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Abstract—We studied the diffraction of E-polarized electromagnetic
plane wave by two parallel slits in an infinitely long impedance plane.
Analysis is based on the concept of Kobayashi potential. Imposition of
required boundary conditions leads to dual integral equations. The
dual integral equations can be reduced to matrix equations with
the infinite unknowns by using the properties of Weber-Schafheitlin’s
discontinuous integrals and Jacobi’s polynomials. Matrix elements are
given in terms of indefinite integrals which are difficult to evaluate
analytically. The matrix elements are solved numerically. Diffracted
far fields in the upper half space are studied.

1. INTRODUCTION

The problem of diffraction of electromagnetic waves by an infinite slit
in a conducting screen has been studied extensively [1–4]. Morse and
Rubenstein [1] treated the problem of diffraction of acoustic wave by
using the method of separation of variables. Using the plane wave
spectrum representation of electromagnetic fields, Clemmow [2] derived
dual integral equations for the diffracted field by a slit. He discussed
the approximate treatment of two complementary cases assuming that
the slit width is much greater or much smaller than the wavelength.
Hongo [5] studied diffraction from two parallel slits in a conducting
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plane using Kobayashi potential method. In the present work, the
Hongo’s work [5] has been extended to slits in an impedance plane.

Kobayashi potential is an analytical technique for solving the
mixed boundary value problems and was developed by Iwao Kobayashi
in the beginning of 1930’s. The method has been successfully used
in solving various problems in electromagnetics and acoustic [9, 10].
The method uses the discontinuity properties of Weber-Schafheitlin’s
integrals and is closely related to the method of moments approach.
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Figure 1. Two parallel infinitely long slits in an impedance plane.

2. FORMULATION

Consider two slits of width 2a and 2b in an impedance plane of
negligible thickness with Z+ and Z− as impedances of the upper and
lower faces respectively. The slit having width 2a is termed as slit 1
while slit 2 has the width of 2b. The distance between the centers of
the two slits is d. The geometry is shown in Figure 1. It may be noted
that (x1, y1) are the local coordinates for slit 1 while (x2, y2) are the
local coordinates for slit 2. E-polarized electromagnetic plane wave has
been considered as an incident wave. That is

Ei
z = exp[jk(x cosφ0 + y sinφ0)]

where φ0 is the angle of incidence. The reflected field may be written
as

Er
z = −Z0 − Z+ sinφ0

Z0 + Z+ sinφ0
exp

[
jk(x cosφ0 − y sinφ0)

]
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The diffracted fields in the upper and lower half spaces may be written
in terms of unknowns as

Ed+
z =

∫ ∞

0
{g1(ξ) cos (xaξ) + g2(ξ) sin (xaξ)} exp

[
−

√
ξ2 − κ2

aya

]
dξ

+
∫ ∞

0
{g3(ξ) cos (xbξ) + g4(ξ) sin (xbξ)} exp

[
−

√
ξ2 − κ2

byb

]
dξ

for y > 0

Ed−
z =

∫ ∞

0
{h1(ξ) cos (xaξ) + h2(ξ) sin (xaξ)} exp

[√
ξ2 − κ2

aya

]
dξ

+
∫ ∞

0
{h3(ξ) cos (xbξ) + h4(ξ) sin (xbξ)} exp

[√
ξ2 − κ2

byb

]
dξ

for y < 0

where κa = ka, κb = kb, xa = x1
a , ya = y1

a , yb = y2

b , xb = x2
b . Using

the discontinuity properties of Weber-Schafheitlin’s integrals the above
coefficients for slit 1 may be written as [5]

