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Abstract—In this paper, we introduce a first order accurate resonance
model based on a second order Padé approximation of the reflection
coefficient of a narrowband antenna. The resonance model is
characterized by its Q factor, given by the frequency derivative of
the reflection coefficient. The Bode-Fano matching theory is used
to determine the bandwidth of the resonance model and it is shown
that it also determines the bandwidth of the antenna for sufficiently
narrow bandwidths. The bandwidth is expressed in the Q factor of the
resonance model and the threshold limit on the reflection coefficient.
Spherical vector modes are used to illustrate the results. Finally, we
demonstrate the fundamental difficulty of finding a simple relation
between the Q of the resonance model, and the classical Q defined
as the quotient between the stored and radiated energies, even though
there is usually a close resemblance between these entities for many
real antennas.

1. INTRODUCTION

The bandwidth of an antenna system can in general only be determined
if the impedance is known for all frequencies in the considered
frequency range. However, even if the impedance is known, the
bandwidth depends on the specified threshold level of the reflection
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coefficient and the use of matching networks. The Bode-Fano matching
theory [4, 11] gives fundamental limitations on the reflection coefficient
using any realizable matching networks and hence a powerful definition
of the bandwidth for any antenna system. However, as it is an
analytical theory it requires explicit expressions of the reflection
coefficient for all frequencies.

The quality (Q) factor of an antenna is a common and simple
way to quantify the bandwidth of an antenna [2, 7, 14]. The Q of the
antenna is defined as the quotient between the power stored in the
reactive field and the radiated power. There are several attempts to
express the Q factor in the impedance of the antenna, see e.g., [14] with
references. In [14], an approximation based on the frequency derivative
of the input impedance, Q ≈ ω|Z ′|/(2R), is introduced and shown to
be very accurate for some antennas.

In this paper, we employ a Padé approximation to show that the
Bode-Fano bandwidth of a narrowband antenna is determined by the
amplitude of the frequency scaled frequency derivative of the reflection
coefficient, ω0|ρ′|. Moreover, Qρ = ω0|ρ′| = ω|Z ′|/(2R) is identified as
the Q factor of a first order accurate approximating resonance model
of the antenna. We observe that the classical Q-factor, defined as
the quotient between the stored and radiated energies, of the antenna
system is not utilized nor needed in the analysis. However, there is a
close resemblance between the Q-factor derived from the differentiated
reflection coefficient, Qρ, and the classical Q-factor, Q. It is shown that
Q ≈ Qρ for the spherical vector modes if Q is sufficiently large. This is
also seen from the approximation of the Q-factor Q ≈ ω|Z ′|/(2R) = Qρ

considered in [14]. However, a simple example is used to demonstrate
that there are no simple relation between Q and Qρ for general
antennas.

The rest of the paper is outlined as follows. In Section 2, the Q
factor and lumped RCL circuits are reviewed. The Padé approximation
of the reflection coefficient is introduced in Section 3. In Section 4, the
Bode-Fano bandwidth of the resonance model and the bandwidth of
the corresponding antennas are analyzed. The results are illustrated
using spherical vector modes in Section 5. In Section 6, an antenna
constructed with a flat reflection coefficient is used to demonstrate the
fundamental difficulties of finding a simple relation between Q and Qρ

for general antennas. Conclusions are given in Section 7.

2. Q FACTOR AND RESONANCE CIRCUITS

The Q factor (quality factor, antenna Q or radiation Q) is commonly
used to get an estimate of the bandwidth of an antenna. Since,
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Figure 1. Lumped circuits. a) the series RCL circuit. b) the parallel
RCL circuit. c) a lattice network.

there is an extensive literature on the Q factor for antennas, see
e.g., [2, 3, 6, 7, 14], only some of the results are given here. The
Q factor of the antenna is defined as the quotient between the power
stored in the reactive field and the radiated power [2, 3], i.e.,

Q =
2ω max(WM,WE)

P
, (1)

where ω is the angular frequency, WM the stored magnetic energy,
WE the stored electric energy, and P the dissipated power. At the
resonance frequency, ω0, there are equal amounts of stored electric
energy and stored magnetic energy, i.e., WE = WM.

