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Abstract—This study investigates the application of image methodol-
ogy to velocity-dependent wave systems. Special Relativity is used for
the analysis of waves scattered by arbitrary moving objects in the pres-
ence of a perfectly-conducting plane-interface. The various scenarios
considered involve geometrical, material, and kinematic symmetries.
Cases discussed include free-space, material media at-rest, and ma-
terial media in motion, with respect to the plane-interface boundary.
The last configuration is elaborated for two different scenarios: the first
assumes the same medium velocity throughout space when the plane
boundary is removed; the second introduces two symmetrical velocity-
fields in the half-spaces involved, with a jump in flow direction at the
interface.

Where the method applies it simplifies the analysis, and the results
enrich our yet limited repertoire of canonical problems for relativistic
scattering.

1. INTRODUCTION

The method of images constitutes a useful albeit limited technique
facilitating solutions of the Laplace equation, e.g., in electrostatics
and magnetostatics, and to a lesser extent of the vector or scalar
Helmholtz wave equations. Essentially, the approach seeks to replace
given boundaries and the conditions on them, by virtual sources or
scatterers which maintain the original boundary conditions, hence also
preserve the fields in the initial regions of space. Additional fields are
created in regions of space which are irrelevant to the original problem.
The ensuing configurations are usually easier to analyze.
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Presently image techniques are studied in wave systems involving
scatterers and interfaces in motion. This requires the use of
Special Relativity in order to facilitate the transformation of fields
and wave parameters from one inertial reference-system to another,
i.e., taking into account both kinematical and dynamical effects of
motion. In addition to the material and geometrical symmetry
considerations involved with static configurations, here problems also
involve kinematical symmetries dependent on velocities.

In the following, we consider three reference-systems: Γ is
associated with the plane boundary at-rest; Γ′ characterizes the
scattering object at-rest; Γ′′ involves the image object at-rest. A
feature common to all scenarios discussed below is a plane perfect
mirror, i.e., a perfect conductor, or alternatively a perfect magnetic
wall, characterized by ε → ∞, µ → ∞, respectively. The plane-
interface, at-rest in Γ, is defined by its orientation in space, specified
by a unit normal vector n̂, and by the origin r = 0 located on it.
In view of the symmetries involved, this choice of origin is conducive
to simpler expressions. For simplicity only the case of a perfectly-
conducting boundary is considered, the analogous case of a magnetic
mirror leads to similar results. Furthermore, examples are limited to
two-dimensional geometries involving cylindrical scatterers.

The symmetrical situations discussed subsequently involve pairs
of vectors. We deal with a pair of vectors, say a, b, symmetrical with
respect to the interface n̂, satisfying

Ñ · (a− b) = 0, Ñ = Ĩ − n̂n̂ (1)

In (1) the dyadic, Ñ = Ĩ − n̂n̂ = −n̂× n̂× Ĩ, with the unit dyadic Ĩ,
sorts out the components parallel to the plane, i.e., perpendicular with
respect to n̂. Obviously this requires a, b, to be co-planar, otherwise
the tangential component vectors will not be identical.

The complementary case, where the components parallel with
respect to the boundary add to zero, is given by pairs of vectors, say
A, B, satisfying

Ñ · (A+B) = 0 (2)

Below we also deal with many cases where the components
perpendicular to the plane are equal in length, augmenting (1), (2),
with n̂n̂ · (a+b) = 0, n̂n̂ · (A−B) = 0, respectively. This will happen
in isotropic media, applying in our case to free space and material
media at-rest with respect to the boundary in reference-systems Γ.
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2. RELATIVISTIC ELECTRODYNAMICS

Consider an inertial reference-system Γ, characterized by a quadruplet
of spatiotemporal coordinates

R = (r, ict) = (x, y, z, ict) (3)

where c is the universal constant, usually referred to as “the speed of
light in vacuum”. Mathematically, R denotes the location four-vector
in the Minkowski four-dimensional space. For early references see e.g.,
Sommerfeld [1].

The Maxwell equations for source-free regions, e.g., see Stratton
[2], are given by

∂r ×E = −∂tB, ∂r ×H = ∂tD, ∂r ·D = 0, ∂r ·B = 0 (4)

see also [3, 4] for present notation. In general, all fields in (4) depend on
space and time, i.e., E = E(R), etc. Einstein’s so-called “principle of
relativity” [5, 6] asserts that the Maxwell equations are form-invariant
in all inertial reference-systems. Thus in a reference system Γ(∗), we
have like in (4)

∂r(∗) ×E(∗) = −∂t(∗)B(∗), ∂r(∗) ×H(∗) = ∂t(∗)D
(∗)

∂r(∗) ·D(∗) = 0, ∂r(∗) ·B(∗) = 0
(5)

with E(∗) = E(∗)(R(∗)), etc.
The spatiotemporal coordinates of Γ(∗) are related to those of Γ

by the Lorentz transformation

r(∗) = Ũ
(∗) · (r − v(∗)t), t(∗) = γ(∗)(t− v(∗) · r/c2)

γ(∗) = (1 − β(∗)2)−1/2, β(∗) = v(∗)/c, v(∗) = |v(∗)| (6)

Ũ
(∗)

= Ĩ + (γ(∗) − 1)v̂(∗)v̂(∗), v̂(∗) = v(∗)/v(∗)

In (6), when choosing r(∗) = 0 we obtain r = v(∗)t, or v(∗) = dr/dt,
hence v(∗) is the velocity of the origin of Γ(∗) as observed from Γ. The
dyadic Ũ

(∗)
multiplies the vector components parallel to the velocity by

γ(∗). Let us symbolize (6) by R(∗) = R(∗)[R]. Its inverse R = R[R(∗)]
is readily derived by simple substitution

r = Ũ
(∗) · (r(∗) + v(∗)t(∗)), t = γ(∗)(t(∗) + v(∗) · r(∗)/c2) (7)

Replacing in (7) v(∗) = −v yields the same functional form as in
(6). This invertibility is an important property of Einstein’s theory,
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often referred to by the somewhat vague phrase “all inertial systems
of reference are equivalent”. As a corollary to (6), (7), the application
of the chain rule of calculus yields

∂r(∗) = Ũ
(∗) · (∂r + v(∗)∂t/c

2), ∂t(∗) = γ(∗)(∂t + v(∗) · ∂r) (8)

consistently denoted by ∂R(∗) = ∂R(∗) [∂R]. Similarly to (6), (7). The
inverse of (8) ∂R = ∂R[∂R(∗) ] readily follows. Thus new Minkowski
four-vector differential operators are defined, ∂R = (∂r,− i

c∂t), ∂R(∗) =
(∂r(∗) ,− i

c∂t(∗)), in Γ, Γ(∗), respectively.
Combining (4)–(8), Einstein [2, 5] has derived the field transfor-

mations

E(∗) = Ṽ
(∗) · (E + v(∗) ×B), B(∗) = Ṽ

(∗) · (B − v(∗) ×E/c2)
D(∗) = Ṽ

(∗) · (D + v(∗)×H/c2), H(∗) = Ṽ
(∗) · (H − v(∗)×D) (9)