g1(ξ) =
jκa

jκa +
√
ξ2 − κ2

aζ+

∞∑
m=0

AmJ2m+ 1
2
(ξ)ξ−

1
2

g2(ξ) =
jκa

jκa +
√
ξ2 − κ2

aζ+

∞∑
m=0

BmJ2m+ 3
2
(ξ)ξ−

1
2

h1(ξ) =
jκa

jκa +
√
ξ2 − κ2

aζ−

∞∑
m=0

CmJ2m+ 1
2
(ξ)ξ−

1
2

h2(ξ) =
jκa

jκa +
√
ξ2 − κ2

aζ−

∞∑
m=0

DmJ2m+ 3
2
(ξ)ξ−

1
2

Similarly coefficients corresponding to slit 2 may be written as

g3(ξ) =
jκb

jκb +
√
ξ2 − κ2

bζ+

∞∑
m=0

EmJ2m+ 1
2
(ξ)ξ−

1
2

g4(ξ) =
jκb

jκb +
√
ξ2 − κ2

bζ+

∞∑
m=0

FmJ2m+ 3
2
(ξ)ξ−

1
2

h3(ξ) =
jκb

jκb +
√
ξ2 − κ2

bζ−

∞∑
m=0

GmJ2m+ 1
2
(ξ)ξ−

1
2

h4(ξ) =
jκb

jκb +
√
ξ2 − κ2

bζ−

∞∑
m=0

HmJ2m+ 3
2
(ξ)ξ−

1
2
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where ζ+ and ζ− are the normalized impedances of upper and lower
faces of the impedance plane and Am, Bm, Cm, Dm, Em, Fm, Gm and
Hm are the expansion coefficients to be determined.

The boundary conditions associated with the geometry are

Ht
x

∣∣∣
y=0+

= Ht
x

∣∣∣
y=0−

for |xa| ≤ 1 (1a)

Ht
x

∣∣∣
y=0+

= Ht
x

∣∣∣
y=0−

for |xb| ≤ 1 (1b)

Et
z

∣∣∣
y=0+

= Et
z

∣∣∣
y=0−

for |xa| ≤ 1 (1c)

Et
z

∣∣∣
y=0+

= Et
z

∣∣∣
y=0−

for |xb| ≤ 1 (1d)

where superscript ‘t’ stands for total. Boundary condition (1a) has
been used. Relation x1 − d = x2 relates the two local coordinate
systems Using the additional theorem for the trigonometric functions
and then comparing even and odd functions, following is obtained

1
a

∫ ∞

0

[√
ξ2 − κ2

a

]
{g1(ξ) + h1(ξ)} cos (xaξ) dξ

+
1
b

∫ ∞

0

[√
ξ2 − κ2

b

]
[{g3(ξ) + h3(ξ)} cos (xaξR) cos (daξR)

−{g4(ξ) + h4(ξ)} cos (xaξR) sin (daξR)]dξ

=
2jκa sinφ0

1 + ζ+ sinφ0
cos(κaxa cosφ0) (2a)

and

1
a

∫ ∞

0

[√
ξ2 − κ2

a

]
{g2(ξ) + h2(ξ)} sin (xaξ) dξ

+
1
b

∫ ∞

0

[√
ξ2 − κ2

b

]
[{g3(ξ) + h3(ξ)} sin (xaξR) sin (daξR)

+ {g4(ξ) + h4(ξ)} sin (xaξR) cos (daξR)]dξ

= − 2κa sinφ0

1 + ζ+ sinφ0
sin(κaxa cosφ0) (2b)

where da = d
a and R = a

b
Expanding the trigonometric and Bessel functions in terms of

orthogonal set of Jacobi’s polynomials and using the expansion formula

x−m/2Jm(ξ
√
x) =

m=∞∑
m=0

2(2n+m+1)
Γ(n+m+ 1)

Γ(n+ 1)Γ(m+ 1)
J(2n+m+1)

ξ
pmn (x)
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where pmn (x) is defined by

pmn =
Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 1)
x−m/2

∫ ∞

0
Jm(

√
xξ)J2n+m+1(ξ)dξ

following is obtained

1
a

∫ ∞

0

[√
ξ2 − κ2

a

]
{g1(ξ) + h1(ξ)} J2n+ 1

2
(ξ)

1√
ξ
dξ

+
1
b

∫ ∞

0

[√
ξ2−κ2

b

] [
{g3(ξ)+h3(ξ)} J2n+ 1

2
(ξR) cos (daξR)

] 1√
Rξ
dξ

−1
b

∫ ∞

0

[√
ξ2−κ2

b

] [
{g4(ξ)+h4(ξ)} J2n+ 1

2
(ξR) sin (daξR)