The Q factor is also fundamentally related to the lumped
resonance circuits [11]. The basic series (parallel) resonance circuit
consists of series (parallel) connected inductor, capacitor, and resistor,
see Figure 1ab. With a resonance frequency ω0 and resistance R,
we have L = RQ/ω0 and C = 1/(RQω0) and L = R/(Qω0) and
C = Q/(Rω0) in the series and parallel cases, respectively. It is easily
seen that the Q factor defined in (1) is consistent with the lumped
resonance circuits [11].

The transmission coefficient of the resonance circuits in
Figure 1ab, is

tRCL(s) =
1

1 +
Q

2

(
ω0

s
+

s

ω0

) , (2)

where s = σ + iω denote the Laplace parameter. It has one zero at
the origin, s = 0, and one zero at infinity, s = ∞. The corresponding
reflection coefficient is

ρRCL(s) =
Z(s) −R

Z(s) + R
= ± 1 + (s/ω0)2

1 + (s/ω0)2 + 2s/(ω0Q)
(3)
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where the + and − minus signs correspond to series and parallel
circuits, respectively. The zeros and poles of the reflection coefficient
are

λo1,2 = ±iω0 and λp1,2 =
ω0

Q

(
−1 ± i

√
Q2 − 1

)
, (4)

respectively. We also observe that differentiation of the reflection
coefficient with respect to iω/ω0 gives Q, i.e.,

∂ρRCL

∂ω

∣∣∣∣
ω=ω0

=
±iQ
ω0

(5)

and hence Q = ω0|ρ′RCL(ω0)|.

3. PADÉ APPROXIMATION OF THE REFLECTION
COEFFICIENT

Here, we consider a local approximation of a given reflection coefficient,
ρ̃, of an antenna. We assume that the resonance frequency, ω0, and
the frequency derivative of the reflection coefficient, ρ̃′(iω0) are known.
The model, ρ, is required to be a local approximation to the first order,
i.e., it is tuned to the resonance frequency

ρ(iω0) = ρ̃(iω0) = 0, (6)

and its frequency derivative is specified

∂ρ

∂ω

∣∣∣∣
ω=ω0

=
∂ρ̃

∂ω

∣∣∣∣
ω=ω0

= ρ̃′. (7)

We also require that the model is unmatched far from the resonance
frequency

|ρ(0)| = |ρ(∞)| = 1. (8)

The error in the approximation can be estimated with the second order
derivative of the reflection coefficient. We assume that the reflection
coefficients are continuously differentiable two times. This gives an
error of second order in β = 2(ω − ω0)/ω0, i.e.,

|ρ(iω) − ρ̃(iω)| = O(β2). (9)

Observe that a curve fitting technique might be more practical for
experimental data, see e.g., [10].
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We start with a Padé approximation of the reflection coefficient.
A general Padé approximation of order 2,2 is

ρ(s) = γ
1 + a1s + a2s

2

1 + b1s + b2s2
(10)

where a1, a2, b1, b2 are real valued constants. As the reflection
coefficient has an arbitrary phase at resonance, it is necessary to
consider a complex valued coefficient γ. We interpret this as a slowly
varying function γ̃(s) where γ̃(iω) ≈ γ over the considered frequency
interval. The requirement (8) gives |γ| = 1 and |a2| = |b2|. We also
have γ̃(−iω) ≈ γ∗ for any physically realizable model. The resonance
frequency imply a1 = 0 and a2 = ω−2

0 . Differentiation with respect to
the angular frequency gives

γ
− 2
ω0

1 + b1iω0 − b2ω2
0

= ρ̃′ (11)

and hence b2 = ω−2
0 and b1 = 2/(ω0Qρ), where we have introduced the

Q factor in the resonance approximation as

Qρ = |ρ̃′(iω0)ω0| (12)

in accordance with (5). We observe the resemblance with the approach
in [14] showing that the Q factor of some antennas, Q, can be
approximated with the frequency derivative of the impedance, i.e.,