Ṽ
(∗)

= γ(∗)Ĩ + (1 − γ(∗))v̂(∗)v̂(∗)

which may be generically symbolized by F (∗) = F (∗)[F ]. The dyadic
Ṽ

(∗)
multiplies the vector component perpendicular to the velocity

by γ(∗). Either by manipulating (9) or directly from the principle of
relativity, the inverse formulas of (9), F = F [F (∗)], readily follows,
e.g., E = Ṽ

(∗) · (E(∗) − v(∗) ×B(∗)).
By substitution from (5) into (9), differential operators were

defined and used [4, 7–9]

E(∗) = W̃
Γ(∗),Γ ·E, H(∗) = W̃

Γ(∗),Γ ·H

W̃
Γ(∗),Γ

= Ṽ
(∗) · (Ĩ − v(∗) × ∂−1

t ∂r × Ĩ)
(10)

relating the fields in Γ to those in Γ(∗) in a very compact notation. In
(10) ∂−1

t denotes the inverse time derivative, which is either the time
integral, or disappears by multiplying all fields in (10) by ∂t.

Sacrificing generality for simplicity, we choose here simple
constitutive relations, e.g., in a material medium at-rest in Γ(∗),

D(∗) = ε(∗)E(∗), B(∗) = µ(∗)H(∗) (11)

where in (11) the scalars ε(∗), µ(∗), are the material parameters. Only
in free-space (vacuum) we have ε(∗) = ε0, µ

(∗) = µ0 for all inertial
reference-systems.
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In material media (9), (11), prescribe the Minkowski constitutive
relations [1], e.g., for fields measured in Γ, and a medium at-rest in Γ′,
we have

D + v′ ×H/c2 = ε′(E + v′ ×B)

B − v′ ×E/c2 = µ′(H − v′ ×D)
(12)

degenerating in free-space into (11) in the form D = ε0E, B = µ0H.
In general, the forms (12) are much more difficult to handle [1].

Substitution from (5) into (12) and noting that Ũ · Ṽ = γĨ yields
differential operators

D = ε′M̃ ·E − v′ ×H/c2, B = µ′M̃ ·H + v′ ×E/c2

M̃ = (Ĩ − v′ × ∂−1
t ∂r × Ĩ) = Ũ

′ · W̃Γ′,Γ
/γ′

(13)

displaying the dependence of D on E and H, and similarly the
dependence of B on H and E. Again, for v′ = 0 the constitutive
relations degenerate to the free-space case in all reference-systems.

Alternatively, the Minkowski constitutive relations can be
expressed as

Ñ
Γ′,Γ ·H = ε′W̃

Γ′,Γ ·E, ÑΓ′,Γ ·E = −µ′W̃Γ′,Γ ·H

Ñ
Γ′,Γ

= Ṽ
′ · (∂−1

t ∂r × Ĩ + v′ × Ĩ/c2)
(14)

and once again for v′ = 0 the constitutive relations (14) degenerate to
the free-space case in all reference-systems.

3. PLANE WAVE SCENARIOS

The following simple examples illustrate scenarios investigated below.
We start with a monochromatic plane wave given in a medium at-rest
in Γ

{E,H} = {Êe0, Ĥh0}eiK·R, K = (k, iω/c), K ·R = k ·r−ωt (15)

where in (15) and throughout the electrical and magnetic fields are
written together, i.e., symbols in braces apply correspondingly; K
denotes the spectral (propagation-vector and frequency) Minkowski
four-vector. In an isotropic medium at-rest waves are transversal,
displaying the properties

Ê × Ĥ = k̂, Ê · Ĥ = Ê · k̂ = Ĥ · k̂ = 0

ω/k = (µε)−1/2, e0/h0 = Z = (µ/ε)1/2
(16)



56 Censor

and in free-space µ = µ0, ε = ε0.
We consider the initial wave (15) in the half space denoted by

{1}. To satisfy the boundary conditions at the perfectly-conducting
plane-interface, a reflected wave must exist in {1}, given by

{E,H} = {Ê e0, Ĥ h0}eiK·R, K = (k, iω/c) (17)

where in an isotropic medium we have vph = ω/k = ω/k, denoting
the phase velocity which in free-space becomes vph = c, and the
transversality properties are similar to (16).

The total tangential electric field must vanish at all points Ñ · r
on the boundary, at all times t. This prescribes for the phases, i.e.,
wave propagation vectors and frequencies, and for the amplitudes,
respectively,

ω − ω = 0, Ñ · (k − k) = 0, Ñ · (Êe0 + Êe0) = 0 (18)

For the case of a magnetic wall the condition on the amplitude is
Ñ · (Ĥh0 + Ĥ h0) = 0. The symmetry condition Ñ · (k − k) = 0 is
usually referred to as Snell’s law, obviously it is not a law, but a result
of applying boundary conditions.

Inasmuch as the pair of plane waves (15), (17), subject to (18),
satisfies the boundary conditions, it is feasible to extend the waves into
region {2}, the half-space initially shielded by the perfectly-conducting
plane-interface, and remove the perfectly-conducting plane-interface,
without altering the original waves (15), (17), in region {1}. The
tangential components of both the electric and magnetic fields are
continuous across the interface, therefore no equivalent surface charge
and current density sources are required. Thusly E can be called the
image of E, constituting the simplest example for the application of
the method of images.

In order to observe the fields in a different reference-system, (10)
is applied to (15), (17), yielding in Γ′

{E′,H ′} = W̃
Γ′,Γ · {E,H} = {Ê′

e′0, Ĥ
′
h′0}eiK

′·R′

{E′
,H

′} = W̃
Γ′,Γ · {E,H} = {Ê

′
e′0, Ĥ

′
h
′
0}eiK

′·R′
(19)

W̃
Γ′,Γ

= Ṽ
′ · (Ĩ−v′×∂−1

t ∂r×Ĩ), K ′ = (k′, iω′/c), K ′ = (k′, iω′/c)

where in (19) the phase is obtained subject to the phase-invariance
principle discussed below, and v′ is the velocity of Γ′ as observed from
Γ. Once E′,H ′,E

′
,H

′, are computed, the associated fields are found
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from the pertinent Maxwell equations (5)

B′ = −∂−1
t′ ∂r′ ×E′, D′ = ∂−1

t′ ∂r′ ×H ′

B
′ = −∂−1

t′ ∂r′ ×E′
, D

′ = ∂−1
t′ ∂r′ ×H ′ (20)

As long as we deal with free-space, the operations in (20) are trivial
and in Γ′ we have transversal plane wave as well.