] 1√
Rξ
dξ

=
2jκa sinφ0

1 + ζ+ sinφ0

J2n+1/2(κa cosφ0)
(κa cosφ0)1/2

(3a)

and result corresponding to equation (2b) is

1
a

∫ ∞

0

[√
ξ2 − κ2

a

]
{g2(ξ) + h2(ξ)} J2n+ 3

2
(ξ)

1√
ξ
dξ

+
1
b

∫ ∞

0

[√
ξ2−κ2

b

] [
{g3(ξ)+h3(ξ)} J2n+ 3

2
(ξR) sin (daξR)

] 1√
Rξ
dξ

+
1
b

∫ ∞

0

[√
ξ2−κ2

b

] [
{g4(ξ)+h4(ξ)} J2n+ 3

2
(ξR) cos (daξR)

] 1√
Rξ
dξ

= − 2κa sinφ0

1 + ζ+ sinφ0

J2n+3/2(κa cosφ0)
(κa cosφ0)1/2

(3b)

Let ζ+ = ζ− = ζ and putting the values of g1 ∼ g2 and h1 ∼ h2 we
have

∞∑
m=0

∫ ∞

0

[
jκa

√
ξ2 − κ2

a
1
a

jκa +
√
ξ2 − κ2

aζ

]
J2m+ 1

2
(ξ)J2n+ 1

2
(ξ) [Am + Cm]

1
ξ
dξ

+
∫ ∞

0


 jκb

√
ξ2 − κ2

b
1
b

jκb +
√
ξ2 − κ2

bζ


J2m+ 1

2
(ξ)J2n+ 1

2
(ξR) cos (daξR)

× [Em +Gm]
1√
Rξ
dξ

−
∫ ∞

0


 jκb

√
ξ2 − κ2

b
1
b

jκb +
√
ξ2 − κ2

bζ


J2m+ 3

2
(ξ)J2n+ 1

2
(ξR) sin (daξR)
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× [Fm +Hm]
1√
Rξ
dξ

=
2jκa sinφ0

1 + ζ sinφ0

J2n+1/2(κa cosφ0)
(κa cosφ0)1/2

(4a)

and
∞∑

m=0

∫ ∞

0

[
1
ajκa

√
ξ2 − κ2

a

jκa +
√
ξ2 − κ2

aζ

]
J2m+ 3

2
(ξ)J2n+ 3

2
(ξ) [Bm +Dm]

1
ξ
dξ

+
∫ ∞

0


 1

b jκb

√
ξ2 − κ2

b

jκb +
√
ξ2 − κ2

bζ


J2m+ 1

2
(ξ)J2n+ 3

2
(ξR) sin (daξR)

× [Em +Gm]
1√
Rξ
dξ

+
∫ ∞

0


 1

b jκb

√
ξ2 − κ2

b

jκb +
√
ξ2 − κ2

bζ


J2m+ 3

2
(ξ)J2n+ 3

2
(ξR) cos (daξR)

× [Fm +Hm]
1√
Rξ
dξ

= − 2κa sinφ0

1 + ζ sinφ0

J2n+3/2(κa cosφ0)
(κa cosφ0)1/2

(4b)

Above two expressions may be written as

∞∑
m=0

{
Ka(2m+1/2, 2n+ 1/2;κa)Am+Ka(2m+1/2, 2n+1/2;κa)Cm

+Kca(2m+1/2, 2n+1/2; da)Em+Kca(2m+1/2, 2n+1/2; da)Gm

−Ksa(2m+3/2, 2n+1/2; da)Fm−Ksa(2m+3/2, 2n+1/2; da)Hm

}

=
2jκa sinφ0

1 + ζ sinφ0

J2n+1/2(κa cosφ0)
(κa cosφ0)1/2

(5a)

∞∑
m=0

{
Ka(2m+3/2, 2n+3/2;κa)Bm+Ka(2m+3/2, 2n+ 3/2;κa)Dm

+Ksa(2m+1/2, 2n+3/2; da)Em+KSa(2m+1/2, 2n+3/2; da)Gm

+Kca(2m+3/2, 2n+3/2; da)Fm+KCa(2m+3/2, 2n+3/2; da)Hm

}

= − 2κa sinφ0

1 + ζ sinφ0

J2n+3/2(κa cosφ0)
(κa cosφ0)1/2

(5b)
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where

Ka(m,n, κa)=
1
a

∫ ∞

0

[
jκa

√
ξ2 − κ2

a

jκa +
√
ξ2 − κ2

aζ

]
Jm(ξ)Jn(Rξ)

