r′)
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− 1
jkη

∫
∂V∞

∇′
s · Jms(r′)∇′G(r, r′)ds(r′)

stands for the external incident field. By letting the observation point
r approach the boundary of the source region ∂V0 from the interior of
∂V0 + ∂V∞ and use the jump relations [8], one obtains

H(r) = −j k
η

∫
∂V0

G(r, r′)Jms(r′)ds(r′) +
∫

∂V0

Js(r′) ×∇′G(r, r′)ds(r′)

− 1
jkη

∫
∂V0

∇′
s · Jms(r′)∇′G(r, r′)ds(r′) + Hin

ext(r)

+
1
2
Js(r) × un(r) − 1

j2kη
un(r)∇s · Jms(r)

Multiplying both sides of the above equations by un gives

1
2
Js(r) = −j k

η
un(r) ×

∫
∂V0

G(r, r′)Jms(r′)ds(r′) + un(r)

×
∫

∂V0

Js(r′) ×∇′G(r, r′)ds(r′) − 1
jkη

un(r)

×
∫

∂V0

∇′
s · Jms(r′)∇′G(r, r′)ds(r′) + un(r) × Hin

ext(r)

Making use of the boundary conditions on the metal part of the
antenna, the above equations can be written as

−1
2
Js(r)+un(r)×

∫
∂V0

Js(r′)×∇′G(r, r′)ds(r′)

= −un(r)×
[
Hin

int(r)+Hin
ext(r)

]
, r ∈ ∂V0 (1)

where

Hin
int(r) =

NA∑
q=1


−j k

η

∫
Ω(q)

G(r, r′)Jms(r′)dΩ(r′)

− 1
jkη

∫
Ω(q)

∇′
s · Jms(r′)∇′G(r, r′)dΩ(r′)


 (2)
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Figure 2. The local coordinates for the feeding line and the global
coordinates.

Note that Hin
ext is zero if there is no incident wave from the infinity.

Hin
int(r) is determined by the equivalent surface magnetic current Jm =

−uz(q)×E on the antenna input reference planes T (q)(q = 1, 2, · · · , NA).
In order to determine the equivalent magnetic current on the reference
planes, one may make use of the field expressions in the waveguide.
According to the waveguide theory the electric field and magnetic field
in the ith feeding waveguide may be expressed as

−uz(q) × E(r(q)) = −
∞∑

n=1

uz(q) × e(q)
n (r(q))V (q)

n (z(q)), r(q) ∈ Ω(q)

uz(q) × H(r(q)) = −
∞∑

n=1

e(q)
n (r(q))I(q)n (z(q)), r(q) ∈ Ω(q)

(3)

where r(q) = r − r0 is the local coordinate system for the qth feeding
line, as shown in Fig. 2, and

V (q)
n (z(q)) = A(q)

n e
−jβ

(q)
n z(q)

+B(q)
n e

jβ
(q)
n z(q)

I(q)n (z(q)) =
(
A(q)

n e
−jβ

(q)
n z(q) −B(q)

n e
jβ

(q)
n z(q)

)
/Z(q)

wn

β(q)
n =



k, TEM mode√
k2 − k(q)2

cn , TE or TM mode
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Z(q)
wn =



η, TEM mode

ηk/β
(q)
n , TE mode

ηβ
(q)
n /k, TM mode

with η =
√
µ/ε.

Let us assume that the feeding line of antenna is in a single mode
operation. Therefore the mode voltage and current may be written as

V
(q)
1 (z(q)) = δ(q)e−jβ

(q)
1 z(q)

+B(q)
1 e

jβ
(q)
1 z(q)

,

V (q)
n (z(q)) = B(q)

n e
jβ

(q)
n z(q)

, n ≥ 2

I
(q)
1 (z(q)) =

1

Z
(q)
w1

(
δ(q)e−jβ

(q)
1 z(q) −B(q)

1 e
jβ

(q)
1 z(q)

)

I(q)n (z(q)) = − 1

Z
(q)
w1

B(q)
n e

jβ
(q)
n z(q)

, n ≥ 2

where δ(q) = 1 if the qth antenna is in transmitting mode and excited
by dominant mode of unit amplitude, and δ(q) = 0 if the qth antenna
is in a receiving mode. Thus on the reference plane T (q)(z(q) = 0), (3)
may be written as

Jms(r(q)) = −uz(q)×e(q)
1 (r(q))

(
δ(q) +B(q)

1

)
−

∞∑
n=2

uz(q) × e(q)
n (r(q))B(q)

n ,

r(q) ∈ Ω(q)