Inasmuch as K,K,R are Minkowski four-vectors, we have for the
inner products

K ·R = K ′ ·R′, K ·R = K
′ ·R′ (21)

also referred to as the phase-invariance principle (already used in (19)),
e.g., see [4]. Substituting from (6), (7), into (21) and collecting terms
yields

k′ = Ũ
′ · (k − v′ω/c2), ω′ = γ′(ω − v′ · k)

k
′ = Ũ

′ · (k − v′ω/c2), ω′ = γ′(ω − v′ · k)
(22)

where in (22) the transformations k′ = k′[k], k′ = k
′[k] are the

formulas for the relativistic Fresnel drag phenomenon, and ω′ =
ω′[ω], ω′ = ω′[ω] are usually referred to as the relativistic Doppler effect
formulas. Similarly to (6), we symbolize (22) by K ′ = K ′[K], K ′ =
K

′[K]. The inverse transformations K = K[K ′], K = K[K ′] are
readily derived.

In Γ we have the conditions (18). By transformation into Γ′,
the formulas for reflection of a plane wave from a moving mirror [5]
are obtained, often dubbed as the relativistic aberration effect. The
interesting aspect of this quite trivial analysis is that when everything is
observed from Γ′, we have now the plane boundary moving at a velocity
−v′. The effect of the boundary can be replaced by an image wave,
namely E′, (19), whose parameters are determined by the boundary-
value problem in Γ and the pertinent relativistic transformations, and
thus we have defined the image wave in the case of a moving mirror.

We also need to consider waves in a reference-system Γ′′ moving
with velocity v′′ when observed from Γ. The relevant formulas are
obtained from (19)–(22) by replacing the primes with double-primes

{E′′,H ′′} = W̃
Γ′′,Γ · {E,H} = {Ê′′

e′′0, Ĥ
′′
h′′0}eiK

′′·R′′

{E′′
,H

′′} = W̃
Γ′′,Γ · {E,H} = {Ê

′′
e′′0, Ĥ

′′
h
′′
0}eiK

′′·R′′

W̃
Γ′′,Γ

= Ṽ
′′ · (Ĩ − v′′ × ∂−1

t ∂r × Ĩ)
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B′′ = −∂−1
t′′ ∂r′′×E′′, D′′ = ∂−1

t′′ ∂r′′×H ′′, K ′′ = (k′′, iω′′/c) (23)

B
′′ = −∂−1

t′′ ∂r′′×E′′
, D

′′ = ∂−1
t′′ ∂r′′×H ′′

, K
′′ = (k′′, iω′′/c)

k′′ = Ũ
′′ · (k − v′′ω/c2), ω′′ = γ′′(ω − v′′ · k)

k
′′ = Ũ

′′ · (k − v′′ω/c2), ω′′ = γ′′(ω − v′′ · k)

The two reference-systems Γ′,Γ′′, are moving symmetrically with
respect to the plane-interface, i.e.,

Ñ · (v′′ − v′) = 0, n̂n̂ · (v′′ + v′) = 0 (24)

Unlike free-space scenarios, material media require more scrutiny.
The first scenario involving material media is quite similar to the free-
space case: In Γ in region {1} we now assume a medium at-rest,
possessing arbitrary parameters ε, µ. The same waves (15), (17), exist
here. The boundary conditions at the perfectly-conducting plane are
once again satisfied by (18). Also, by extending the waves and the
medium from the initial half-space {1} to the half-space {2}, the fields
in {1} remain unaltered.

When transformations into Γ′ are effected, propagation is observed
in a moving medium, yielding the waves (19)-(22), revealing the
aberration effect for the present case of moving material media. It
is noted that in Γ′ the waves are not transversal any more.

The next scenario assumes in {1} a medium moving relative to
the perfectly-conducting plane-interface, e.g., see [10]. It must be
emphasized that we neglect here the fluid-dynamical aspect of the
problem, namely the flow continuity, allowing an arbitrary jump in
the material velocity-field at the boundary. One way of looking at it
is to assume the plane-interface to be porous in a way that allows the
fluid to freely move through it, at the same time we assume the pores
to be sufficiently small with respect to the wavelength, such that the
interface acts like a “faraday cage” screen, electrically performing as a
perfect conductor. The situation is complicated by the fact that when
we reside in Γ, where the boundary is at-rest, we encounter a moving
medium, while from the reference-system Γ′, where the medium is at-
rest, the boundary appears to be in motion.

With this in mind, consider a pair of transversal plane waves (19)
in the medium at-rest in Γ′ in {1}, possessing constitutive parameters
ε′, µ′. According to (10), the inverse of (19)–(22) is computed. In Γ
we have

{E,H} = W̃
Γ,Γ′

· {E′,H ′} = {Êe0, Ĥh0}eiK·R

{E,H} = W̃
Γ,Γ′

· {E′
,H

′} = {Ê e0, Ĥ h0}eiK·R
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W̃
Γ,Γ′

= Ṽ
′ · (Ĩ + v′ × ∂−1

t′ ∂r′ × Ĩ)
B = −∂−1

t ∂r×E, D = ∂−1
t ∂r×H (25)

B = −∂−1
t ∂r×E, D = ∂−1

t ∂r×H
k = Ũ

′ · (k′ + v′ω′/c2), ω = γ′(ω′ + v′ · k′)
k = Ũ

′ · (k′ + v′ω′/c2), ω = γ′(ω′ + v′ · k′)

In general, the waves (25) in Γ are not simple transversal plane
waves, because we are dealing here with propagation in a moving
medium. For boundaries at-rest, boundary conditions are independent
of the material composition of the medium, including its motion, and
are directly derived from the Maxwell equations [11, 12].

In the present case the boundary conditions are evaluated in Γ,
at the plane-interface at-rest, hence the same boundary condition (18)
are prescribed here too. However, because of the medium motion, an
equivalent anisotropic medium is encountered here, depending on the
velocity-field v′. It follows that here, unlike the cases of waves in free-
space or in a medium at-rest with respect to the boundary, we have

n̂n̂ · (k − k) 	= 0, n̂n̂ · (Êe0 + Êe0) 	= 0 (26)

i.e., in general the components of the propagation vectors and field
vectors perpendicular to the plane-interface are unequal. The values
of the unknown vectors in (26) are prescribed by the transversality
properties of the waves in the medium’s rest-frame Γ′.

We now seek to define conditions, such that the plane-interface can
be removed without affecting the waves in {1}. To that end we have
to define appropriate waves in Γ in region {2}. One trivial scenario is
suggested by extending the same medium, its velocity, and the waves
(15), (17), from region {1} into {2}. As far as removing the plane-
interface is concerned, this provides a valid configuration. However,
it is immediately realized that when waves are considered in Γ′,Γ′′,
the symmetry (24) for the velocity is violated. Consequently, unlike
the case of free space or media at-rest in Γ discussed below, it is not
feasible to define symmetrically moving image scatterers in {2}.