1
ξ
dξ

Kca(m,n, da)=
1
b

∫ ∞

0


 jκb

√
ξ2 − κ2

b

jκb+
√
ξ2−κ2

bζ


Jm(ξ)Jn(Rξ) cos(Rdaξ)

1√
Rξ
dξ

Ksa(m,n, da)=
1
b

∫ ∞

0


 jκb

√
ξ2−κ2

b

jκb+
√
ξ2 − κ2

bζ


Jm(ξ)Jn(Rξ) sin(Rdaξ)

1√
Rξ
dξ

Applying the remaining boundary conditions and proceeding as
above we finally get the following set of expressions

∞∑
m=0

{
Kb(2m+1/2, 2n+1/2;κb)Em+Kb(2m+1/2, 2n+1/2;κb)Gm

+Kcb(2m+1/2, 2n+1/2; db)Am+Kcb(2m+1/2, 2n+1/2; db)Cm

+Ksb(2m+3/2, 2n+1/2; db)Bm+Ksb(2m+3/2, 2n+1/2; db)Dm

}

=
2jκb sinφ0

1 + ζ sinφ0

J2n+1/2(κb cosφ0)
(κb cosφ0)1/2

(5c)

∞∑
m=0

{
Kb(2m+3/2, 2n+3/2;κb)Fm+Kb(2m+3/2, 2n+3/2;κb)Hm

−Ksb(2m+1/2, 2n+3/2; db)Am−Ksb(2m+1/2, 2n+3/2; db)Cm

+Kcb(2m+3/2, 2n+3/2; db)Dm+Kcb(2m+3/2, 2n+3/2; da)Bm

}

= − 2κb sinφ0

1 + ζ sinφ0

J2n+3/2(κb cosφ0)
(κb cosφ0)1/2

(5d)

∞∑
m=0

{
Ga(2m+1/2, 2n+1/2;κa)Am−Ga(2m+1/2, 2n+1/2;κa)Cm

+Gca(2m+1/2, 2n+1/2; da)Em−Gca(2m+1/2, 2n+1/2; da)Gm

−Gsa(2m+3/2, 2n+1/2; da)Fm+Gsa(2m+3/2, 2n+1/2; da)Hm

}

= − 2ζ sinφ0

1 + ζ sinφ0

J2n+1/2(κa cosφ0)
(κa cosφ0)1/2

(5e)
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∞∑
m=0

{
Ga(2m+3/2, 2n+3/2;κa)Bm−Ga(2m+3/2, 2n+3/2;κa)Dm

+Gsa(2m+1/2, 2n+3/2; da)Em−Gsa(2m+1/2, 2n+ 3/2; da)Gm

+Gca(2m+3/2, 2n+3/2; da)Fm−Gca(2m+3/2, 2n+3/2; da)Hm

}

= − 2jζ sinφ0

1 + ζ sinφ0

J2n+3/2(κa cosφ0)
(κa cosφ0)1/2

(5f)

∞∑
m=0

{
Gb(2m+1/2, 2n+1/2;κb)Em−Gb(2m+1/2, 2n+1/2;κb)Gm

−Gcb(2m+1/2, 2n+1/2; db)Cm+Gcb(2m+1/2, 2n+1/2; db)Am

−Gsb(2m+3/2, 2n+1/2; db)Dm+Gsb(2m+3/2, 2n+1/2; da)Bm

}

= − 2ζ sinφ0

1 + ζ sinφ0

J2n+1/2(κb cosφ0)
(κb cosφ0)1/2

(5g)