Q ≈ ω0
|Z ′

1|
2R

= ω0|ρ̃′| = Qρ. (13)

The Padé approximation of the reflection coefficient can be written

ρ(s) =
−iρ̃′

|ρ̃′|
1 + (s/ω0)2

1 + (s/ω0)2 + 2s/(ω0Qρ)
. (14)

The special case with arg ρ̃′ = π/2 (arg ρ̃′ = −π/2) gives the classical
lumped series (parallel) RCL circuit approximation. Observe that Qρ

is the Q factor of the approximating resonance circuit and not the Q
factor of the original system.

We can interpret the general cases with �ρ̃′ �= 0 as the result with a
cascade coupled RCL circuit and a transmission line with characteristic
impedance R. A transmission line with length d rotates the reflection
coefficient an angle φ = −2dk0 = −2dω0/c0 in the complex plane. It
is also possible to consider a lattice network that rotates the reflection



6 Gustafsson and Nordebo

coefficient [13]. A lattice network with capacitance, C, and inductance,
L = R2C, as shown in Figure 1, has reflection coefficient ρL(s) = 0
and transmission coefficient

tL(s) =
1 − sRC

1 + sRC
=

1 − αs/ω0

1 + αs/ω0
, (15)

where we have introduced the dimensional free parameter α = ω0RC.
The reflection coefficient of the cascaded lattice and RCL circuit is

ρ(s) = t2L(s)ρRCL(s) = ±
(

1 − αs/ω0

1 + αs/ω0

)2 1 + (s/ω0)2

1 + (s/ω0)2 + 2s/ω0/Qρ

(16)

where it is seen that the lattice network rotates the reflection coefficient
an angle φ = −4 arctan(α). It is easily seen that α = − tan(φ/4) and
hence 0 < α < 1 as it is sufficient to consider −π < φ < 0. The
transmission coefficient of the cascaded system is given by t = tLtRCL.

4. BANDWIDTH AND MATCHING

The reflection coefficient (16) provides a local approximation of the
reflection coefficient of the antenna. Assume that the error of the
reflection coefficient of the approximate circuit is of size ε, i.e.,

|ρ(iω) − ρ̃(iω)| ≤ ε (17)

over the frequency band of interest. We consider a general lossless
matching network to determine the bandwidth of the antenna and the
approximate resonance circuits as illustrated in Figure 2. The error in
the reflection coefficient after matching is estimated as

|Γ − Γ̃| = |t|2
∣∣∣∣ ρ

1 − r2ρ
− ρ̃

1 − r2ρ̃

∣∣∣∣ = |t|2 |ρ− ρ̃|
|1 − r2ρ||1 − r2ρ̃|

≤ 1 − |r2|2
(1 − δ|r2|)2

ε ≤ ε

1 − δ2
, (18)

where δ = max(|ρ|, |ρ̃|). It is observed that the approximate circuit
can be used in the matching analysis as long as the error, ε, is
sufficiently small and the reflection coefficients are less than unity.
The reflection coefficient of the matched antenna is estimated by the
triangle inequality as∣∣|Γ̃| − |Γ|

∣∣ ≤ |Γ − Γ̃| ≤ ε

1 − δ2
= O(β2), (19)
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Figure 2. Illustration of the lossless matching networks. The
matching network has the reflection coefficients r1 and r2 and
transmission coefficient t. The same matching network is used in the
two cases. a) the resonance circuit with reflection coefficient ρ gives Γ.
b) the antenna with reflection coefficient ρ̃ gives Γ̃.

where we used (9).
The Bode-Fano theory is used to get fundamental limitations

on the matching network [4, 12]. The Bode-Fano theory uses
Taylor expansions of the reflection coefficient around the zeros of
the transmission coefficient to get a set of integral relations for the
reflection coefficient. We start with the lumped RCL circuit. The
transmission coefficient (2) of the RCL circuit has a single zero at the
origin and a single zero at infinity. The Bode-Fano theory gives the
integral relations