We therefore turn to another alternative, where in Γ′′ in {2} a
medium at-rest is defined, materially identical to the medium at-rest
in Γ′ in {1}. When observed from Γ, the medium in Γ′′ in {2} is
moving with a symmetrical velocity satisfying (24). Similarly to the
above argument regarding the flow discontinuity at the plane-interface,
when we remove now the plane boundary and assume medium velocity
v′′ in {2}, the jump in the direction of the velocity field is disregarded.
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Similarly to (19), where the wave {E′,H ′} is given in Γ′ in region
{1}, we now define {E′′

,H
′′} according to (23) in Γ′′ in {2} in a

medium at-rest. Thus we have waves in media at-rest in regions
{1}, {2}, for Γ′, Γ′′, correspondingly

{E′
{1},H

′
{1}} = {Ê′

{1}e
′
0{1}, Ĥ

′
{1}h

′
0{1}}e

iK′
{1}·R

′

K ′
{1} = (k′{1}, iω

′
{1}/c)

{E′
{1},H

′
{1}} = {Ê

′
{1}e

′
0{1}, Ĥ

′
{1}h

′
0{1}}eiK

′
{1}·R′

K
′
{1} = (k′{1}, iω

′
{1}/c) (27)

{E′′
{2},H

′′
{2}} = {Ê′′

{2}e
′′
0{2}, Ĥ

′′
{2}h

′′
0{2}}e

iK′′
{2}·R

′′

K ′′
{2} = (k′′{2}, iω

′′
{2}/c)

{E′′
{2},H

′′
{2}} = {Ê

′′
{2}e

′′
0{2}, Ĥ

′′
{2}h

′′
0{2}}eiK

′′
{2}·R′′

K
′′
{2} = (k′′{2}, iω

′′
{2}/c)

In order to have symmetrical waves we impose

ω′
{1} − ω′′

{2} = 0, Ñ · (k′{1} − k
′′
{2}) = 0, n̂n̂ · (k′{1} + k′′{2}) = 0

Ñ · (Ê′
{1}e

′
0{1}+Ê

′′
{2}e

′′
0{2}) = 0, n̂n̂ · (Ê′

{1}e
′
0{1} − Ê

′′
{2}e

′′
0{2}) = 0

Ñ ·(Ĥ ′
{1}h

′
0{1}−Ĥ

′′
{2}h

′′
0{2}) = 0, n̂n̂ · (Ĥ ′

{1}h
′
0{1}−Ĥ

′′
{2}h

′′
0{2}) = 0

(28)

It follows that similarly to (18) we now have in Γ on both sides of
the perfectly-conducting plane-interface, in the corresponding regions
{1}, {2},

ω{1} − ω{1} = 0, Ñ · (k{1} − k{1}) = 0

Ñ · (Ê{1}e0{1} + Ê{1}e0{1}) = 0 (29)

ω{2} − ω{2} = 0, Ñ · (k{2} − k{2}) = 0

Ñ · (Ê{2}e0{2} + Ê{2}e0{2}) = 0

and therefore

ω{1} = ω{1} = ω{2} = ω{2}, Ñ · (k{1} − k{2}) = 0

Ñ · (k{1} − k{2}) = 0, Ñ · (Ê{1}e0{1} − Ê{2}e0{2}) = 0
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Ñ · (Ê{1}e0{1} − Ê{2}e0{2}) = 0

Ñ · (Ĥ{1}h0{1} − Ĥ{2}h0{2}) = 0 (30)

Ñ · (Ĥ{1}h0{1} − Ĥ{2}h0{2}) = 0

According to (30), in Γ, on both sides of the perfectly-conducting
plane-interface, in the corresponding regions {1}, {2}, the frequencies
are equal, and the tangential components of the propagation vectors
and fields are continuous, implying that the plane-interface can be
removed without affecting the original fields in Γ in {1}.

Adhering to our previous convention, fields with, without, upper
bar are considered as the incident, the image, waves respectively. It is
interesting to note that due to the different velocities v′, v′′, in effect we
have now two different anisotropic media in regions {1}, {2}. Hence
the changes of the propagation vectors k{1}, k{2} and k{1}, k{2},
across the boundary, display how the waves, propagating from one
medium into the other, are refracted at the interface.

With this the discussion for individual plane waves is completed,
facilitating the application of the results to moving scatterers.

4. IMAGES IN VELOCITY-INDEPENDENT
SCATTERING

The present section deals with a simple case of wave scattering from
an infinite cylinder, in the presence of a perfectly-conducting plane-
interface. The choice of a two-dimensional geometry serves to introduce
basic concepts, tools, and relevant notation in a simple way. The
corresponding three-dimensional analog follows along the same lines,
but the mathematical details become more complicated, due to the
vector spherical waves and their associated special functions.

In Γ, where the plane-interface is at-rest, in free-space, an incident
plane-wave (15) is assumed in the half-space {1}. For simplicity,
consider Ê = ẑ to be polarized along the cylindrical axis. It follows
that Ĥ, k̂, are in the perpendicular xy-plane, in which a radius-vector
r is defined. The plane-interface is defined by the direction of its
normal n̂, with n̂ · ẑ = 0 for the cylindrical case, and by the origin
r = 0 located on it.

Define for the scatterer a local right-handed cylindrical coordinate
system

ρ = ρ(ρ, ψ), ρ̂× ψ̂ = ẑ (31)

with polar coordinates ρ, ψ. In the corresponding three-dimensional
case we would have ρ = ρ(ρ, θ, ψ), ρ̂ × θ̂ = ψ̂. The local coordinate



62 Censor

system is located relative to the initial one by means of

r = r0 + ρ (32)

The incident wave (15) is translated to the local coordinate system
by substituting (32) into the phase K ·R, yielding

K ·R = k · r − ωt = k · r0 + k · ρ− ωt (33)

The geometry of the cylindrical scatterer is defined in the
coordinate system (31) relative to the local origin ρ = 0. This
geometry, as well as the constitutive parameters are uniform along
the cylindrical z-axis, such that no cross-polarization occurs.

We wish to restrict the present analysis to outgoing waves only. It
has been shown by Twersky [13–15] that the scattered wave is given in
terms of outgoing waves at least outside the circumscribing circle (or
circumscribing sphere for the corresponding three-dimensional case) of
radius ρmax. Hence for the present case we have to ensure that the
plane-interface is outside this region, i.e., ρmax < |r0 · n̂|. Accordingly
the scattered wave, due to the excitation (15), is given by

Ek̂(ρ, t) = ẑe0e
ik·r0e−iωtΣmi

mam(k̂)Hm(κ)eimψ

∼ e0e
ik·r0H(κ)g(k̂, ρ̂), κ = kρ = kρ̂ · ρ = kρ · ρ (34)

H(κ) = (2/iπκ)1/2eiκ−iωt, g(k̂, ρ̂) = ẑΣmam(k̂)eimψ

and the associated H-field is computed by application of the Maxwell
equations (4). In (34) Hm denotes the Hankel functions of the first
kind, which together with the time factor e−iωt guarantee outgoing
waves, and eik·r0 is the extra phase factor resulting from the translation
of the incident wave into the local coordinate system ρ. The coefficients
am(k̂), for the specific geometry of the cylinder at-hand, depend on
the direction of incidence of the excitation wave (15). In the far
field Ek̂ tends asymptotically to an outgoing symmetrical cylindrical
wave times the scattering amplitude g(k̂, ρ̂), with k̂, ρ̂(ψ), indicating
directions of incidence and observation, respectively. The notation
kρ·ρ serves to emphasize the quasi plane-wave behavior of the scattered
wave in the far field.

