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Abstract—The general dispersion relation for a nonreciprocal
electrically gyrotropic or a gyroelectric medium is derived in two
distinct forms by using three different methods. One of them is a
new method which can be used when the stratification of the layers is
in the z-direction. The wave numbers corresponding to each dispersion
relation are obtained in closed form. It is shown that there exist two
types of waves, type I and type II, in a gyroelectric medium. The
wave propagation is investigated and the polarization of the waves,
resonances and cut off conditions are obtained for the principle waves.
The general wave propagation regions are identified using resonances
and cut off conditions. These regions are then used to construct the
Clemmow-Mually-Allis (CMA) diagram. The conditions showing the
frequency bands for which wave can propagate in each region are
tabulated for the first time. The results presented in this paper can be
used in the development of nonreciprocal devices and in ionospheric
problems including radiation and scattering applications.

1. INTRODUCTION

Nonreciprocal anisotropic or gyrotropic media have been an active
research topic because of the existence of natural gyrotropic-
anisotropic crystals and easy realization of artificial composites, e.g.,
magnetically biased plasma or ferrite. This led to realization of
microwave devices such as circulators, isolators, resonators, and optical
devices such as modulators, switches, phase shifters using gyrotropic
materials, which give nonreciprocal effects. Hence this makes it
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inevitable to study extensively wave propagation and dispersion
characteristics in a gyrotropic medium to develop nonreciprocal devices
at millimeter and submillimeter wavelength ranges. The lack of any
published complete analysis for a nonreciprocal electrically gyrotropic
medium in the literature has motivated this work.

An effect of nonreciprocity is first reported in a waveguide which
is loaded with thin polarized germanium plate in a transverse magnetic
field by H. E. M. Barlow and R. Koike [1] as early as 1963. A variety of
gyroelectric waveguiding structures have been addressed over the past
three decades [2–4] and experimental nonreciprocal devices operating
at liquid nitrogen and room temperature have been designed and tested
for different microwave frequencies. The recent developments include
the work done by R. Sloan, C. K. Young and L. E. Davis [5], and
V. H. Mok and L. E. Davis [6]. In [5], a design of an electrically
gyrotropic junction circulator using solid-fed gallium arsenide (GaAs)
is reported. It operates at 77◦K from 50 GHz to 125 GHz with 20 dB
isolation bandwidth of 90% at a center frequency of 87 GHz and an
insertion loss of 1 dB. In [6] the nonreciprocal wave propagation in three
multilayer gyrotropic thin film semiconductor waveguides comprising
S-I GaAs/AlAs/ n- GaAs/AlGaAs in a static magnetic field of 0.15
T over the frequency range of 0–200 GHz is analyzed. The wave
propagation in a nonreciprocal medium such as cold plasma is best
understood by using the Clemmow-Mually-Allis (CMA) diagram. The
analysis of the CMA diagram is given in [7, 8].

In this paper, the general dispersion relations for an electrically
gyrotropic medium are derived using three different methods. The
dispersion relations are then put in two distinct forms that can be used
based on the problem geometry, i.e., the direction of the stratification
of layers. The detailed analysis of wave propagation and the dispersion
characteristics for an electrically gyrotropic medium is given. The
analysis of the polarization of the waves is simplified and given for the
principle waves that exist in a gyroelectric medium. From dispersion
relations, we show that there exist two types of waves, type I and
type II, in an electrically gyrotropic medium. The wave numbers
corresponding to type I and type II waves are used to obtain dispersion
relations in closed forms. The resonance and cut off conditions are
investigated for the principle waves. To analyze wave propagation and
dispersion characteristics for an electrically gyrotropic medium such as
cold plasma, CMA diagram is constructed using the results obtained.
The frequency bands for which wave can propagate in each region are
given on this diagram. The findings are then tabulated to show the
conditions and the types of the waves that can propagate in each region.
Our results can be used in development of nonreciprocal devices and
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in ionospheric applications such as calculation of radiation fields in an
electrically gyrotropic medium.