Js(r(q)) = −e(q)
1 (r(q))

(
δ(q) −B(q)

1

)
/Z

(q)
w1 +

∞∑
n=2

e(q)
n (r(q))B(q)

n /Z
(q)
wn,

r(q) ∈ Ω(q)

The expansion coefficients can be determined by the second equation
of the above equations

B
(q)
1 = δ(q) + Z(q)

w1

∫
Ω(q)

Js(r(q)) · e(q)
1

(
r(q)

)
dΩ

B(q)
n = Z(q)

wn

∫
Ω(q)

Js(r(q)) · e(q)
n (r(q))dΩ

The equivalent magnetic current on the reference plane T (q) may thus
be expressed by

Jms(r(q)) = −2δ(q)uz(q) × e(q)
1 (r(q)) −

∞∑
n=1

uz(q) × e(q)
n (r(q))Z(q)

wn
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×
∫

Ω(q)

Js(r(q)) · e(q)
n (r(q))dΩ(r(q)), r(q) ∈ Ω(q) (4)

Inserting this into (2) yields

Hin
int(r)=

NA∑
q=1

[
2δ(q)G(q)

1 (r)+
∞∑

n=1

Z(q)
wnG

(q)
n (r)

∫
Ω(q)

Js(r(q))·e(q)
n (r(q))dΩ(r(q))

]

(5)
where

G(q)
n (r) =

jk

η

∫
Ω(q)

G(r, r′)uz(q) × e(q)
n (r(q))dΩ

(
r′

)

+
1
jηk

∫
Ω(q)

∇′
s ·

[
uz(q) × e(q)

n (r(q))
]
∇′G(r, r′)dΩ

(
r′

)

From (1) and (5), one finally obtains the following modified MFIE

−1
2
Js(r) + un(r) ×

∫
∂V0

Js(r′) ×∇′G(r, r′)ds(r′)

+
NA∑
q=1


 ∞∑

n=1

Z(q)
wnun(r)×G(q)

n (r)
∫

Ω(q)

Js(r(q))·e(q)
n (r(q))dΩ(r(q))




=
NA∑
q=1

[
−2δ(q)un(r)×G(q)

1 (r)
]
−un(r)×Hin

ext(r), r ∈ ∂V0 (6)

3. UNIQUENESS OF NEW MFIE

The non-uniqueness problem occurs in integral equation formulations
when it is used to describe an isolated scatter or an antenna without
introducing the input reference plane T . When an antenna input
terminal T exists, the electromagnetic energy exchanges between the
source region (enclosed by ∂V0) and the exterior region (outside of ∂V0)
of the antenna. Thus the physical conditions for interior resonance
disappear and one may expect that non-uniqueness problem should
also disappear. In what follows, the Fredholm alternative theorem will
be used to demonstrate that this is true.

Suppose that (6) has more than one solution and let Js1,Js2 be
two different solutions of (6). Then the difference j̃s = Js1 − Js2 is
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non-trivial and satisfies the following homogeneous equations

−1
2
j̃s(r) + A

↔ [̃
js(r′)

]
= −1

2
j̃s(r) + un(r) ×

∫
∂V0

j̃s(r′) ×∇′G(r, r′)ds(r′)

= f(r), r ∈ ∂V0 (7)

where

f(r) =
NA∑
q=1


 ∞∑

n=1

Z(q)
wnun(r) × G(q)

n (r)
∫

Ω(q)

j̃s(r(q)) · e(q)
n (r(q))dΩ

(
r(q)

)


and A
↔

is the integral operator defined by

A
↔ [̃

js
]
(r) = un(r) ×

∫
∂V0

j̃s(r′) ×∇′G(r, r′)ds(r′), r ∈ ∂V0

It is easy to show that the integral operator A
↔

is compact [8]. To ensure
the uniqueness of (6), one must show that j̃s is zero. Apparently the
non-trivial solutions of (7) are not unique. By Fredholm alternative,
the following equations must have non-trivial solutions

−1
2
js(r) + un(r) ×

∫
∂V0

js(r′) ×∇′G(r, r′)ds(r′) = 0, r ∈ ∂V0

and furthermore f must be orthogonal to js, i.e., (f , js) = 0, where
the inner product (·, ·) for tangential vectors js1 and js2 are defined by
(js1, js2) =

∫
∂V0

js1 · js2ds. As a result,

(f , js) =
NA∑
q=1


 ∞∑

n=1

Z(q)
wn

∫
∂V0

js(r) · un(r) × G(q)
n (r)ds(r)