Using (32), the far field (34) is translated back to the initial
coordinate system, yielding

Ek̂(r, t) ∼ e0e
i(k−kρ)·r0(2/iπκ)1/2eikρ·r−iωtg(k̂, ρ̂) (35)

and in view of the constants and the slowly varying terms in (35),
Ek̂(r, t) resembles a plane wave with the phase kρ · r − ωt.
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Similarly to (31), consider now a right-handed local coordinate
system defined in {2}

ρ = ρ(ρ, ψ), ρ̂× ψ̂ = ẑ (36)

For (31), (36), to be symmetrical and have mirror azimuthal
angles, implies

r = r0 + ρ, Ñ · (r0 − r0) = 0, n̂n̂ · (r0 + r0) = 0

Ñ · (ρ̂− ρ̂) = 0
∣∣∣
ψ=−ψ

, n̂n̂ · (ρ̂+ ρ̂) = 0
∣∣∣
ψ=−ψ

(37)

Ñ · (ψ̂ + ψ̂) = 0
∣∣∣
ψ=−ψ

, n̂n̂ · (ψ̂ − ψ̂) = 0
∣∣∣
ψ=−ψ

Corresponding to the initial scatterer defined in {1}, a
geometrically symmetric mirror-scatterer is now defined in {2}. While
the initial scatterer is excited by (15) in {1}, the image object is excited
by the image plane-wave (17) considered in {2}. These waves are
symmetrical according to (18) and n̂n̂ · (k + k) = 0.

The wave scattered from the image cylinder is (cf. (34)) is

Eˆ
k
(ρ, t) = ẑe0e

ik·r0e−iωtΣmi
mam(k̂)Hm(κ)eimψ

∼ e0e
ik·r0H(κ)g(k̂, ρ̂), κ = kρ = kρ̂ · ρ = kρ · ρ, e0 = −e0 (38)

H(κ) = (2/iπκ)1/2eiκ−iωt, g(k̂, ρ̂) = ẑΣmam(k̂)eimψ

The symmetries prescribe for (34), (38)

g(k̂, ρ̂) = g(k̂, ρ̂)
∣∣∣
ψ=−ψ

, am(k̂) = am(k̂) (39)

Similarly to (35), we now have

Eˆ
k
(r, t) ∼ e0e

i(k−kρ)·r0(2/iπκ)1/2eikρ·r−iωtg(k̂, ρ̂), e0 = −e0 (40)

Remove now the perfectly-conducting plane-interface and consider
the various symmetries together with the expressions (35), (40), at
points on the plane-interface. Clearly the original boundary conditions
(18) are maintained on both side of the plane-interface, and the fields
in {1} remain unaltered, for both the incident and reflected waves,
and the scattered waves originating in the half-spaces {1} and {2},
respectively.

Plane waves are very convenient for discussing image-method
situations in velocity-dependent systems. Accordingly, arbitrary wave
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functions, for arbitrary distances from the scatterer, can be recast
in terms of plane-wave integral representations. For cylindrical
geometries in particular, the Sommerfeld integral representations
[2, 4, 8] are exploited. Accordingly (34), (38) are recast in terms of
a superposition of inhomogeneous plane waves, in the form

Ek̂(ρ, t) = e0e
ik·r0

∫
ψ,τ

eikρ·ρ−iωtg(k̂, ρ̂)dτ/π,
∫
ψ,τ

=
∫ τ=ψ+π/2−i∞

τ=ψ−π/2+i∞

g = ẑg(k̂, ρ̂) = ẑΣmam(k̂)eimτ , kp · ρ = kρ̂ · ρ = kρ cos(ψ − τ) (41)

Eˆ
k
(ρ, t) = e0e

ik·r0

∫
ψ,τ

eikρ·ρ−iωtg(k̂, ρ̂)dτ/π,
∫
ψ,τ

=
∫ τ=ψ+π/2−i∞

τ=ψ−π/2+i∞

g = ẑg(k̂, ρ̂) = ẑΣmam(k̂)eimτ , kp · ρ = kρ̂ · ρ = kρ cos(ψ − τ)

Although in the integrand (41) the plane waves propagate in complex
directions indicated by p̂, p̂, in all other respects they are treated like
plane waves with real propagation vectors.

The waves (41) are now translated back to their initial coordinate
systems, yielding

Ek̂(r, t) = e0

∫
ψ,τ

ei(k−kp)·r0eikp·r−iωtg(k̂, p̂)dτ/π

Eˆ
k
(r, t) = e0

∫
ψ,τ

ei(k−kp)·r0eikp·r−iωtg(k̂, p̂)dτ/π
(42)

Similarly to the argument following (40), in the integrands in (42),
at the boundary, pairs of plane waves with symmetrical directions p̂, p̂,
can be identified, combining to satisfy the boundary conditions at the
plane-interface.

In retrospect, the same conclusions could have been obtained
by directly using the exact series in (34), (38), however the concept
of plane-wave representations, which applies to three-dimensional
situations as well, is more general [2, 4, 13–15], applicable to arbitrary
wave functions. This approach will also be needed here in the sequel.

Finally, we have to pay attention to the multiple-scattering
aspects of the problems at hand. The configuration of a scatterer
and a plane boundary, or alternatively, a scatterer and its image,
constitutes a many-body system in which successive scattering of waves
bouncing from one object to another takes place. Thus in addition
to the scattering processes discussed above, the waves reflected by
the boundary (or scattered by the image scatterer), also excite the
original scatterer, etc. A closed self-consistent multiple-scattering
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formalism has been devised by Twersky [13–15], but in velocity-
dependent systems, in general, only a successive-scattering formalism is
feasible, enumerating one scattering process after its predecessor. This
is due to the fact that new frequencies are created with each successive-
scattering process [8], and the new frequencies are unknown before the
preceding modes are computed. The problem of dealing with higher-
order modes becomes increasingly complicated [8, 16]. Subsequently
only a limited number of interactions will be considered, namely, the
interactions of the excitation plane-wave with the scatterer, and the
reflected plane-wave with the image scatterer, as demonstrated above
for the velocity-independent case.

5. VELOCITY-DEPENDENT IMAGES IN FREE-SPACE

The relatively simple case of free-space scattering is considered first.
As in the previous section, for simplicity we deal with cylindrical
scatterers, oriented along the cylindrical z-axis, and perpendicular
velocities in the xy-plane.

Consider a scatterer at-rest in the reference-system Γ′, defined
relative to Γ according to (6) with v(∗) = v′. In Γ an incident wave
(15) is given, with Ê = ẑ, corresponding in Γ′ to the wave given by
(19). By inspecting (34), (41), (42), and judiciously modifying the
pertinent notation, the scattered wave in Γ′ is

E′
k̂
′(ρ′, t′) = ẑe′0e

ik′·r′
0e−iω

′t′Σmi
mam(k̂

′
)Hm(κ′)eimψ

′

= e′0e
ik′·r′

0

∫
ψ′,τ ′

e
ik′

p′ ·ρ
′−iω′t′

g′(k̂
′
, p̂′)dτ ′/π (43)

E′
k̂
′(r′, t′) = e′0

∫
ψ′,τ ′

e
i(k′−k′

p′ )·r
′
0e
ik′

p′ ·r
′−iω′t′

g′(k̂
′
, p̂′)dτ ′/π

where in (43) it is assumed that g′(k̂
′
, r̂′), hence also am(k̂

′
), are

already available, e.g., by solving the boundary-value scattering
problem in Γ′. The last expression (43) results from the translation
back into the initial r′, t′, coordinate system in Γ′.