2
π

∫ ∞

0

1
ω2

ln
1

|Γ(iω)|dω =
∑

i

λ−1
oi − λ−1

pi − 2λ−1
ri =

2
ω0Q

− 2
∑

i

λ−1
ri

(20)

and

2
π

∫ ∞

0
ln

1
|Γ(iω)|dω =

∑
i

λoi − λpi − 2λri = 2
ω0

Q
− 2

∑
i

λri (21)

by a Taylor expansion around s = 0 and s = ∞, respectively. Here,
λoi, λpi, and λri denote the zeros (4) of ρRCL, the poles (4) of ρRCL, and
arbitrary complex valued numbers with positive real part, respectively.
We assume that the matching is symmetric around the resonance
frequency, i.e., the frequency range ω0 − ∆ω/2 ≤ ω ≤ ω0 + ∆ω/2
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Figure 3. Illustration of the Bode-Fano limits. The model gives
the threshold Γ0. The threshold level of the corresponding antenna
is estimated with (19). The dashed curve illustrates an unattainable
reflection coefficient.

is considered. The relative bandwidth, B, is given by B = ∆ω/ω0. Set

K = inf
| ω
ω0

−1|≤B
2

2
π

ln
1

|Γ(iω)| =
2
π

ln
1

sup| ω
ω0

−1|≤B
2
|Γ(iω)| (22)

to simplify the notation [4].
The integrals in (20) and (21) are estimated from below giving

B

1 −B2/4
K ≤ 2

Q
− 2

∑
i

ω0

λri
and BK ≤ 2

Q
− 2

∑
i

λri

ω0
, (23)

where the coefficients λri have a positive real-valued part. Both
inequalities can be satisfied with a complex conjugated par, λr1 = λ∗

r2.
This reduces the inequalities to

K ≤ 2
BQ

(
1 − B2

4

)
. (24)

Hence, the reflection coefficient is bounded as

sup |Γ(iω)| ≥ Γ0 = e−
π

QB
(1−B2/4) = e−

π
QB + O(B/Q) (25)
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Figure 4. Reflection coefficient of a resonance circuit for
different Q factors and Bode-Fano matching networks. The Q
factors Q = 2, 4, 10,∞ and the Bode-Fano limits corresponding to
−10,−20,−30 dB are shown.

for any realizable Γ where we introduced the Bode-Fano threshold
limit, Γ0, on the reflection coefficient. The inequality (25) states that
it is not possible to construct a lossless matching network such that
|Γ| is strictly smaller than Γ0 over the considered frequency range.
The Bode-Fano threshold limit, Γ0, and an unattainable reflection
coefficient are illustrated in Figure 3. The corresponding wideband
and narrowband Bode-Fano bandwidths are given by

B =
√

Q2K2
0 + 4 −QK0 ∼ π

Q ln Γ−1
0

+ O(Q−3) (26)

where K0 = 2 ln Γ−1
0 /π. The decibel scale of the reflection coefficient,

ΓdB = 20 log Γ0, simplifies the narrowband bandwidth to

B ≈ 27
Q|ΓdB|

. (27)

The reflection coefficient, ρRCL, together with its Bode-Fano
limits, Γ0, are illustrated in Figure 4. The frequency scaling β =
2(ω − ω0)/ω0 is used to emphasize the character of the reflection for
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different values of Q. The parameter β can be interpreted as the
relative bandwidth, i.e.,

B =
∆ω

ω0
= 2

ω − ω0

ω0
= β, (28)

if ω is considered to be the upper frequency limit. The Bode-Fano
limits (26) are shown for the maximal reflection coefficient Γ0 =
−10,−20,−30 dB and Q factors 2, 4, 10,∞. It is observed that the
curves are indistinguishable for Q > 10.

