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Abstract—Artificial boundary conditions, which can be identified as
Robin boundary conditions positioned at a complex space coordinate,
are introduced in order to obtain pertinent approximations for the
Green’s functions in grounded layered media. These artificial boundary
conditions include perfectly matched layers backed by perfectly electric
or magnetic conductors. As a first result, we obtain analytical
expressions for the differences of Green’s functions subject to different
boundary conditions. Since weighted sums of Green’s functions are
again Green’s functions, the need arises to solve an optimization
problem, in the sense of obtaining the optimal weighted mixture
of Green’s functions, as compared to the exact Green’s function.
Comprehensive eigenexpansions for the Green’s functions are given
in the general case, and a few examples illustrate the goodness of
fit between the approximate Green’s functions and the exact Green’s
function.

1. INTRODUCTION

In 1994 Berenger [1] proposed the perfectly matched layer (PML) to
truncate computational domains for use in the numerical solution of
Maxwell’s equations, without introducing reflections. The original
split-field approach of Berenger was reformulated in [2] in terms of
complex coordinate stretching and in [3] in terms of perfectly matched
anisotropic absorbers. More generally it was shown in [4] that the
complex coordinate stretching and diagonal anisotropy formulations
are equivalent in a general orthogonal coordinate system setting.
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Although PML’s can be used as absorbing boundary conditions in
numerical finite difference [5] and/or finite element techniques, it turns
out that they also have applications in semi-analytical techniques.
For instance in [6] an approximate eigenmode series expansion for
the Green’s function of an open layered substrate was obtained by
using a PML backed by a perfect electrical conductor (PEC) to turn
the originally open layered configuration into an closed waveguiding
system. For a more complete bibliography regarding the above
approach, together with some pertinent mathematical approximation
aspects of the PML method, we refer the reader to [7]. In that paper
the PML-PEC combination was identified as a Dirichlet boundary
condition positioned at a complex space coordinate or, putting it more
bluntly, a layer of complex thickness backed by a PEC plate.

In this paper we consider grounded Green’s functions, i.e. Green’s
functions with a Dirichlet condition at z = 0, which can be thought
of as the current return ground plane in actual layered circuitry.
We treat the general case of artificial boundary conditions (ArBC)
which can be identified (but not exhaustively) as Robin boundary
conditions positioned at a complex space coordinate. This includes
PML-PEC, but also the Neumann ArBC, which consists of a layer of
complex thickness backed by a perfectly magnetic conductor (PMC).
The goodness of fit of a given ArBC is then determined by the way it
compares to the exact outgoing Robin boundary condition (ORBC). It
is therefore necessary to obtain expressions for the difference of Green’s
functions subject to different ArBC’s. This is treated in Section 2.
Next, since weighted sums of Green’s functions are again Green’s
functions (under certain conditions), the problem of Green’s function
optimization, in the sense of obtaining the optimal weighted mixture of
ArBC Green’s functions, is tackled in Section 3. Last but not least, in
Section 4, comprehensive eigenexpansions for the Green’s functions are
given in the ArBC and mixture cases, and a few examples are proposed
to illustrate the goodness of fit between the different ArBC or mixture
Green’s functions and the exact ORBC Green’s function.

2. THE GROUNDED HANKEL DOMAIN

Any laterally symmetric scalar Green’s function in a layered medium
satisfies the source Helmholtz equation [8]

∇2G(ρ, z, z′) + κ(z)2G(ρ, z, z′) =
1

2πρ
δ(ρ)δ(z − z′) (1)

together with appropriate boundary conditions. With radiation
conditions [7] in the lateral direction, we can write this in the Hankel



Progress In Electromagnetics Research, PIER 62, 2006 71

domain as

−γ2G̃(γ, z, z′) +
d2

dz2
G̃(γ, z, z′) + κ(z)2G̃(γ, z, z′) = δ(z − z′) (2)

where G(ρ, z, z′) is retrieved by means of the Hankel transform

G(ρ, z, z′) =
1
2π

∫ ∞

0
J0(γρ)G̃(γ, z, z′)γ dγ (3)

Note also the Bessel-Parseval relation [9]
∫ ∞

0
|G(ρ, z, z′)|22πρ dρ =

1
2π

∫ ∞

0
|G̃(γ, z, z′)|2γ dγ (4)