The plane waves in the integrand (43) individually satisfy (21),
(22), hence the transformation from Γ′ into Γ according to (25), (cf.
(42)), yields

E
k̂
′ = W̃

Γ,Γ′
·E′

k̂
′(r′, t′) = e′0

∫
ψ′,τ ′

e
i(k′−k′

p′ )·r
′
0eikp′ ·r−iωp′ tg(k̂

′
, p̂′)dτ ′/π

kp′ · r − ωp′t = k′p′ · r′ − ω′t′, g(k̂
′
, p̂′) = W̃

Γ,Γ′
· g′(k̂′, p̂′) (44)
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W̃
Γ,Γ′

= Ṽ
′ · (Ĩ + v′ × ∂−1

t′ ∂r′ × Ĩ) = Ṽ
′ · (Ĩ − v′ × k̂′p′ × Ĩ/c)

= ẑγ′(1 + v′ · k̂′p′/c)

where in (44) in free space |k′p′ | = ω′/c, |kp′ | = ωp′/c. The plane-wave
phase is represented in terms of the Γ parameters, but everything else
is left in terms of Γ′ parameters for convenience. Only when explicit
computations are performed, further substitutions may be advised.

Note that in Γ′ a single excitation frequency ω′ is present, with a
real value ω′. According to (21), and the inverse of (22) K = K[K ′],
the phase kp′ ·r−ωp′t, in terms of Γ coordinates r, t, is obtained from
k′p′ · r′−ω′t′, which is in terms of Γ′ coordinates. For the frequency in
particular we have

ωp′ = γ′(ω′ + v′ · k′p′) (45)

Inasmuch as (45) involves both real ω′ and complex k′p′ , we now have
complex frequencies ωp′ . Thus e−ωp·t manifests the time dependent
variation of the wave amplitudes due to the receding or approaching
scatterer, as observed in Γ.

In (44) we have a superposition (integral) of plane waves, for which
we seek a corresponding set of reflected waves, or their images. This
can be achieved by assuming a symmetrical image-object moving in the
half-space region {2}, at-rest in the image reference-system Γ′′. This
reference-system is related to Γ according to (6), with the velocity
v(∗) = v′′. The two reference-frames Γ′, Γ′′, considered with respect
to the boundary at-rest in Γ, are moving symmetrically according to
(24).

By inspection of (38), (41), (43), the wave scattered from the
image-cylinder, at-rest in Γ′′, is given by

E′′
ˆ
k
′′(ρ′′, t′′) = ẑe′′0e

ik
′′
r′′
0 e−iω

′′t′′Σmi
mam(k̂

′′
)Hm(κ′′)eimψ

′′

= e′′0e
ik

′′·r′′
0

∫
ψ
′′
,τ ′′

eik
′′
p′′ ·ρ′′−iω′′t′′g′′(k̂

′′
, p̂

′′)dτ ′′/π (46)

g′′ = ẑg′′(k̂
′′
, p̂

′′) = ẑΣmam(k̂
′′
)eimτ

′′
, ρ′′ = ρ′′(ρ′′, ψ′′)

k′′p′′ · ρ
′′ = k′′p̂

′′ · ρ′′ = k′′ρ′′ cos(ψ′′ − τ ′′)

and similarly to (43), translation to the initial coordinates r′′, t′′, of
reference-frame Γ′′ yields

E′′
ˆ
k
′′(r′′, t′′) = e′′0

∫
ψ
′′
,τ ′′

ei(k
′′−k

′′
p′′ )·r′′

0 eik
′′
p′′ ·r′′−iωp′′ tg′′(k̂

′′
, p̂

′′)dτ ′′/π

(47)
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As in (44), the scattered wave (46) is now transformed into Γ

Eˆ
k
′′ = W̃

Γ,Γ′′
·E′′

ˆ
k
′′(r′′, t′′)

= e′′0

∫
ψ
′′
,τ ′′

ei(k
′′−k

′′
p′′ )·r′′

0 eikp′′ ·r−iωp′′ tg(k̂
′′
, p̂

′′)dτ ′′/π (48)

kp′′ · r − ωp′′t = k
′′
p′′ · r′′ − iω′′t′′, g(k̂

′′
, p̂

′′) = W̃
Γ,Γ′′

· g′′(k̂
′′
, p̂

′′)

W̃
Γ,Γ′′

= Ṽ
′′ · (Ĩ + v′′ × ∂−1

t′′ ∂r′′ × Ĩ) = Ṽ
′′ · (Ĩ − v′′ × k̂

′′
p′′ × Ĩ/c)

= ẑγ′′(1 + v′′ · k̂
′′
p′′/c), |k

′′
p′′ | = ω′′/c, |kp′′ | = ωp′′/c

Once again (48) displays the phenomenon encountered in (45), namely
that in Γ the frequency ωp′′ for each complex direction indicated by p̂′′

is complex, and e−ωp′′ t manifests the time dependence of the amplitude
due to the motion.

Inasmuch as we are now dealing with plane waves in Γ, we can
take pairs of waves from the integrands of (44), (48), and impose on
them the boundary conditions at the plane-interface in Γ. Thus from
the symmetries (24), (39), see also (43), (46), we have

(k′ − k′p′) · r′0 = (k′′ − k′′p′′) · r′′0
∣∣∣
ψ
′′
=−ψ′

ωp′ = ωp′′
∣∣∣
ψ
′′
=−ψ′

, Ñ · (kp′ − kp′′) = 0
∣∣∣
ψ
′′
=−ψ′

(49)

g(k̂
′
, p̂′) = g(k̂

′′
, p̂

′′)
∣∣∣
ψ
′′
=−ψ′

which finally allows us to remove the perfectly-conducting plane-
interface, and consider the image problem as solved.

Observation from Γ′, where the plane boundary is moving with
velocity v′ follows upon transforming (46) from Γ to Γ′, by applying
the differential operator taken from (19)

E′
ˆ
k
′′ = W̃

Γ′,Γ ·Eˆ
k
′′ , W̃

Γ′,Γ
= Ṽ

′ · (Ĩ − v′ × ∂−1
t ∂r × Ĩ) (50)

constituting a very complicated computation, whose detail should be
left to a numerical simulation project. In principle, each of the plane
waves in the integrand, which in Γ satisfy the conditions of equal
frequencies and the Snell law in (49), now will behave according to
Einstein’s aberration formula [5], as remarked above after (22), for the
single plane wave.
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6. VELOCITY-DEPENDENT IMAGES IN MATERIAL
MEDIA

Once again we start with a material medium at-rest in Γ in region
{1}, possessing arbitrary parameters ε, µ. The waves (15), (17), are
assumed, satisfying the boundary conditions prescribed by (18) at the
perfectly-conducting plane. The waves transform into Γ′ according to
(19)–(22). Similarly, according to (23), the waves can be transformed
into reference-system Γ′′, moving with velocity v′′ when observed from
Γ, with Γ′, Γ′′, related by the symmetry condition (24).