∞∑
m=0

{
Gb(2m+3/2, 2n+3/2;κb)Fm−Gb(2m+3/2, 2n+3/2;κb)Hm

+Gsb(2m+1/2, 2n+3/2; db)Cm−Gsb(2m+1/2, 2n+3/2; db)Am

−Gcb(2m+3/2, 2n+3/2; db)Dm+Gcb(2m+3/2, 2n+3/2; db)Bm

}

= −2jζ sinφ0

1 + sinφ0

J2n+3/2(κb cosφ0)
(κb cosφ0)1/2

(5h)

where

Kb(m,n, κb) =
∫ ∞

0


 1

b jκb

√
ξ2 − κ2

b

jκb +
√
ξ2 − κ2

b


Jm(ξ)Jn(qξ)

1
ξ
dξ

Kcb(m,n, db) =
∫ ∞

0

[
1
ajκa

√
ξ2 − κ2

a

jκa +
√
ξ2 − κ2

a

]
Jm(ξ)Jn(qξ) cos(qdbξ)

1
√
qξ
dξ

Ksb(m,n, db) =
∫ ∞

0

[
1
ajκa

√
ξ2 − κ2

a

jκa +
√
ξ2 − κ2

a

]
Jm(ξ)Jn(qξ) sin(qdbξ)

1
√
qξ
dξ

Ga(m,n, κa) =
∫ ∞

0

[
jκa

jκa +
√
ξ2 − κ2

aζ

]
Jm(ξ)Jn(Rξ)

1
ξ
dξ

Gca(m,n, da) =
∫ ∞

0


 jκb

jκb+
√
ξ2−κ2

bζ


Jm(ξ)Jn(Rξ) cos(Rdaξ)

1√
Rξ
dξ
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Gsa(m,n, da) =
∫ ∞

0


 jκb

jκb+
√
ξ2−κ2

bζ


Jm(ξ)Jn(Rξ) sin(Rdaξ)

1√
Rξ
dξ

and db = d
b , q = b

a .

3. APPROXIMATE SOLUTIONS OF EXPANSION
CO-EFFICIENTS

The integrals Kca, Kcb, Ksb,Ksa, Gca, Gcb, Gsb and Gsa may be
simplified using saddle point method and the integrals Ka, Ga,Kb,
Gb may be computed using the standard methods. Equations from
(5a) to (5h) may be written in the matrix form as

[Ka(2m+ 1/2, 2n+ 1/2;κa)] [Am + Cm]
+ [Kca(2m+ 1/2, 2n+ 1/2; da)] [Em +Gm]
− [Ksa(2m+ 3/2, 2n+ 1/2; da)] [Fm +Hm]

=
2jκa sinφ0

1 + ζ sinφ0

[
J2n+1/2(κa cosφ0)

(κa cosφ0)1/2

]
(6a)

[Ka(2m+ 3/2, 2n+ 3/2;κa)] [Bm +Dm]
+ [Kca(2m+ 3/2, 2n+ 3/2;κa)] [Fm +Hm]
+ [Ksa(2m+ 1/2, 2n+ 3/2; da)] [Em +Gm]

= − 2κa sinφ0

1 + ζ sinφ0

[
J2n+3/2(κa cosφ0)

(κa cosφ0)1/2

]
(6b)

[Kb(2m+ 1/2, 2n+ 1/2;κb)] [Em +Gm]
+ [Kcb(2m+ 1/2, 2n+ 1/2; db)] [Am + Cm]
+ [Ksb(2m+ 3/2, 2n+ 1/2; db)] [Bm +Dm]

=
2jκb sinφ0

1 + ζ sinφ0

[
J2n+1/2(κb cosφ0)

(κb cosφ0)1/2

]
(6c)

[Kb(2m+ 3/2, 2n+ 3/2;κb)] [Fm +Hm]
+ [Kcb(2m+ 3/2, 2n+ 3/2; db)] [Bm +Dm]
− [Ksb(2m+ 1/2, 2n+ 3/2; db)] [Am + Cm]

= − 2κb sinφ0

1 + ζ sinφ0

[
J2n+3/2(κb cosφ0)

(κb cosφ0)1/2

]
(6d)
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[Ga(2m+ 1/2, 2n+ 1/2;κa)] [Am − Cm]
+ [Gca(2m+ 1/2, 2n+ 1/2; da)] [Em −Gm]
+ [Gsa(2m+ 3/2, 2n+ 1/2; da)] [−Fm +Hm]