2. DISPERSION RELATIONS

An electrically gyrotropic or a gyroelectric medium is a medium whose
relative permittivity and permeability tensors are in the following
dyadic form:

ε = ε1
(
I − b̂0b̂0

)
+ iε2

(
b̂0 × I

)
+ ε3b̂0b̂0 (1)

µ = µI (2)

where b̂0 shows the direction of the applied dc magnetic field B0. It
is assumed that the fields are time-harmonic with e−iωt dependence.
When B0 ≡ b̂0B0 = ẑB0, i.e., b̂0 = ẑ = (0, 0, 1), the relative
permittivity tensor ε takes the following form in matrix notation

ε =



ε1 −iε2 0
iε2 ε1 0
0 0 ε3


 (3)

The geometry of this structure is shown in Figure 1. The angle between
the wave vector k and the applied magnetic field B0, is denoted as θ.
The wave vector k is defined as

k = kρ + ẑkz (4)

where
kρ = x̂kx + ŷky (5)

then,
k2 = k2

x + k2
y + k2

z

One example of such a medium is a magnetized plasma where µ = 1
in (2). For a cold plasma which is collisionless, the gyrotropic medium
is lossless. Hence ε1, ε2, and ε3 become all real quantities and ε is
Hermitian as shown in (3) where

ε1 = 1 −
ω2

p

ω2 − ωb
2
ε2 = −

ωbω
2
p

ω
(
ω2 − ω2

b

) ε3 = 1 −
ω2

p

ω2
(6a)

and

ωb =
eB0

m
ωp =

(
N0e

2

mε0

)1/2

(6b)
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Figure 1. Wave propagation in a gyroelectric medium with an
arbitrary direction of k and applied external magnetic field B0.

ωb is called the gyrofrequency or cyclotron frequency and ωp is called
the plasma frequency [9]. N0 shows the number of free electrons per
unit volume, and m represents the mass of each electron with charge
−e. In the following sections throughout the analysis, we assumed
that the electrically gyrotropic medium under consideration is a cold
plasma for practical considerations.

The Maxwell’s equations in the source free region, i.e., J = 0,
M = 0 (with e−iωt dependence) are:

∇× E = iωµ0H (7)
∇×H = −iωε0ε · E (8)

The constitutive relations for a homogeneous lossless gyroelectric
medium can be written as,

D = ε0ε · E (9)
B = µ0H (10)

The dielectric tensor ε is given by (3). Assuming the plane wave
solution, e.g., E = E0e

ik·r, we can rewrite Maxwell’s equations (7)–(8)
in k-domain as follows.

k × E0 = ωµ0H0 (11)
k ×H0 = −ωD0 = −ωε0ε · E0 (12)
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Eliminating H0 from (11) and (12) and solving for E0 gives[
k0

2ε− k2I + k k
]
· E0 = 0 (13)

where k2 = k · k. We define

WE =
[
k2

0ε− k2I + k k
]

(14)

as the electric wave matrix. Hence (13) can be expressed as

WE · E0 = 0 (15)

A non-zero solution E0 exists only if the determinant of the electric
wave matrix is zero, i.e.,∣∣∣WE

∣∣∣ =
∣∣∣k2

0ε− k2I + k k
∣∣∣ = 0 (16)

Equation (16) defines the general dispersion relation for an electrically
gyrotropic or a gyroelectric medium. Equation (16) has two roots in
k2. The two roots kI and kII represent the wave numbers for the type
I and the type II waves.

In the following subsections, we will express the dispersion relation
given in (16) in different forms using three separate methods. In the
first method, we will represent the dispersion relation in terms of the
wave numbers kI,II , which are functions of θ using tensor analysis.
In the second method, we represent the dispersion relation in terms
of kzI,zII which are functions of kρ, the transverse component of the
wave vector. In the last method, the dispersion relation is represented
by the wave numbers kI and kII in terms of θ using field vectors with
simple matrix algebra.

2.1. Dispersion Relation in Terms of k Using Tensor
Analysis — Method I

The dispersion relation for an electrically gyrotropic medium given in
(16) can be written as∣∣∣(k2

0ε− k2I
)

+ k k
∣∣∣ =

∣∣∣k2
0ε− k2I

∣∣∣ + k · adj
(
k2

0ε− k2I
)
· k = 0 (17)

or ∣∣∣(k2
0ε− k2I

)
+ k k

∣∣∣ = k̂ ·
(
k2

0ε
)
· adj

(
k2

0ε− k2I
)
· k̂ = 0 (18)

where k̂ = k
k . It can be shown that

adj
(
k2

0ε− k2I
)

= k4I + k2
0k

2
(
ε− (ε)t I

)
+ k4

0adjε (19)
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where subscript t represents the trace of the matrix.
When (19) is substituted into (18), we obtain

k4
(
k̂ · ε · k̂

)
+ k2k2

0k̂ ·
[
adjε− (adjε)t I

]
· k̂ + k4

0 |ε| = 0 (20)