In the general case of a RCL circuit and the lattice network, the
transmission coefficient has an additional zero at σ = ω0/α. Observe
that the appropriate reflection coefficient in the Bode-Fano theory is
given by (3) since the reflection coefficient of the lattice network is zero
for all frequencies. This gives the additional integral relation∫ ∞

0

σ

σ2 + ω2
ln

1
|Γ|dω =

π

2
Aσν

0 − π

2
�

∑
i

−λ∗
ri − σ

−λri − σ
(29)

where Aσν
0 = ln |ρRCL(σ)|−1. We solve these equations in a similar

way as for the RCL circuit. For simplicity, we start with a complex
conjugated pair of zeros in the right half plane λri/ω0 = x ± iy. This
gives the inequality

K arctan
αB

1 + α2(1 −B4)
≤ ln

1 + α2 + 2β/Q
1 + α2

− 2
(α−1 + x)2 − y2

(α−1 + x)2 + y2
.

(30)

A narrow band assumption B � 1 and Q 
 1 gives

KB≤ 2
Q

− 4α
Q2(1+α2)

− 2 (α+1/α)
(α−1+x)2−y2

(α−1+x)2+y2
+O(B3)+O(Q−3).

(31)

We observe that the second order correction, −4Q−2α/(1 + α2), can
be compensated with a large imaginary part, y, of the zeros in the
right half plane. It gives the result KB ≤ 2/Q as for the case of the
narrowband RCL circuit. The effect of the rotation is hence negligible
for large Q factors.

The Bode-Fano limits give fundamental limitations on the relation
between the magnitude of the reflection coefficient and the bandwidth
for the resonance models considered here. The relations can be
extended to the antenna with estimates (17) and (19) is reached. The
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reflection coefficient of the antenna after matching is estimated by (19)
as

sup |Γ̃| = Γ̃0 ≥ Γ0 −
ε

1 − δ2
= e−

π
QB + O(ε). (32)

where sup |Γ| = Γ0 = e−π/(QρB). Invert to get an estimate of the
bandwidth

B ≤ π

Qρ ln(Γ̃0 + ε/(1 − δ2))−1
≈ π

Qρ ln Γ̃−1
0

(
1 +

ε

Γ̃0 ln Γ̃−1
0 (1 − δ2)

)
=

π

Qρ ln Γ̃−1
0

+ O(ε) =
π

Qρ ln Γ̃−1
0

+ O(B2), (33)

where we used the estimate (19). Hence, the bandwidth of the antenna
can be estimated by the Q factor, Qρ = ω0|ρ̃′|, of the approximating
resonance model as long as the bandwidth is sufficiently narrow giving

B ∼ π

Qρ ln Γ̃−1
0

, for B � 1. (34)

5. APPROXIMATION OF SPHERICAL VECTOR WAVES

An arbitrary electromagnetic field can be expanded in spherical vector
waves [1, 8, 9]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

aτmlvτml(kr) + fτmluτml(kr) (35)

H(r) =
i
η0

∞∑
l=1

l∑
m=−l

2∑
τ=1

aτmlvτ̄ml(kr) + fτmluτ̄ml(kr) (36)

The terms labeled by τ = 1, l, and m identify magnetic 2l-poles and
the terms labeled by τ = 2, l, and m identify electric 2l-poles. The
outgoing spherical vector waves u are given by

u1ml(kr) = h
(2)
l (kr)A1ml(r̂) (37)

u2ml(kr) =
1
k
∇×

(
h

(2)
l (kr)A1ml(r̂)

)
(38)

where h
(2)
l denotes the spherical Hankel function and A denote the

spherical vector harmonics. There are several common definitions of
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the spherical vector harmonics [1, 8, 9]. For τ = 1, 2, we use

A1ml(r̂) =
1√

l(l + 1)
∇× (r Ym

l (r̂)) (39)

A2ml(r̂) = r̂ × A1ml(r̂), (40)

where Ym
l denotes the spherical harmonics [1, 8, 9].