It must be born in mind that in Γ′, Γ′′, we presently deal with
waves in moving media. The wave scattered by an object at-rest in
the moving medium in Γ′, excited by E′ in (19), is in general given
by the integral representation in (43). However, since we are dealing
here with a moving medium having a preferred direction prescribed by
the velocity, the medium is effectively anisotropic. Consequently the
scattered wave will not submit to a Hankel-Fourier series representation
as in (43). The Fresnel drag effect k′ = k′[k] given in (22) must be
taken into account, prescribing that for the present case k′p′ in the last
two lines of (43) is velocity-dependent. Therefore, for each plane wave
in the integrand, we are dealing with an individual effective phase-
velocity v′ph. The evaluation of specific scattering problems of this
kind is complicated. Some relevant work for scatterers moving relative
to the ambient medium have been discussed before, e.g., see [11, 12, 17].

Transforming the plane waves in the integrand (43) into Γ yields
(44). Similarly, we have the plane waves in the integrand (46), (47),
scattered by an image-object at-rest in the moving medium in Γ′′,
subject to (24), excited by E′′, (23). Similarly to (44), the scattered
wave (46), (47), is transformed into Γ, yielding (48).

Obviously the present scenario follows closely along the lines of the
free-space and velocity-independent cases. Thus in (42), pairs of plane
waves with symmetrical directions were sought, each pair satisfying the
boundary conditions at the plane-interface. Here the same situation
applies to the plane waves in the integrands of (44) and (48). Hence
the boundary conditions are satisfied, and the perfectly-conducting
plane-interface may be removed without altering the fields in region
{1}.

By transforming all waves into Γ′, we are dealing with a scatterer
at-rest embedded in a moving material medium, in the presence of a
plane-interface at-rest in Γ, observed from Γ′ to be moving at velocity
−v′. This is the same situation which for the single plane-wave is
described by (19)–(22), associated with the aberration phenomenon.

We are now ready to discuss the scenario involving a material



Progress In Electromagnetics Research, PIER 63, 2006 69

medium and a scatterer, both at-rest in Γ′ in {1}, in the presence
of a perfectly-conducting plane-interface at-rest in Γ. In Γ a medium
moving relative to the boundary is encountered, therefore the above
remarks regarding the flow continuity apply here too. We seek to
replace this configuration by an image medium and an image scatterer
at-rest in Γ′′ in {2}. The evaluation of the boundary-value problems
for the scatterers at-rest with respect to the media in Γ′, Γ′′, is classical
and need not be further discussed.

The excitation wave, and its reflection which is equivalent to an
image wave, have been discussed above, (27)–(30). As shown in (27),
we need to represent the waves in both regions {1} and {2}, because
in Γ we encounter two different effective anisotropic media in those
regions, whose properties are governed by the motion. This is the key
to understanding and solving the problem. Corresponding to the first
line in (27), we have the scattered wave (43), in Γ′ in {1} given by

E′
k̂
′{1}(ρ

′,t′) = ẑe′0{1}e
ik′

{1}·r
′
0e

−iω′
{1}t

′
Σmi

mam{1}(k̂
′
{1})Hm(κ′{1})e

imψ′

= e′0{1}e
ik′

{1}·r
′
0

∫
ψ′,τ ′

e
ik′

p′{1}·ρ
′−iω′

{1}t
′
g′{1}(k̂

′
{1}, p̂

′)dτ ′/π

E′
k̂
′{1}(r,t

′) = e′0{1}

∫
ψ′,τ ′

e
i(k′

{1}−k′
p′{1})·r′

0e
ik′

p′{1}·r
′−iω′

{1}t
′

(51)

·g′{1}(k̂
′
{1}, p̂

′)dτ ′/π

and according to (44), the wave (51) is transformed into Γ in {1},
yielding

E
k̂
′{1} = W̃

Γ,Γ′
·E′

k̂
′{1}(r

′, t′)

= e′0{1}

∫
ψ′,τ ′

e
i(k′

{1}−k′
p′{1})·r′

0eikp′{1}·r−iωp′{1}tg{1}(k̂
′
{1}, p̂

′)dτ ′/π

kp′{1} · r − ωp′{1}t = k′p′{1} · r′ − ω′
{1}t

′, (52)

g{1}(k̂
′
{1}, p̂

′) = W̃
Γ,Γ′

· g′{1}(k̂
′
{1}, p̂

′)

W̃
Γ,Γ′

= Ṽ
′ · (Ĩ + v′ × ∂−1

t′ ∂r′ × Ĩ) = Ṽ
′ · (Ĩ − v′ × k̂′p′{1} × Ĩ/c)

= ẑγ′(1 + v′ · k̂′p′{1}/c)

Each plane wave in (52) must be associated with a reflected wave,
such that together, according to the first line (29), the boundary
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conditions are satisfied

ωp′{1} − ωp′{1} = 0, Ñ · (kp′{1} − kp′{1}) = 0

Ñ · (g{1}(k̂
′
{1}, p̂

′)e′0{1} + g{1}(k̂
′
{1}, p̂

′)e′0{1}) = 0
(53)

Therefore in Γ in {1}, the wave reflected from the plane-interface
is given by

Eˆ
k
′
{1}

= e′0{1}

∫
ψ′,τ ′

e
i(k′

{1}−k′
p′{1})·r′

0eikp′{1}·r−iωp′{1}tg{1}(k̂
′
{1}, p̂

′)dτ ′/π

(54)
Once again, in order to remove the perfectly-conducting interface,

we need to define a medium at rest in Γ′′ in {2}, materially identical to
the medium at-rest in Γ′ in {1}. Observed in Γ, the medium is moving
with a symmetrical velocity v′′ satisfying (24). Consistently, we must
have waves in Γ in {2}, such that the second line (29) is satisfied, i.e.,
similarly to (53) we now have

ωp′{2} − ωp′{2} = 0, Ñ · (kp′{2} − kp′{2}) = 0

Ñ · (g{2}(k̂
′′
{2}, p̂

′′)e′′0{2} + g{2}(k̂
′′
{2}, p̂

′)e′′0{2}) = 0
(55)

according to the subsequent expressions.
Similarly to (46), (47), the wave scattered by the image object in

Γ′′ in {2} (cf. (51)) is given by

E′′
ˆ
k
′′
{2}

(ρ′′, t′′) = ẑe′′0{2}e
ik

′′
{2}r′′

0 e
−iω′′

{2}t
′′
Σmi

mam{2}(k̂
′′
{2})Hm(κ′′{2})e

imψ
′′

= e′′0{2}e
ik

′′
{2}·r′′

0

∫
ψ
′′
,τ ′′

e
ik

′′
p′′{2}·ρ′′−iω′′

{2}t
′′
g′′{2}(k̂

′′
{2}, p̂

′′)dτ ′′/π (56)