Applying different boundary conditions to (2) will lead to different
solutions in the Hankel domain.
For example the Green’s function for a uniform halfspace (κ(z) = k0,
where k0 = ω/c is the free-space wavenumber, assuming a eiωt time
dependence) grounded at z = 0 is analytically given by

GH(ρ, z, z′) =
e−ik0

√
ρ2+(z+z′)2

4π
√
ρ2 + (z + z′)2

− e−ik0

√
ρ2+(z−z′)2

4π
√
ρ2 + (z − z′)2

(5)

which transforms in the Hankel domain to [10]

G̃H(γ, z, z′) = − 1
β

sinβz< e−iβz> (6)

where

β =
√
k2

0 − γ2 z< = min(z, z′) z> = max(z, z′) (7)

Note that β belongs to the branch cut line Γ formed by the negative
imaginary axis I− and the real interval [0, k0] ⊂ R+. Now let the region
of interest be 0 ≤ z, z′ ≤ 1, such that there is a certain amount of free
space left, i.e., κ(z) = k0 for z ∈ [1 − ι, 1], where 0 < ι ≤ 1. We can
write equation (2) with the new parameter β as

β2G̃(β, z, z′) +
d2

dz2
G̃(β, z, z′) − U(z)G̃(β, z, z′) = δ(z − z′) (8)

where

U(z) = k2
0 − κ(z)2 (9)
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Besides the grounded Dirichlet condition G̃(β, 0, z′) = 0 we must also
fix a boundary condition at z = 1. To obtain outgoing waves at z = 1
we need, in accordance with (6), the ORBC

G̃′(β, 1, z′) = −iβG̃(β, 1, z′) (10)

The problem with the ORBC is that it depends on β and hence on the
Hankel transform variable γ. We would be more pleased with a Robin
boundary condition (RBC)

G̃′(β, 1, z′) = τG̃(β, 1, z′) (11)

with τ a constant, since an expansion in terms of the eigenfunctions
and eigenvalues of the differential operator

Ly =
d2

dz2
y(z) + κ(z)2y(z) (12)

with boundary conditions y(0) = 0 and y′(1) = τy(1), see Section
4, would then offer an elegant pathway to an eigendecomposition of
the Green’s function. Note that τ = 0 corresponds with Neumann
boundary conditions and τ = ∞ with Dirichlet boundary conditions.
Unfortunately, as τ 
= −iβ, the Green’s function thus obtained would
certainly be not sufficiently close to the Green’s function with ORBC.
Another, more promising approach is the ArBC method. Suppose that
the Green’s function can be extended such that z belongs to C. Then
we could impose a constant parameter RBC at z = b, where b ∈ C. In
other words we require

G̃′(β, b, z′) = τG̃(β, b, z′) (13)

Now of course, when imposing the ArBC (13) leads to a unique
grounded Green’s function, this will in general trace back to a non-
constant RBC at z = 1, namely

G̃′(β, 1, z′) = ητ (β)G̃(β, 1, z′) (14)

In the event we were lucky enough to find ητ (β) = −iβ, this would of
course solve the problem. If this is not the case, then it is important to
compare the Green’s functions with ORBC and RBC defined by ητ (β),
respectively. In general we have the following
Theorem : Let G̃1,2(β, z, z′) be two Green’s functions satisfying
equation (8) with Dirichlet condition at z = 0 and respective non-
constant RBC’s

G̃′
1,2(β, 1, z

′) = η1,2(β)G̃1,2(β, 1, z′) (15)
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at z = 1. Then the error function Ẽ(β, z, z′) = G̃1(β, z, z′)−G̃2(β, z, z′)
can be written as

Ẽ(β, z, z′) =
φ(β, z)φ(β, z′)
φ(β, 1)2

[
1

η1(β) − φ′(β, 1)/φ(β, 1)

− 1
η2(β) − φ′(β, 1)/φ(β, 1)

]
(16)

where the regular solution φ(β, z) satisfies the homogeneous equation

β2φ(β, z) +
d2

dz2
φ(β, z) − U(z)φ(β, z) = 0 (17)

with boundary conditions φ(β, 0) = 0, φ′(β, 0) = 1.
Proof : The Green’s function G̃1(β, z, z′) can be written as