The impedance of a TM mode normalized with the intrinsic
impedance, η0, is (ξ = ka = ωa/c0)

Z = R + iX = i
(ξ h

(2)
l (ξ))′

ξ h
(2)
l (ξ)

=
1

|ξ h
(2)
l |2

+ i�(ξ h
(2)
l )′

ξ h
(2)
l

(41)

where we used the Wronskian h
(2)
l h

(2)
l

′∗ − h
(2)
l

∗ h
(2)
l

′ = 2iξ−2. The
series expansions of the Hankel functions [9] gives the expansions

R(ξ) ∼ ξ2l l!2l

(2l)!
and X ∼ − l

ξ
(42)

for small ξ. Tune the impedance with a series inductor, i.e., ω0L =
−X. This gives the impedance Z1 = Z + iωL. Differentiate the
impedance with respect to the angular frequency ω

Z ′
1 = −2R

a

c0
�(ξ h

(2)
l )′

ξ h
(2)
l

+i
a

c0

n(n+1)
ξ2

−1−�
(

h
(2)
l

′

h
(2)
l

+
1
ξ

)2

+
c0
a
L


= −2αRX + iα

(
n(n + 1)

ξ2
− 1 + R2 −X2 − X

ξ

)
(43)

The frequency derivative of reflection coefficient, ρ̃ = (Z1−R)/(Z1+R),
is given by

ω
∂ρ̃

∂ω
= ωρ̃′ = ω

Z ′
1

2R
= −kaX +

ika
2R

(
n(n + 1)
k2a2

− X

ka
−X2 − 1 + R2

)
(44)

The derivatives (44) is used to get resonance models of the TE
and TM reflection coefficients, Qρ = ω|ρ̃′(ω)|. The TM (TE) case gives
series (parallel) circuits combined with lattice networks. In Figure 5a,
the reflection coefficient, ρ̃, together with their resonance models (16)
are depicted for spheres with radius k0a = 0.4 and k0a = 0.65. The
TM and TE cases are shown for l = 1 and l = 2, respectively. The
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Figure 5. Illustration of the resonance circuit approximations.
The frequencies corresponding to Qρβ = −4,−2,−0.5, 0.5, 1, 2, 4 are
indicated with a star and a circle for the modes and the resonance
models, respectively. TM cases with Qρ = 5 and Qρ = 18 and TE cases
with Qρ = 182 and Qρ = 1859 are shown. a) without transmission line.
b) with a λ0/(2π), i.e., k0d = 1, long transmission line.

Q factors in the resonance model are Qρ = 5, 18, 182, 1859. The
frequencies Qρβ = −4,−2,−0.5, 0.5, 1, 2, 4 are indicated with a star
and a circle for the modes and the resonance models, respectively. It
is only for the lower values of Qρ, we can observe a small discrepancy
between modes and their models. The curves are indistinguishable for
the higher values of Qρ. This is also seen in Figure 6 where the error
‖ρ(iω)−ρ̃(iω)‖ = supω |ρ(iω)−ρ̃(iω)| is depicted. The error is of second
order in B, i.e., 40 dB for each decade in B, in accordance with (9).

We also consider the case where the TM and TE modes are
connected to a transmission line with length λ0/(2π). The transmission
line rotates the reflection coefficients as seen in Figure 5b. This require
a larger compensation with the lattice network in the model. We
observe that the differences between the model and the rotated modes
increases. However, the error is still very small for the larger values of
Qρ as seen in Figure 6.

As the error can increase by the matching network we consider
the error of the matched reflection coefficient, i.e., ‖Γ − Γ̃‖. The
error is estimated by (18). It is observed that the error increases
as the magnitude of the unmatched reflection coefficient increases.
This is also illustrated by the solid and dashed curved in Figure 6.
The additional error by the matching, 1/(1 − δ2), is negligible for
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Figure 6. Errors in the resonance models corresponding to Figure 5.
The model error is given by |ρ − ρ̃| and (18) is used to estimate the
error, |Γ − Γ̃|, after matching.

QρB � 1 and increases to approximately 2 dB for QρB = 1 and 14 dB
for QρB = 4.