The following relations can be obtained using (1) as

|ε| = ε3
(
ε21 − ε22

)
(21)

adjε = ε1ε3I − iε2ε3
(
b̂0 × I

)
+ (ε1 − ε3) b̂0b̂0 (22)

(adjε)t = ε21 − ε22 + 2ε1ε3 (23)

Substitution of (21)–(23) into (20) gives

k4
[
ε1 sin2 θ + ε3 cos2 θ

]
+ k2k2

0

[(
ε22 − ε21 + ε1ε3

)
sin2 θ − 2ε1ε3

]
+k4

0

[
ε3

(
ε21 − ε22

)]
= 0 (24)

Note that θ is the angle between the wave vector k and the applied
magnetic field B0. Equation (24) has two roots in k2. The roots for
the fourth order equation in (24) are

k2
I

k2
0

=
1

2
[
ε1 sin2(θ) + ε3 cos2(θ)

] [(
ε21 − ε22

)
sin2(θ) + ε1ε3

(
1+cos2(θ)

)

+
[(
ε21 − ε22 − ε1ε3

)2
sin4(θ)+4ε22ε

2
3 cos2(θ)

]1/2
]

(25)

k2
II

k2
0

=
1

2
[
ε1 sin2(θ) + ε3 cos2(θ)

] [(
ε21 − ε22

)
sin2(θ) + ε1ε3

(
1+cos2(θ)

)

−
[(
ε21 − ε22 − ε1ε3

)2
sin4(θ) +4ε22ε

2
3 cos2(θ)

]1/2
]

(26)

Equation (25) and (26) represent the two types of waves — type I
wave which is represented by kI , and type II wave which is represented
by kII . The wave numbers in (25)–(26) check with the results given
in [9, 10]. We can now represent the dispersion relation in (16) using
(25)–(26) as∣∣∣WE

∣∣∣ = k2
0

[(
ε1 sin2 θ + ε3 cos2 θ

) (
k2 − k2

I

) (
k2 − k2

II

)]
= 0 (27)
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2.2. Dispersion Relation in terms of kz — Method II

When Equations (3)–(5) are substituted into (16), we get

∣∣∣WE

∣∣∣ =

∣∣∣∣∣∣∣
k2

0ε1 − k2
y − k2

z kxky − iε2k2
0 kxkz

kxky + iε2k2
0 k2

0ε1 − k2
x − k2

z kykz

kxkz kykz k2
0ε3 − k2

x − k2
y

∣∣∣∣∣∣∣ = 0

Expansion of
∣∣∣WE

∣∣∣ leads to the fourth order equation in kz as∣∣∣WE

∣∣∣ = k4
zk

2
0ε3 + k2

z

[
k2

0k
2
ρ (ε1 + ε3) − 2k4

0ε1ε3
]

+
[
k6

0ε3
(
ε21 − ε22

)
− k4

0k
2
ρ

(
ε21 − ε22 + ε1ε3

)
+ k2

0k
4
ρε1

]
= 0 (28)

Equation (28) has two roots in k2
z as

k2
zI

k2
0

=

[
2ε1ε3 −

k2
ρ

k2
0

(ε1 + ε3)

]
+

[
k4

ρ

k4
0

(ε1 − ε3)2 + 4ε22ε3

(
ε3 −

k2
ρ

k2
0

)]1/2

2ε3
(29)

k2
zII

k2
0

=

[
2ε1ε3 −

k2
ρ

k2
0

(ε1 + ε3)

]
−

[
k4

ρ

k4
0

(ε1 − ε3)2 + 4ε22ε3

(
ε3 −

k2
ρ

k2
0

)]1/2

2ε3
(30)

Similarly, the wave numbers given in (29) and (30) correspond to the
type I and type II waves, respectively. We can express the dispersion
relation for an electrically gyrotropic medium in terms of k2

z using
(29)–(30) as ∣∣∣WE

∣∣∣ = k2
0ε3

(
k2

z − k2
zI

) (
k2

z − k2
zII

)
= 0 (31)

The results obtained in this part are new results and can be used
for multilayered gyroelectric media when the stratification is in z-
direction. Representing the wave vectors in terms of θ as

kρ = k sin θ (32a)
kx = k sin θ cosφ (32b)
ky = k sin θ sinφ (32c)
kz = k cos θ (32d)

and substituting (32a) and (32d) into (28) leads to (24), which validates
the results obtained in (29)–(30).
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2.3. Dispersion Relation in Terms of k Using Matrix
Algebra — Method III

In this section, the dispersion relation given in Method I is obtained
using an alternate method, which involves field vectors using simple
matrix algebra. For this, we look for the solution of the monochromatic
plane wave of the form