G̃1(β, z, z′) = −φ(β, z<)
ξ1(β, z>)
ξ1(β, 0)

(18)

where ξ1(β, z) is another independent solution of (17) satisfying the
RBC

ξ′1(β, 1) = η1(β)ξ1(β, 1) (19)

Since ξ1(β, z) can be written as

ξ1(β, z) = A1(β)φ(β, z) + φ(β, z)
∫ 1

z

ds

φ(β, s)2
(20)

where A1(β) is determined by the RBC as

A1(β)φ′(β, 1) − 1
φ(β, 1)

= A1(β)η1(β)φ(β, 1) (21)

and since

ξ1(β, 0) = lim
z→0

φ(β, z)
∫ 1

z

ds

φ(β, s)2
= 1 (22)

by de L’Hospital’s rule, we simply find that

G̃1(β, z, z′) = −φ(β, z<)ξ1(β, z>) (23)

Hence we have that the difference between the two Green’s functions
is

G̃1(β, z, z′) − G̃2(β, z, z′) = −φ(β, z<)(ξ1(β, z>) − ξ2(β, z>))
= −φ(β, z)φ(β, z′)(A1(β) −A2(β) (24)
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which can be written as (16). ✷

Corollary : Let G̃1(β, z, z′) satisfy the ORBC (10) and G̃2(β, z, z′)
satisfy the ArBC (13). Then the error function Ẽ(β, z, z′) =
G̃1(β, z, z′) − G̃2(β, z, z′) can be written as

Ẽ(β, z, z′) = −φ(β, z)φ(β, z′)
[

1
φ(β, 1)(φ′(β, 1) + iβφ(β, 1))

− 1
φ(β, b)(φ′(β, b) − τφ(β, b))

−
∫ b

1

dz

φ(β, z)2

]
(25)

Proof : Since G̃2(β, z, z′) satisfies (13) at z = b, we can write it as

G̃2(β, z, z′) = −φ(β, z<)
ξ(β, z>)
ξ(β, 0)

(26)

where τ = ξ′(β, b)/ξ(β, b). Now ξ(β, z) can be written as

ξ(β, z) = A(β)φ(β, z) + φ(β, z)
∫ b

z

ds

φ(β, s)2
(27)

where A(β) is determined by the ArBC as

A(β)φ′(β, b) − 1
φ(β, b)

= τA(β)φ(β, b) (28)

Traced back to z = 1 we obtain that

η2(β) =
φ′(β, 1)
φ(β, 1)

− 1

φ(β, 1)2
(
A(β) +

∫ b

1

dz

φ(β, z)2

) (29)

Solving (28) for A(β) and inserting η2(β) and η1(β) = −iβ in (16) we
obtain (25). ✷

Now since U(z) ≡ 0 for z ≥ 1, the regular solution φ(β, z) can be
analytically continued in z > 1 and in fact for 
z > 1. This means
that the values of the regular solution and its derivative at z = b, with

b > 1, can be traced back to the values at z = 1 by means of

φ(β, b) = φ′(β, 1)
sinβ(b− 1)

β
+ φ(β, 1) cosβ(b− 1) (30)

φ′(β, b) = φ′(β, 1) cosβ(b− 1) − βφ(β, 1) sinβ(b− 1) (31)
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Similarly we have that
∫ b

1

dz

φ(β, z)2
=

sinβ(b− 1)
βφ(β, 1)φ(β, b)

=
1

φ(β, 1) (φ′(β, 1) + βφ(β, 1) cotβ(b− 1))
(32)

It is seen that inserting (30)–(32) in (25) leads to an expression solely
depending on φ(β, z) and its derivative with values inside [0, 1] and
other functions depending on β, b. In the important Dirichlet case
τ = ∞ expression (25) becomes

ẼD(β, z, z′) = −φ(β, z)φ(β, z′)
φ(β, 1)

[
1

φ′(β, 1) + iβφ(β, 1)

− 1
φ′(β, 1) + βφ(β, 1) cotβ(b− 1)