×
∫

Ω(q)

j̃s(r(q)) · e(q)
n

(
r(q)

)
dΩ

(
r(q)

)
 = 0

By the completeness of the transverse vector modal functions {e(q)
n }

[36], the above equation implies j̃s(r) = 0, r ∈ Ω(q). Therefore we must
have Js1 = Js2, r ∈ Ω(q). In other words, the non-trivial solution j̃s(r)
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must satisfy

−1
2
j̃s(r) + un(r) ×

∫
∂V0

j̃s(r′) ×∇′G(r, r′)ds(r′) = 0, r ∈ ∂V0 (8)

from (7). By the Fredholm alternative, the above equation has a non-
trivial solution if and only if its adjoint

1
2
as(r) +

∫
∂V0

[
un(r′)] × as(r′)

]
×∇′G(r, r′)ds(r′) = 0, r ∈ ∂V0 (9)

has a non-trivial solution [8]. Now let j̃sm(r) = un(r) × as(r) and one
may rewrite (9) as

1
2
j̃ms(r) + un(r) ×

∫
∂V0

j̃ms(r′) ×∇′G(r, r′)ds(r′) = 0, r ∈ ∂V0 (10)

Now the following electromagnetic fields can be constructed

Em(r) = −jkη
∫

∂V0

G(r, r′)̃jsm(r′)ds(r′)− η

jk

∫
∂V0

∇s · j̃sm(r′)∇′G(R)ds(r′)

Hm(r) =
∫

∂V0

j̃sm(r′) ×∇′G(r, r′)ds(r′)

It is easy to show that these fields satisfy the Maxwell equations inside
∂V0 as well as outside ∂V0. In the following, the subscripts ‘+’ and ‘−’
will signify the values obtained as ∂V0 is approached from outside and
inside respectively. Then one may write

Em+(r) = − η

j2k
un(r)∇s · j̃sm(r) − jkη

∫
∂V0

G(r, r′)̃jsm(r′)ds(r′)

− η
jk

∫
∂V0

∇s · j̃sm(r′)∇′G(R)ds(r′)

Hm+(r) =
1
2
j̃sm(r) × un(r) +

∫
∂V0

j̃sm(r′) ×∇′G(r, r′)ds(r′)

Em−(r) =
η

j2k
un(r)∇s · j̃sm(r) − jkη

∫
∂V0

G(r, r′)̃jsm(r′)ds(r′)

− η
jk

∫
∂V0

∇s · j̃sm(r′)∇′G(R)ds(r′)
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Hm−(r) = −1
2
j̃sm(r) × un(r) +

∫
∂V0

j̃sm(r′) ×∇′G(r, r′)ds(r′)

Making use of these relations and (10) yields

Em+(r) − Em−(r) = − η
jk

un(r)∇s · j̃sm(r), r ∈ ∂V0 (11)

Hm+(r) − Hm−(r) = j̃sm(r) × un(r), r ∈ ∂V0

un(r) × Hm+(r) = 0, r ∈ ∂V0 (12)

Since the fields Em,Hm satisfy the Maxwell equations outside ∂V0

as well as radiation condition in the infinity, it may be concluded
that these fields must be identically zero outside ∂V0 from (12) and
the uniqueness theorem for exterior electromagnetic fields [31]. Thus
Em+(r) = 0, which implies

un(r) × Em+(r) = un(r) × Em−(r) = 0, r ∈ ∂V0 (13)

from (11). Since the fields Em,Hm satisfy the Maxwell equations in
the infinite domain R3 −V0 and the radiation condition in the infinity,
by the use of uniqueness theorem again, one may conclude that fields
Em,Hm are zero everywhere. This implies j̃sm = 0, contradicting the
assumption that j̃sm is a non-trivial solutions. The proof is completed.

4. APPLICATIONS OF NEW MFIE

Following a similar procedure described in a previous paper [33], where
the MFIE has been used to solve the metal cavity problems, the integral
Equation (6) can be discretized by subdividing the boundary ∂V0 into
N elements Γj(j = 1, 2, · · · , N) which are then approximated by a
plane triangles or quadrilaterals. The unknown currents are assumed
to be constant over each element. For each element Γj , we choose a
point rj (collocation point) and let the integral equations be satisfied
at these points. The above procedure yields a 3N × 3N algebraic
equation. It is known that the MFIE is effective for generally shaped
large structures but not good for thin wires [9]. In the following, several
large antenna structures are used to demonstrate the validity of the new
MFIE formulation developed in this paper. The quadrilateral mesh is
deployed for all our examples and is generated with HyperMesh.