E = E0e
ik·r (33)

H = H0e
ik·r (34)

The wave vector k is defined by (4). The Helmholtz equation can be
obtained in the source free region using Maxwell’s Equations (7)–(8)
as

∇×∇× E = ω2µ0ε0ε · E (35)

Substituting (33) into (35) gives

−k × k × E = ω2µ0ε0ε · E (36)

E0 − k̂
(
k̂ · E0

)
=
ω2µ0ε0
k2

ε · E0 (37a)

or

E0 − k̂
(
k̂ · E0

)
=
k2

0

k2
ε · E0 (37b)

When (37) is decomposed into its x, y, z, components, we obtain

E0x

(
k2

0ε1−k2+k2 sin2 θ cos2 φ
)
+E0y

(
k2 sin2 θ sinφ cosφ−iε2k2

0

)
+E0z

(
k2 sin θ cos θ cosφ

)
= 0

(38a)

E0x

(
k2 sin2 θ sinφ cosφ−ik2

0ε2
)
+E0y

(
k2

0ε1−k2+k2 sin2 θ sin2 φ
)

+E0z

(
k2 sin θ cos θ sinφ

)
= 0

(38b)

E0x

(
k2 sin θ cos θ cosφ

)
+ E0y

(
k2 sin θ cos θ sinφ

)
+E0z

(
k2

0ε3 − k2 + k2 cos2 θ
)

= 0

(38c)
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The vector equations given in (38) can be written as

[E0x E0y E0z] •

k2

0ε1− k2 + k2 sin2 θ cos2 φ k2 sin2 θ sinφ cosφ− ik2
0ε2

k2 sin2 θ sinφ cosφ− iε2k2
0 k2

0ε1 − k2 + k2 sin2 θ sin2 φ

k2 sin θ cos θ cosφ k2 sin θ cos θ sinφ

k2 sin θ cos θ cosφ
k2 sin θ cos θ sinφ
k2

0ε3 − k2 + k2 cos2 θ


 = 0 (39a)

Using (32), we can write (39a) as

[E0x E0y E0z] •



k2

0ε1−k2+k2
x kxky−ik2

0ε2 kxkz

kxky − iε2k2
0 k2

0ε1−k2+k2
y kykz

kxkz kykz k2
0ε3−k2+k2

z


= 0

(39b)
When (39) is carefully reviewed, it is seen that this equation is nothing
but the transposed version of Equation (15). Hence, (39) can be
rewritten as,


[E0x E0y E0z] •



k2

0ε1−k2+k2
x kxky−ik2

0ε2 kxkz

kxky − iε2k2
0 k2

0ε1−k2+k2
y kykz

kxkz kykz k2
0ε3−k2+k2

z







T

=WE · E0 = 0 (40)

As a result, the dispersion relation is obtained using simply matrix
method as an alternative to the first method.

3. WAVE PROPAGATION IN A GYROELECTRIC
MEDIUM

In this section, we analyze the wave propagation in a gyroelectric
medium. When the direction of wave propagation coincides with
the direction of the imposed magnetic field (θ = 0◦, or 180◦), we
have the phenomenon known as longitudinal propagation. When the
direction of wave propagation is perpendicular to the direction of the
imposed magnetic field (θ = 90◦), we have what is known as transverse
propagation. The cases θ = 0◦ and θ = 90◦, which correspond
to longitudinal and transverse propagations, generate two uncoupled
waves which are called principal waves [9]. These special cases are
considered in the following subsections with details.
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3.1. Longitudinal Propagation, θ = 0◦

When the propagation is parallel to B0 (θ = 0◦), (25) and (26) reduce
to

kI = k0

√
ε1 + ε2 (41)

kII = k0

√
ε1 − ε2 (42)

Equation (38) can be rewritten accordingly assuming the propagation
is also on the on yz-plane (φ = 90◦) as shown in Fig. 1 as

E0x

(
k2

0ε1 − k2
)
− iε2E0y = 0 (43a)

−iε2k2
0E0x + E0y

(
k2

0ε1 − k2
)

= 0 (43b)

E0z

(
k2

0ε3
)

= 0 (43c)

From (43c), it is clear that E0z = 0. Hence for a longitudinal
propagation, there is no electric field component in the direction of
propagation. Also, it can be shown that the magnetic field H is
transverse to the direction of propagation. Consequently, the two
waves that travel parallel to B0 are transverse electromagnetic (TEM)
waves. When (41) is substituted into (43), we obtain

E0x

E0y
= −i (44a)