= − 2ζ sinφ0

1 + ζ sinφ0

[
J2n+1/2(κa cosφ0)

(κa cosφ0)1/2

]
(6e)

[Ga(2m+ 3/2, 2n+ 3/2;κa)] [Bm −Dm]
+ [Gca(2m+ 3/2, 2n+ 3/2;κa)] [Fm −Hm]
+ [Gsa(2m+ 1/2, 2n+ 3/2; da)] [Em −Gm]

= − 2jζ sinφ0

1 + ζ sinφ0

[
J2n+3/2(κa cosφ0)

(κa cosφ0)1/2

]
(6f)

[Gb(2m+ 1/2, 2n+ 1/2;κb)] [Em −Gm]
+ [Gcb(2m+ 1/2, 2n+ 1/2; db)] [Am − Cm]
+ [Gsb(2m+ 3/2, 2n+ 1/2; db)] [Bm −Dm]

= − 2ζ sinφ0

1 + ζ sinφ0

[
J2n+1/2(κb cosφ0)

(κb cosφ0)1/2

]
(6g)

[Gb(2m+ 3/2, 2n+ 3/2;κb)] [Fm −Hm]
+ [Gcb(2m+ 1/2, 2n+ 3/2; db)] [Bm −Dm]
− [Gsb(2m+ 1/2, 2n+ 3/2; db)] [Am − Cm]

= − 2jζ sinφ0

1 + ζ sinφ0

[
J2n+3/2(κb cosφ0)

(κb cosφ0)1/2

]
(6h)

The above equations may be solved by using block Gauss-Seidel
procedure. Since Kca, Kcb, Ksb, Ksa, Gca, Gcb, Gsb and Gsa are the
coupling integrals so for large separation between the slits they all go
to zero and we get zeroth order solutions as given below

[Am + Cm]0 =
2jκa sinφ0

1 + ζ sinφ0
[Ka(2m+ 1/2, 2n+ 1/2;κa)]

−1

×
[
J2n+1/2(κa cosφ0)

(κa cosφ0)1/2

]

[Bm +Dm]0 = − 2κa sinφ0

1 + ζ sinφ0
[Ka(2m+ 3/2, 2n+ 3/2;κa)]

−1

×
[
J2n+3/2(κa cosφ0)

(κa cosφ0)1/2

]
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[Em +Gm]0 =
2jκb sinφ0

1 + ζ sinφ0
[Kb(2m+ 1/2, 2n+ 1/2;κb)]

−1

×
[
J2n+1/2(κb cosφ0)

(κb cosφ0)1/2

]

[Fm +Hm]0 = − 2κb sinφ0

1 + ζ sinφ0
[Kb(2m+ 3/2, 2n+ 3/2;κb)]

−1

×
[
J2n+3/2(κb cosφ0)

(κb cosφ0)1/2

]

[Am − Cm]0 = − 2ζ sinφ0

1 + ζ sinφ0
[Ga(2m+ 1/2, 2n+ 1/2;κa)]

−1

×
[
J2n+1/2(κa cosφ0)

(κa cosφ0)1/2

]

[Bm −Dm]0 = − 2jζ sinφ0

1 + ζ sinφ0
[Ga(2m+ 3/2, 2n+ 3/2;κa)]

−1

×
[
J2n+3/2(κa cosφ0)

(κa cosφ0)1/2

]

[Em −Gm]0 = − 2ζ sinφ0

1 + ζ sinφ0
[Gb(2m+ 1/2, 2n+ 1/2;κb)]

−1

×
[
J2n+1/2(κb cosφ0)

(κb cosφ0)1/2

]

[Fm −Hm]0 = − 2jζ sinφ0

1 + ζ sinφ0
[Gb(2m+ 3/2, 2n+ 3/2;κb)]

−1

×
[
J2n+3/2(κb cosφ0)

(κb cosφ0)1/2

]

The first order solutions may be written as

[Am + Cm]1 = [Am + Cm]0 − [Ka(2m+ 1/2, 2n+ 1/2;κa)]
−1

× [Kca(2m+ 1/2, 2n+ 1/2; da)] [Em +Gm]0

+ [Ka(2m+ 1/2, 2n+ 1/2;κa)]
−1

× [Ksa(2m+ 3/2, 2n+ 1/2; da)] [Fm +Hm]0

= [Am + Cm]0 +

[
κa

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Ka(2m+ 1/2, 2n+ 1/2;κa)]