4.1. A Circular Aperture Antenna with Infinite Flange

Let us consider an aperture antenna fed by a coaxial line consisting of
an inner conductor of radius a and an outer conductor of radius b with
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ground

Figure 3. A circular aperture antenna with infinite conducting flange.
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Figure 4. Radiation resistance of the coaxial aperture antenna with
infinite flange.

b = 2a, as shown in Fig. 3. The infinite flange has been truncated to a
finite circular region. The number of the quadrilateral elements used
in the calculation is N = 445. It is assumed that only dominant mode
(TEM mode) is propagating in the coaxial cable and the reference plane
is right at the aperture. The radiation resistance and reactance have
been calculated by MFIE and compared to the analytical results [37].
A perfect agreement has been obtained as shown in Fig. 4 and Fig. 5.
Note that the operating frequency is limited in between the cut-off
frequency kca = 0 of dominant TEM mode and the cut-off frequency
kca ≈ 0.68 of the first higher order TE11 mode.



164 Wen

0 0.2 0.4 0.6
3 .10

4

2 .10
4

1 .10
4

0

ka

MFIE
[37]

Figure 5. Reactance of the coaxial aperture with infinite flange.

ground

b

a

Figure 6. A rectangular aperture in conducting plane.

4.2. A Rectangular Aperture in Infinite Conducting Plane

A rectangular aperture with an infinite flange, whose feeding line is a
rectangular waveguide with a = 2.25, b = 1 is shown in Fig. 6. The
infinite flange is truncated to a finite rectangular region. In this case,
the total number of quadrilateral element is N = 1152. It is assumed
that only the dominant TE10 mode is propagating in the waveguide
and the reference plane is right at the aperture. This structure has
been investigated by many authors [38, 39]. The radiation resistance
and reactance have been obtained by MFIE and compared to those
obtained by correlation matrix method [38]. A good agreement has
been obtained as shown in Fig. 7 and Fig. 8. Again the frequency
response is limited to the range between the cut-off frequency of the
dominant TE10 mode kcb ≈ 1.4 and the cut-off frequency of the next
higher order mode kcb ≈ 2.8.
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Figure 7. Radiation resistance of the rectangular aperture with
infinite flange.
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Figure 8. Reactance of the rectangular aperture with infinite flange.

4.3. Coupling between Two Rectangular Apertures

Let us now consider the application of the new MFIE to the antenna
coupling problems. Two identical rectangular waveguide apertures are
closely placed in a common infinite conducting plane as shown in Fig. 9
with a = 2.286, b = 1.016 and d = 0.254. One of the antennas is in
transmitting mode, which is excited by a dominant TE10 mode, and
the other is in receiving mode. The ground plane has been truncated to
a finite rectangular region. The total number of quadrilateral element
is N = 1160. The coupled power is shown in Fig. 10 and has been
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Figure 9. Coupled waveguide geometry.
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Figure 10. Coupled power 20 log |S12|.
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Figure 11. Radiation resistance of coupled waveguide.
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Figure 12. Reactance of coupled waveguide.

compared with that obtained by Mailloux [40], and a good agreement
has been obtained. The radiation resistance and input reactance seen
from the excited waveguide are also shown in Fig. 11 and Fig. 12.
Note that the antenna input reference planes are chosen right at the
apertures, and the frequency range is limited in between the cut-
off frequency of the dominant TE10 mode kc ≈ 1.37 and the cut-off
frequency of the next higher order mode kc ≈ 2.75.

5. CONCLUSION

In this paper the traditional MFIE has been generalized to the analysis
of metal antenna systems to which the feeding lines are connected.
Since the antenna input terminal has been included, both electric
current and magnetic current exist at the antenna terminal. As a
result, the integral equation formulation contains both electric current
and magnetic current as unknowns. To get rid of one of the unknowns,
a relationship between the magnetic current and the electric current
at the antenna terminal can be constructed through the use the field
expansions in terms of the transverse vector modal functions in the
feeding lines.

An integral equation formulation that includes the feeding lines
has the advantage of high accuracy in antenna input impedance
calculation since it does not rely on the usual approximations made
in the antenna source region and thus is more realistic. Another
advantage of introducing the feeding lines in the integral equation
formulation is that it guarantees a unique solution, thus providing a
solid theoretical basis for the analysis of various antennas.
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