Equation (44a) corresponds to a right-handed circularly polarized
(RHCP) wave. If (42) is substituted into (43), we obtain

E0x

E0y
= i (44b)

Equation (44b) corresponds to a left-handed circularly polarized
(LHCP) wave. Therefore, the electric field vectors of the two waves
traveling parallel to B0 can be written as

EI = (x̂+ iŷ)EIe
ikIz (45a)

EII = (x̂− iŷ)EIIe
ikIIz (45b)

EI and EII are amplitudes for the field vectors EI and EII ,
respectively. EI represents a RHCP wave, and EII represents a LHCP
wave. The sum of these two waves gives the following composite wave

EI + EII = x̂
(
EIIe

ikIIz + EIe
ikIz

)
+ ŷ

(
−iEIIe

ikIIz + iEIe
ikIz

)
(46)
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The polarization of the composite wave in (46) can be found using the
ratio Ex

Ey
as

Ex

Ey
= −i1 + (EII/EI) ei(kII−kI)z

1 − (EII/EI) ei(kII−kI)z
(47)

When the amplitudes of EI and EII are equal, (47) simplifies to

Ex

Ey
= − cot

(
kII − kI

2
z

)
when EI = EII (48)

If the condition EI = EII is met, then the ratio in (48) becomes
real. As a consequence, the composite wave in (46) at any position
z is linearly polarized. Furthermore, the composite wave goes under
Faraday rotation [9, 11]. Because, the orientation angle of its plane
of polarization depends on z and rotates as z changes. For a plasma
medium, the electrons circulating along the magnetic field lines cause
this effect. From (48), the Faraday rotation angle, θF through which
the resultant vector E rotates as the wave travels a unit distance can
be written as

θF =
kII − kI

2
(49)

Since always kI > kII from (41)–(42), the rotation is clockwise. Using
(41), (42) with (6), θF can be expressed as

θF =
k0

2




√
1 −

ω2
p

ω(ω + ωb)
−

√
1 −

ω2
p

ω(ω − ωb)


 (50)

3.2. Transverse Propagation, θ = 90◦

When the direction of wave propagation is perpendicular to the
direction of the imposed magnetic field (θ = 90◦), we have what
is known as transverse propagation. When the propagation is
perpendicular to B0, (25) and (26) reduce to

kI = k0

√
ε21 − ε22
ε1

(51)

and
kII = k0

√
ε3 (52)
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Equation (38) can be written accordingly as

E0x

(
k2

0ε1 − k2
)

+ E0y

(
−iε2k2

0

)
= 0 (53a)

E0x

(
−ik2

0ε2
)

+ E0y

(
k2

0ε1
)

= 0 (53b)

E0z

(
k2

0ε3 − k2
)

= 0 (53c)

When (52) is substituted into (53), E0x and E0y are found to be equal
to zero. So, the electric field vector has only the E0z component. Since
the propagation constant kII given in (52) is independent of B0 and
equal to the propagation constant of a wave in the isotropic plasma,
this TEM wave, known as an ordinary wave, is independent of B0

in its propagation properties and behaves as it was a TEM wave in
isotropic plasma. Thus, we see that one of the two waves traveling in
the y direction is a linearly polarized TEM wave whose electric vector
is parallel to B0 and has the form

EII = ẑEIIe
ikIIy (54)

When (51) is substituted into (53), it is seen that E0z becomes zero
and we can write

E0x

E0y
= i
ε1
ε2

(55)

The electric field vector of this wave, known as an extraordinary wave,
can be put into the following form

EI =
(
ix̂
ε1
ε2

+ ŷ
)
EIe

ik1y (56)

The magnetic field vector HI is obtained by substituting (56) into (8)
as

HI = −iẑ kI

ωµ0

ε1
ε2
EIe

ikIy (57)

From (56) and (57), we see that the extraordinary wave traveling
perpendicular to B0 is a transverse magnetic (TM) wave with its
magnetic vector parallel to B0. Hence from Section 3.1 and Section 3.2
it is seen that the cases θ = 0◦ and θ = 90◦, which correspond
to longitudinal and transverse propagations, generate two uncoupled
waves, which are called principal waves.

4. CUT OFF AND RESONANCE CONDITIONS

In this section, we extend the analysis of wave propagation that is
discussed in Section 3, and investigate the cut offs and resonances for
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principle waves. From the results, we will obtain eight regions for the
CMA diagram on X-Y 2-plane. The term cut off for any type of wave
occurs when k = 0 or the phase velocity, vp = ω/k = ∞, and the term
resonance is used when k = ∞ or the phase velocity, vp = ω/k = 0 [7].
Cut offs and resonances distinguish values of the plasma parameters in
which k2/k2

0 is positive or negative and hence the region of propagation
or non-propagation. The attenuation

√
−k2 is small just beyond cut-

off but large just beyond resonance. The characteristics of cut-offs and
resonances are listed below in Table 1 [8].