−1
]
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× [J2n+1/2(Rκa)]
[
−[J2m+1/2(κa)]T [Em +Gm]0

+ j[J2m+3/2(κa)]T [Fm +Hm]0
]

(7a)

[Bm +Dm]1 = [Bm +Dm]0 − [Ka(2m+ 3/2, 2n+ 3/2;κa)]
−1

× [Kca(2m+ 3/2, 2n+ 3/2;κa)] [Fm +Hm]0

− [Ka(2m+ 3/2, 2n+ 3/2;κa)]
−1

× [Ksa(2m+ 1/2, 2n+ 3/2; da)] [Em +Gm]0

= [Bm +Dm]0 +

[
κa

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Ka(2m+ 3/2, 2n+ 3/2;κa)]

−1
]

× [J2n+3/2(Rκa)]
[
−[J2m+3/2(κa)]T

× [Fm +Hm]0 − j[J2m+1/2(κa)]T [Em +Gm]0
]

(7b)

[Em +Gm]1 = [Em +Gm]0 − [Kb(2m+ 1/2, 2n+ 1/2;κb)]
−1

× [Kcb(2m+ 1/2, 2n+ 1/2; db)] [Am + Cm]0

− [Kb(2m+ 1/2, 2n+ 1/2;κb)]
−1

× [Ksb(2m+ 3/2, 2n+ 1/2; db)] [Bm +Dm]0

= [Em +Gm]0 +

[
κb

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Kb(2m+ 1/2, 2n+ 1/2;κb)]

−1
]

×[J2n+1/2(qκb)]
[
−[J2m+1/2(κb)]T [Am + Cm]0

− j[J2m+3/2(κb)]T [Bm +Dm]0
]

(7c)

[Fm +Hm]1 = [Fm +Hm]0 − [K(2m+ 3/2, 2n+ 3/2;κb)]

× [Kc(2m+ 3/2, 2n+ 3/2; db)] [Bm +Dm]0

+ [Kb(2m+ 3/2, 2n+ 3/2;κb)]

× [Ks(2m+ 1/2, 2n+ 3/2; db)] [Am + Cm]0

= [Fm +Hm]0 +

[
κb

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Kb(2m+ 3/2, 2n+ 3/2;κb)]

−1
]
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×[J2n+3/2(qκb)]
[
−[J2m+3/2(κb)]T [Bm +Dm]0

+ j[J2m+1/2(κb)]T [Am + Cm]0
]

(7d)

[Am − Cm]1 = [Am − Cm]0 − [Ga(2m+ 1/2, 2n+ 1/2;κa)]
−1

× [Gca(2m+ 1/2, 2n+ 1/2; da)] [Em −Gm]0

+ [Ga(2m+ 1/2, 2n+ 1/2;κa)]
−1

× [Gsa(2m+ 3/2, 2n+ 1/2; da)] [Fm −Hm]0

= [Am − Cm]0 +

[
κaζ

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Ga(2m+ 1/2, 2n+ 1/2;κa)]

−1
]

×[J2n+1/2(Rκa)]
[
[J2m+1/2(κa)]T [Em −Gm]0

− j[J2m+3/2(κa)]T [Fm −Hm]0
]

(7e)

[Bm −Dm]1 = [Bm −Dm]0 − [Ga(2m+ 3/2, 2n+ 3/2;κa)]
−1

× [Gca(2m+ 3/2, 2n+ 3/2; da)] [Fm −Hm]0

− [Ga(2m+ 3/2, 2n+ 3/2;κa)]
−1

× [Gsa(2m+ 1/2, 2n+ 3/2; da)] [Em −Gm]0

= [Bm −Dm]0 +

[
κaζ

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Ga(2m+ 3/2, 2n+ 3/2;κa)]

−1
]

×[J2n+3/2(Rκa)]
[
[J2m+3/2(κa)]T [Fm −Hm]0

+ j[J2m+1/2(κa)]T [Em −Gm]0
]