It is also illustrative to compare the Q factor of the resonance
model with the Q factor of the radiating system. The Q factor of the
TE and TM modes can either be determined by the equivalent circuits
[2, 3] or by an analytic expression functions [6]. The Q of the TMlm

or TElm mode is given by

Q = ξ +
ξ

2Rl

(
l(l + 1)

ξ2
− Xl

ξ
−X2

l −R2
l

)
. (45)

The Q factor depends only on the l-index and there are 2(2l+1) modes
for each l index. The six lowest order modes have Q = (ka)−3+(ka)−1.
By combination of one TEm1 mode and one TMm1 mode the Q
factor is reduced to Q = (ka)−3/2 + (ka)−1. The Q factor has the
asymptotic expansion Q ∼ (2l)!l/(ξ(2l+1)l!2l). The resonance circuit
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Figure 7. Relative errors, |B − BQ|/B, of the bandwidth in the Q-
factor approximations of the TMm1 and TEm1 modes.

approximation has a Q factor, Q = |ω0ρ̃
′|. We get

ω0ρ̃
′

iQ
= 1 +

ξ(Z − 1)
Q

∼ 1 + (−ξ + li)
ξ(2l+1)l!2l

(2l)!l
(46)

where we see that the resonance circuit approximation of the Q factor
is very good for small ξ or equivalently large Q-values.

We consider the Bode-Fano fractional bandwidth of the TMm1 and
TEm1 modes to determine the errors in the Q-factor approximations [5].
The transmission coefficient of the TMm1 and TEm1 modes has a
double zero at s = 0. The corresponding reflection coefficient is

Γ1(s) =
1

1 +
2sa
c0

+
2s2a2

c20

(47)

without zeros λoi but with the two poles λp1,2 = (−1 ± i)c0/(2a). The
coefficients of the Taylor series around s = 0 give the two integral
relations

2
π

∫ ∞

0
ω−2 ln

1
|Γ(iω)|dω =

∑
i

λ−1
oi − λ−1

pi − 2λ−1
ri =

(
2a
c0

− 2
∑

i

λ−1
ri

)
(48)
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and

2
π

∫ ∞

0
ω−4 ln

1
|Γ(iω)|dω =

−1
3

∑
i

1
λ3

oi

− 1
λ3

pi

− 2
λ3

ri

=

(
4a3

3c30
+

2
3

∑
i

λ−3
ri

)
,

(49)

where the coefficients λri have a positive real-valued part. Assuming a
bandwidth and K as in (22) gives

K
B

1 −B2/4
≤ 2k0a− 2

∑
i

ω0

λr
(50)

and

K
B + B3/12
(1 −B2/4)3

≤ 4(k0a)3

3
+

2
3

∑
i

ω3
0

λ3
r

(51)

where k0 = ω0/c0. It is noted that it is enough to consider one
coefficient λr or a complex conjugated pair. These equations can be
solved numerically with respect to B and λr.

The fractional bandwidth, B, given by (50) and (51) is
compared with the fractional bandwidth, BQ, determined by the
resonance approximation (26) to determine the error in the resonance
approximation. We consider the Q factors determined by the
stored and radiated fields (1), i.e., (45), and by the resonance
approximation (12), i.e., (44). The relative error |B − BQ|/B is
depicted in Figure 7 for the threshold reflection coefficient Γ0 = 1/3. It
is observed that the errors are small for large Q factors and that they
approach 0 as Q → ∞ as known from the asymptotic expansions. We
also observe that the narrowband approximation in (26) is good for
large Q factors. The error of the resonance approximation, Qρ, decays
faster than the error in the Q-approximation as Q increases. This is in
accordance with the construction of the resonance approximation as a
local approximation of the reflection coefficient.