Table 1. Characteristics of cut-offs and resonances.

     Cut-Off  Resonance 
                     pv                      0 pv  

                     0k                        k  

=
=

=
=

∞
∞

The dispersion relation given in (24) can be expressed as∣∣∣WE

∣∣∣ = k4
[
ε1 sin2(θ) + ε3 cos2(θ)

]
+k2

0k
2
[(
ε22 − ε21 − ε1ε3

)
sin2(θ) − 2ε1ε3

]
+k4

0ε3
(
ε21 − ε22

)
= 0 (58)

or ∣∣∣WE

∣∣∣ = Ak4 +Bk2 + C = 0 (59)

where

A =
[
ε1 sin2(θ) + ε3 cos2(θ)

]
(60a)

B = k2
0

[(
ε22 − ε21 − ε1ε3

)
sin2(θ) − 2ε1ε3

]
(60b)

C = k4
0ε3

(
ε21 − ε22

)
(60c)

As seen from the above relations, if C = 0 and either A 
= 0 or B 
= 0,
at least one root of the equation is zero. This represents then the cut-
off condition. As C is independent of θ, the cut-off condition does not
depend on the direction of propagation. Similarly, A = 0 represents
the resonance condition. This condition is defined by

tan2(θ) = −ε3
ε1

(61)
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In contrast to cut-off condition, resonance condition depends on θ. The
expressions in (25) and (26) have always real values.

k2
I,II

k2
0

= (β − iα)2 (62)

When the value of k2
I,II/k

2
0 in (62) is positive, it is equal to β2; when

it is negative it is equal to −α2. Cold plasma is an example of a
gyroelectric medium which satisfies the dispersion relation (16) with
the permittivity tensor given by (3). In the magneto-ionic theory it is
customary to use notations X and Y which are used to describe the
elements of permittivity tensor for the cold plasma in (3). They are
given by

X =
ω2

p

ω2
Y =

ωb

ω
(63)

ωb and ωp are defined by (6b). So in our analysis, we will use X
and Y to describe the dispersion curves in a gyroelectric medium such
as cold plasma for three different cases, namely, the isotropic case,
the longitudinal propagation and the transverse propagation. The
following results reproduce some of the results given in [7, 8] while
the method of analysis in our approach differs from what has been
reported before.

Free  Space

P lasma

 

k

4x 10

ω

Transmission through
          Ionosphere

Reflection from
  Ionosphere

Figure 2. k-ω diagram for isotropic plasma when wp = 1.11∗1012

[rad/sec].
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EARTH

p

p#

ω >ω

ω ω<

Figure 3. Wave propagation in the ionosphere-earth waveguide.

4.1. Isotropic Case, No Magnetic Field, Y = 0

It is conventional to represent the dispersion of electromagnetic waves
by a plot of the propagation constant k against ω as shown in Figure 2.
For a field-free plasma, B0 = 0, this gives a hyperbola which cuts off
below the plasma frequency ωp. Consequently, radio waves of frequency
less than the plasma frequency ωp for the ionosphere are reflected back
to earth. This can be illustrated in Figure 3. When the external
applied magnetic field is zero, i.e., Y = 0, (25) and (26) reduce to

k2
I

k2
0

=
k2

II

k2
0

= ε3 = 1 −X = 1 −
ω2

p

ω2
(64)

At this stage the plasma is known as isotropic plasma because there is
no distinction between the type I and type II waves.

4.2. The Longitudinal Propagation, θ = 0◦

In this section we analyze the cut off and the resonance conditions of
the type I and type II waves for the longitudinal propagation. We
use X-Y 2 diagram and k-ω diagram to illustrate the results that we
obtain.

4.2.1. The Cut Off and Resonance Conditions for Type I and Type II
Waves

Case I — Type I Wave
When the cut off condition is met for the type I wave for the
longitudinal propagation, i.e., θ = 0◦ and kI = 0 in (41), the cut
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off frequency can be obtained as

ωcIlong
=
ωb

2
+

√
ω2

b

4
+ ω2

p (65)

For waves to propagate, the necessary condition is k2
I > 0. This

requires that
ω > ωcIlong

or Y < 1 −X (66)

When the resonance condition is met for type I wave by setting kI = ∞,
we get

ωrIlong
= ωb or Y = 1 (67)

The results given by (65)–(67) can be plotted on the X-Y 2 plane as
shown in Figure 4.