(7f)

[Em −Gm]1 = [Em −Gm]0 − [Gb(2m+ 1/2, 2n+ 1/2;κb)]
−1

× [Gcb(2m+ 1/2, 2n+ 1/2; db)] [Am − Cm]0

− [Gb(2m+ 1/2, 2n+ 1/2;κb)]
−1

× [Gsb(2m+ 3/2, 2n+ 1/2; db)] [Bm −Dm]0

= [Em −Gm]0 +

[
κbζ

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Gb(2m+ 1/2, 2n+ 1/2;κb)]

−1
]
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×[J2n+1/2(qκb)]
[
[J2m+1/2(κb)]T [Am − Cm]0

+ j[J2m+3/2(κb)]T [Bm −Dm]0
]

(7g)

[Fm −Hm]1 = [Fm −Hm]0 − [Gb(2m+ 3/2, 2n+ 3/2;κb)]
−1

× [Gcb(2m+ 3/2, 2n+ 3/2; db)] [Bm −Dm]0

+ [Gb(2m+ 3/2, 2n+ 3/2;κb)]
−1

× [Gsb(2m+ 1/2, 2n+ 3/2; db)] [Am − Cm]0

= [Fm −Hm]0 +

[
κbζ

√
π

2
exp(−j[kd− π

4 ])
(kd)3/2

]

×
[
[Gb(2m+ 3/2, 2n+ 3/2;κb)]

−1
]

×[J2n+3/2(qκb)]
[
[J2m+3/2(κb)]T [Bm −Dm]0

− j[J2m+1/2(κb)]T [Am − Cm]0
]

(7h)

where [A]T means the transpose of matrix A. The zeroth order co-
efficients give the fields by slit 1 or slit 2 as if they are isolated and the
first order co-efficients yield the field when the first order interaction
between the slits are taken into account. Similarly we can introduce
the higher order interaction terms by iteration. Since impedance face
supports the surface waves so when the observation point is far from the
surface, these waves can be neglected and diffracted field dominates.
Diffracted far field in the upper half space can be evaluated by applying
the saddle point method. The result is given

Ed
z =

√
π

2
sinφ

1 + ζ sinφ
1√
kρ

exp
[
−jkρ+ j

π

4

]

×
∞∑

m=0

{
Am

J2m+1/2(κa cosφ)
√
κa cosφ

+ jBm

J2m+3/2(κa cosφ)
√
κa cosφ

}

× exp[−jkd1 cosφ]

+

{
Em

J2m+1/2(κb cosφ)
√
κb cosφ

+ jFm

J2m+3/2(κb cosφ)
√
κb cosφ

}

× exp[jkd2 cosφ] (8)

Similarly the corresponding expression for the lower half space may be
derived.
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Figure 2. Variations of diffracted field with angle of incidance.
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Figure 3. Variations of diffracted field with spacing between the slits.



122 Imran, Naqvi, and Hongo

0 20 40 60 80 100 120 140 160 180
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
iff

ra
ct

ed
 fi

el
d

observation angle

 
 

 

��

 kd=4.0

0 =π/2�φ

�κ
a

� �κ =4.0= b

ζ =0.05+0.5ι

ζ =0.05+0.3ι

ζ =0.05+0.7ι

Figure 4. Variations of diffracted field with the impedance of plane.

4. NUMERICAL RESULTS AND DISCUSSION

In order to obtain the diffracted fields using equation (8) we must
determine the expansion coefficients Am, Bm, Em and Fm by solving
the simultaneous equations (7a)–(7h) for infinite number of unknowns.
The matrix elements are computed numerically. The diffracted fields
are determined for the upper half space for different values of angle of
incidence φ0, separation between the slits kd and impedance of plane
containing slits. The plots are shown in Figure 2 to Figure 4. It is
noted that as we increase the angle of incidence, the amplitude of the
main lobe of the diffracted field also increases. It is also observed that
the decrease of spacing between the slits moves the main lobe of the
diffracted field towards the higher observation angles. Figure 4 shows
the effects of variation of impedance of the plane on the diffracted field
pattern. It is observed that the amplitude of the field decreases as we
increase the value of impedance ζ.
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