E′′
ˆ
k
′′
{2}

(r′′, t′′) = e′′0{2}

∫
ψ
′′
,τ ′′

ei(k
′′
{2}−k

′′
p′′{2})·r′′

0 e
ik

′′
p′′{2}r′′−iω′′

{2}t
′′

·g′′{2}(k̂
′′
{2}, p̂

′′)dτ ′′/π

Transforming (56) into Γ in {2}, according to (48) (cf. (52)), yields

Eˆ
k
′′
{2}

= W̃
Γ,Γ′′

E′′
ˆ
k
′′
{2}

(r′′, t′′)

= e′′0{2}

∫
ψ′′,τ ′′

ei(k
′′
{2}−k

′′
p′′{2})·r′′

0 eikp′′{2}·r−iωp′′{2}tg{2}(k̂
′′
{2}, p̂

′′)dτ ′′/π

kp′′{2} · r − ωp′′{2}t = k
′′
p′′{2} · r′′ − iω′′

{2}t
′′
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g{2}(k̂
′′
{2}, p̂

′′) = W̃
Γ,Γ′′

· g′′{2}(k̂
′′
{2}, p̂

′′) (57)

W̃
Γ,Γ′′

= Ṽ
′′ · (Ĩ + v′′ × ∂−1

t′′ ∂r′′ × Ĩ) = Ṽ
′′ · (Ĩ − v′′ × k̂

′′
p′′{2} × Ĩ/c)

= ẑγ′′(1 + v′′ · k̂
′′
p′′{2}/c)

In Γ in {2} in order to satisfy the boundary conditions (55),
reflected waves are needed, constituting the analog of (54)

E
k̂
′′{2}=e′′0{2}

∫
ψ′′,τ ′′

ei(k
′′
{2}−k

′′
p′′{2})·r′′

0 eikp′′{2}·r−iωp′′{2}tg{2}(k̂
′′
{2}, p̂

′′)dτ ′′/π

(58)
With all that accomplished, the perfectly-conducting plane-interface
can be removed without affecting the initial waves in {1}. It is noted
that on the two sides of the interface, in the different media as defined
by the motion, the fields without the upper-bar and those endowed
with an upper-bar are different. As for the single plane waves, this
phenomenon can be ascribed to refraction at the interface separating
the two media, see discussion after (30).

7. CONCLUDING REMARKS

The method of images in velocity-dependent wave systems is
investigated. Apparently it works only for a limited class of problems,
namely scattering in the presence of magnetic or electric perfect-
mirrors, with plane-interface geometry. Problems involving material
half-spaces, e.g., [18], must be excluded, but their limiting cases, when
the interface becomes a perfect mirror, could be tested against the
present method.

A theoretical discussion of the problem is presented here. Further
numerical simulations are needed for depicting the new physical
phenomena. This subject brings together scattering problems in media
at-rest and in-motion, multiple scattering, and special relativity, thus
providing an extension of classical method of images ideas.

Plane wave integral representations and the use of differential
operators for field transformations facilitate compact notation,
allowing for the description of various scenarios.

Free space situations are simpler to analyze, providing the basis
for more elaborate cases involving material media, both at-rest and in-
motion with respect to the perfectly-conducting plane-interface. When
appropriate moving image scatterers and media are provided, this
boundary can be removed without affecting the fields in the half-space
where the initial problem is stated.
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Material media pose the problem of evaluating scattering problems
in the presence of moving media: In the scenario where the plane-
interface is at-rest with respect to the material medium, the scatterer
is embedded in a moving medium. The other case involves a scatterer
at-rest with respect to the embedding medium, but the plane-interface
is immersed in a moving media. These cases are not simple to analyze,
and require sacrificing the mechanical flow-continuation in favor of a
manageable definition of electromagnetic problems.

REFERENCES

1. Sommerfeld, A., Electrodynamics, Academic Press, 1964.
2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
3. Censor, D., “Application-oriented relativistic electrodynamics

(2),” Progress In Electromagnetics Research, PIER 29, 107–168,
2000.

4. Censor, D., “The mathematical elements of relativistic free-space
scattering,” Journal of Electromagnetic Waves and Applications,
Vol. 19, 907–923, 2005.

5. Einstein, A., “Zur elektrodynamik bewegter Körper,” Ann. Phys.
(Lpz.), Vol. 17, 891–921, 1905; English translation: “On the
electrodynamics of moving bodies,” The Principle of Relativity,
Dover.

6. Pauli, W., Theory of Relativity, Pergamon, 1958, also Dover
Publications.

7. Censor, D., I. Arnaoudov, and G. Venkov, “Differential-operators
for circular and elliptical wave-functions in free-space relativistic
scattering,” Journal of Electromagnetic Waves and Applications,
Vol. 19, 1251–1266, 2005.

8. Censor, D., “Free-space multiple scattering by moving objects,”
Journal of Electromagnetic Waves and Applications, Vol. 19,
1157–1170, 2005.

9. Censor, D., “Broadband spatiotemporal differential-operator
representations for velocity-dependent scattering,” Progress In
Electromagnetic Research, PIER 58, 51–70, 2006.

10. Censor, D., “Scattering of a plane wave at a plane interface
separating two moving media,” Radio Science, Vol. 4, 1079–1088,
1969.

11. Censor, D., “Non-relativistic electromagnetic scattering: ‘Reverse
engineering’ using the Lorentz force formulas,” Progress In
Electromagnetic Research, PIER 38, 199–221, 2002.



Progress In Electromagnetics Research, PIER 63, 2006 73

12. Censor, D., “Non-relativistic boundary conditions and scattering
in the presence of arbitrarily moving media and objects:
cylindrical problems,” Progress In Electromagnetic Research,
PIER 45, 153–180, 2004.

13. Twersky, V., “Scattering of waves by two objects,” Electromag-
netic Waves, R. E. Langer (ed.), 361–389, Proc. Symp. in Univ. of
Wisconsin, Madison, April 10–12, 1961, The University of Wis-
consin Press, 1962.

14. Twersky, V., “Multiple scattering by arbitrary configurations in
three dimensions,” Journal of Mathematical Physics, Vol. 3, 83–
91, 1962.

15. Twersky, V., “Multiple scattering of electromagnetic waves
by arbitrary configurations,” Journal of Mathematical Physics,
Vol. 8, 589–610, 1967.

16. Censor, D., “Velocity dependent multiple scattering by two thin
cylinders,” Radio Science, Vol. 7, 949–954, 1972.

17. Censor, D., “Non-relativistic scattering in the presence moving
objects: the Mie problem for a moving sphere,” Progress In
Electromagnetic Research, PIER 46, 1–32, 2004.

18. De Cupis, P., “Radiation by a moving wire-antenna in the
presence of interface,” Journal of Electromagnetic Waves and
Applications, Vol. 14, 1197–1203, 2000.