RHCP,  resonance

RHCP, cut o
ff

2Y

X

Figure 4. X-Y 2 diagram showing the resonance and cut off conditions
for longitudinal propagation θ = 0◦, for the type I wave.

Case II — Type II Wave

Similarly, if the cut off condition is met for type II wave, we obtain the
cut off frequency as

ωcIIlong
= −ωb

2
+

√
ω2

b

4
+ ω2

p (68)
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The wave propagation exists for type II wave when k2
II > 0. This

requires that
ω > ωcIIlong

or Y > X − 1 (69)

For longitudinal propagation, no resonance occurs for type II waves.
The results can be plotted similarly on the X-Y 2 plane as shown in
Figure 5.

2Y

X

LH
C

P,
cu

t o
ff

Figure 5. X-Y 2 diagram showing the resonance and cut off conditions
for longitudinal propagation θ = 0◦, for the type II wave.

The same information given by the X-Y 2 diagram on Figures 4
and 5 can be plotted using the k-ω diagram illustrated as in Figure 6.

4.3. Transverse Propagation, θ = 90◦

In this section we analyze the cut off and the resonance conditions of
the type I and type II waves for the transverse propagation. Similar
to Section 4.2, we use X-Y 2-diagram and k-ω diagram to illustrate the
results that we obtain.

4.3.1. The Cut Off and Resonance Conditions for Type I and Type II
Waves

Case I — Type I Wave
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Figure 6. k-ω diagram showing the resonance and cut off conditions
for longitudinal propagation θ = 0◦ of the type I and type II waves
when ω2

p/ω
2
b = 101/2, wb = 1∗1012 [rad/sec].

When the cut off condition is met for the type I wave, from Eq. (51),
we derive the cut off frequency as

ωcItran = ±ωb

2
+

√
ω2

b

4
+ ω2

p (70)

For waves to propagate, the necessary condition is k2
I > 0. This

requires that
ω > ωcItran (71)

or in terms of X and Y notation

Y < 1 −X when ωcItran =
ωb

2
+

√
ω2

b

4
+ ω2

p (72)

and

Y > 1 −X when ωcItran = −ωb

2
+

√
ω2

b

4
+ ω2

p (73)

When the resonance condition is met for the type I wave using (51),

ωrItran =
√
ω2

b + ω2
p or Y 2 = 1 −X (74)



Progress In Electromagnetics Research, PIER 62, 2006 255

The results given by (70)–(74) can be plotted on the X-Y 2 plane as
shown in Figure 7.
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Figure 7. X-Y 2 diagram showing the resonance and cut off conditions
for transverse propagation θ = 90◦, for the type I wave.

Case II — Type II Wave

When the cut off condition is met for type II wave, we obtain the cut
off frequency from (52) as

ωcIItran = ωp (75)

For waves to propagate, the necessary condition is k2
II > 0. This

requires that
ω > ωcIItran or X < 1 (76)

No resonance occurs for type II wave when there is transverse
propagation. The results can be plotted similarly on the X-Y 2-plane
as shown in Figure 8.

The same information given by the X-Y 2 diagram on Figures 7
and 8 can be plotted using the k-ω diagram illustrated as in Figure 9.
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Figure 8. X-Y 2 diagram showing the resonance and cut off conditions
for transverse propagation θ = 90◦ for the type II wave.
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Figure 10. The X-Y 2 plane divided into eight regions.

5. CLEMMOW-MUALLY-ALLIS (CMA) DIAGRAM

Overall, we identified the boundaries using principle waves on the
X-Y 2 plane with Equations (65)–(76) which divide this plane into eight
regions. As a result, we obtained the frequency bands for each region
over which wave can propagate. Hence, we not only constructed a
single diagram showing the boundaries for the cut off and resonance
conditions for the principle waves but also we identified the frequency
bands in each region over which wave can propagate with an arbitrary
angle to the magnetic field. This is illustrated in Fig. 10. This figure
agrees with the results of H. Weil and D. Walsh [12].

When the wave normal surfaces are plotted for each region shown
in Fig. 10, we obtain the CMA diagram. The wave normal surface
is the polar plot of the phase velocity where the distance from the
center to the point on the curves denotes the magnitude of the phase
velocity in that direction. When the wave normal surface is plotted for
each region, it illustrates the propagating modes and non-propagating
modes for type I and type II waves. This makes CMA diagram a
powerful tool to analyze the wave propagation in a gyroelectric medium
such as cold plasma. The CMA diagram in Fig. 11 is obtained using our
results and agrees with the results given in [7]. The results shown in the
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Figure 11. CMA diagram for a cold plasma.