6. Q FACTOR OF GENERAL ANTENNAS

There have been several attempts to express the Q factor of a general
antenna in the impedance of the antenna, see [14] and references there
in. Common versions are

Q ≈ ω0

2R(ω0)
|X ′(ω0)| (52)
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simple
antenna

microwave
network

shielded
power
supply

S1S2

Figure 8. Illustration of the antenna prototype. A transmission line
is used to connect the shielded power supply, the microwave network,
and the simple antenna.

and

Q ≈ ω0

2R(ω0)
|Z ′(ω0)| = ω0|ρ′(ω0)| = Qρ (53)

where the antenna is assumed to be tuned to resonance at ω0. We
observe that (53) reduces to (52) for the special case of R′(ω0) = 0. We
consider the more general approximation (53) as it is invariant to shifts
in the reference plane in the feed line. This approximation has been
extensively tested and it is confirmed that it is a good approximation
for many antennas. However, this does not mean that it is a good
approximation for a general antenna.

To better understand the requirements on the antennas where (53)
is good and at the same time, why it is difficult to prove these types
of approximations for general antennas we consider an antenna model
as depicted in Figure 8. The antenna model is composed by a shielded
power supply, a microwave network, and a simple antenna. With the
simple antenna we mean an antenna with known characteristic, e.g.,
dipole, spherical vector mode, or resonance model. A transmission
line with a propagating TEM mode is used to connect the different
components. We consider two possible reference planes denoted by S1

and S2. The impedance properties of the simple antenna are defined
in the reference plane S1, here modeled with the reflection coefficient
ρ1. We use the reference plane, S2, to define a more complex antenna
characterized with the reflection coefficient ρ2. Observe that, although
it might be more practical to consider this as an antenna together
with a matching network, it also possible to consider it as a single
antenna. The Maxwell equations on the region outside the reference
planes can be used to determine the properties of both antennas. The
only difference is that, in reality, it might be more practical to use
simpler equations and approximations to determine the properties of
the microwave network.

For simplicity, we assume that the simple antenna can be
approximated with a resonance model (16) around the resonance
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Figure 9. Circuit model of the antenna with an arbitrary small ρ′(ω0).

frequency, specifically we assume a series RCL circuit with Q factor
Q1. Let the microwave network be modeled with a parallel LC circuit,
as seen in Figure 9. The reflection coefficient at S2 is given by

ρ2 = ρQ2 +
t2Q2

ρQ1

1 − ρQ1ρQ2

, (54)

where ρQi is defined by (3) and tQ2(ω0) = 1. The frequency derivative
of ρ2 at the resonance frequency is

ρ′2(ω0) = ρ′Q2
(ω0) + ρ′Q1

(ω0) =
i
ω0

(Q1 −Q2). (55)

Here, it is observed that it is possible to construct antennas with
an arbitrary small frequency derivative of the reflection coefficient.
Obviously, this is just an example of a matching network giving a
flat reflection coefficient [11]. The Q-factor of the antenna is on the
contrary increasing. The Q-factor of the circuit model is Q = Q1 +Q2.
This simple example indicates that it is very difficult to find a simple
relation between the frequency derivative of the reflection coefficient
(or equivalently the impedance) and the Q-factor of general antennas.
However, as shown with the Padé approximation in this paper and the
results in [14], the approximation is very accurate for many common
antennas.

7. CONCLUSIONS

In this paper, the Q factor of antennas is analyzed from an
approximation theory point of view. The reflection coefficient of an
antenna is approximated with a second order Padé approximation
around the resonance frequency. This resonance model is first order
accurate, and hence good for narrow bandwidths. The resonance model
is characterized by a Q-factor of an underlying RCL circuit, defined as
Qρ = ω|ρ′(ω)|. The Bode-Fano matching theory is used to determine
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the bandwidth of the approximate model. Moreover, it is shown that
the original antenna has the same bandwidth for sufficiently narrow
bandwidths.

Even if the Q-factor, defined by the stored and radiated energies,
of the antenna system is not used in the analysis, there is a close
resemblance between the Q-factor derived from the differentiated
reflection coefficient, Qρ, and the classical Q-factor, Q. It is shown
that Q ≈ Qρ for each spherical vector mode if Q is sufficiently large.
This is also seen for many antennas from the approximation of the
Q-factor Q ≈ ω|Z ′|/(2R) = Qρ considered in [14]. However, a simple
example is used to illustrate that there is not a simple relation between
Q and Qρ for every antenna.
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