CMA diagram are tabulated in Table 2 to show the frequency bands
and the corresponding waves that can propagate in each region, which
is reported first time on this paper according to our knowledge. By
using Table 2 that we introduce, it is possible to choose the frequency
of operation in the region of propagation or non-propagation for type
I or type II wave without going through any analysis on the CMA
diagram. This feature is a need to make the design nonreciprocal
devices predictable and practical. The results in Table 2 also can be
used in the radiation or scattering problems when the medium under
consideration is cold plasma.
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Table 2. Region of frequency bands for propagation on the CMA
diagram.

    Frequency Band Wave Propagates 
Region 1 
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6. CONCLUSION

In this paper, the general dispersion relations for a gyroelectric medium
are derived using three different methods. One of them is a new
method which can be applied when the stratification of the layers
is in the z-direction. The dispersion relations are then obtained in
two distinct forms. From dispersion relations, we show that there
exist two types of waves in a gyroelectric medium. The detailed
analysis of wave propagation and the dispersion characteristics of a
gyroelectric medium is presented. The polarization of the waves for
a gyroelectric medium is analyzed and given for the principle waves.
The resonance and cut off conditions are investigated for the principle
waves. The wave propagation and the dispersion characteristics for a
gyroelectric medium such as cold plasma are inspected by constructing
the CMA diagram. The frequency bands for which wave can propagate
in each region are given on this diagram. Our results obtained for the
dispersion relations of a gyroelectric medium given in Section 2 and
the dispersion curves with the CMA diagram given in Section 4 are
compared with the existing results whenever possible. The results are
tabulated for the first time to show the conditions and types of the
waves that can propagate when the specific condition is met in each
region on the CMA diagram. The results presented in this paper can
be used in the development of the nonreciprocal devices, ionospheric
radiation and scattering problems.



260 Eroglu and Lee

REFERENCES

1. Barlow, H. E. M. and R. Koike, “Microwave propagation in a
waveguide containing a semiconductor,” Proc. IEE Microwaves,
Optics and Antennas, Pt. H, Vol. 110, 2177–2181, Dec. 1963.

2. Arnold, R. M. and F. J. Rosenbaum, “Nonreciprocal wave
propagation in a semiconductor loaded waveguides in the presence
of a transverse magnetic field,” IEEE Trans. Microwave Theory
Tech., Vol. MTT-19, 57–65, Jan. 1971.

3. Obunai, T. and K. Hakamada, “Slow surface wave propagation in
an azimuthally magnetized millimeter wave solid plasma coaxial
waveguide,” Jpn. J. Appl. Phys., Vol. 23, 1032–1037, 1984.

4. Mesa, F. and M. Horno,, “Nonreciprocal propagation character-
istics of transversely magnetized metal insulator semiconductor
coplanar waveguides,” Electron. Lett., Vol. 28, 1246–1248, June
1992.

5. Sloan, R., C. K. Young, and, L. E. Davis, “Broadband theoretical
gyroelectric junction circulator tracking behaviour at 77K,” IEEE
Trans. Microwave Theory Tech., Vol. 44, No. 12, 2655–2660, Dec.
1996.

6. Mok, V. H. and L. E. Davis, “Nonreciprocal wave propagation
in multilayer semiconductor films at frequencies up to 200 GHz,”
IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2453–2460,
Dec. 2003.

7. Allis, W. P., S. J. Buchsbaum, and A. Bers, Waves in Anisotropic
Plasmas, MIT Press, Cambridge, Massachusetts, 1963.

8. Allis, W. P., “Propagation of waves in a plasma in a magnetic
field,” IRE Trans. Microwave Theory Tech., Vol. MTT-9, 79–82,
Jan. 1961.

9. Chen, H. C., Theory of Electromagnetic Waves: Coordinate Free
Approach, Chapter 7, McGraw Hill, 1983.

10. Bunkin, F. V., “On radiation in anisotropic media,” Sov. Phys.
JETP, Engl. Transl., Vol. 5, 277–283, Sept. 1957.

11. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and
Scattering, Prentice Hall, 1996.

12. Weil, H. and D. Walsh, “Radiation resistance of an electric
dipole in a magnetoionic medium,” IEEE Trans. Antennas Propa.,
Vol. AP-12, 297–304, May 1964.