]
(33)

and in the equally important Neumann case τ = 0 we obtain

ẼN (β, z, z′) = −φ(β, z)φ(β, z′)
φ(β, 1)

[
1

φ′(β, 1) + iβφ(β, 1)

− 1
φ′(β, 1) − βφ(β, 1) tanβ(b− 1)

]
(34)

It should be noted that, except for the Robin parameter τ and the
complex thickness b, the difference between the Green’s functions in
(25), (33) and (34) is completely determined by the regular solution
φ(β, z). For U(z) ≡ 0 the regular solution is readily obtained as
φ(β, z) = sin(βz)/β, whereas for U(z) 
≡ 0, the regular solution satisfies
the Volterra integral equation

φ(β, z) =
sinβz
β

+
∫ z

0

sin[β(z − z′)]
β

U(z′)φ(β, z′) dz′ (35)

The derivative φ′(β, z) is recovered by means of

φ′(β, z) = cosβz +
∫ z

0
cos[β(z − z′)]U(z′)φ(β, z′) dz′ (36)

It is known [11] that

|φ(β, z)| ≤ exp(|�β|z)
|β| exp

[
1
|β|

∫ z

0
|U(z′)| dz′

]
(37)
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when β 
= 0. A better bound, valid for all β ∈ C, was obtained in [12]:

|φ(β, z)| ≤ exp(|�β|z) Cz

1 + z|β| exp
[
C

∫ z

0
|U(z′)| z′

1 + z′|β| dz
′
]

(38)

and a slightly weaker bound is found in [13]:

|φ(β, z)| ≤ exp(|�β|z) Cz

1 + z|β| exp
[
Cz

∫ z

0
|U(z′)| dz′

]
(39)

The universal constant C in (38)–(39) is given by

C = sup
z∈C

| sin(z)|(1 + |z|)
|z| exp(|�z|) (40)

Expressions (37)–(39) define φ(β, z) as an entire function in the whole
β-plane for all fixed 0 < z ≤ 1, provided

∫ 1
0 |U(z)| dz < ∞. It should

be noted [11, 12] that φ(β, z) → sin(βz)/β when z → 0 and also
when |β| → ∞. Lastly, from bound (39), one can easily infer [13] that
φ(β, z), for fixed 0 < z ≤ 1, belongs to the class of Paley-Wiener entire
functions [14] Bp

z, p > 1. This implies that for all 0 < z ≤ 1 and for
all β ∈ C we can write down the cardinal series

φ(β, z) =
∑
n∈Z

φ
(nπ
z
, z

)
sinc (βz − nπ) (41)

and, see (36) and [13]:

φ′(β, z) = cosβz +
∑
n∈Z

[
φ′

(nπ
z
, z

)
− (−1)n

]
sinc (βz − nπ) (42)

3. OPTIMIZING GREEN’S FUNCTIONS

Let G̃0(β, z, z′) be the exact Green’s function with ORBC in the Hankel
domain. Then the Green’s function in the spatial domain can be found
by means of the Hankel transform

G0(ρ, z, z′) =
1
2π

∫ ∞

0
J0 (γρ) G̃0

(√
k2

0 − γ2, z, z′
)
γ dγ (43)

This would be the end of the story, were it not for the fact that the
Hankel transform a.k.a. Sommerfeld integral (43) is notoriously hard
to evaluate [7], because the integrand is often highly oscillatory and
exhibits singularities of the pole and branchpoint type. Hence our
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purpose is to avoid the Sommerfeld integral approach altogether and to
approximate G̃0(β, z, z′) in the Hankel domain by a mixture of Green’s
functions of the ArBC type for which, as will be shown in Section 4,
explicit eigenexpansions can be written down. Hence we propose the
approximation

G̃0(β, z, z′) ≈
M∑

k=1

qkG̃k(β, z, z′) (44)

where, for this approximation to be a valid Green’s function, we must
require that the complex coefficients qk are such that

M∑
k=1

qk = 1 (45)

The overall error Ẽ(β, z, z′) can be written as

Ẽ(β, z, z′) = G̃0(β, z, z′) −
M∑

k=1

qkG̃k(β, z, z′) =
M∑

k=1

qkẼk(β, z, z′) (46)

where Ẽk(β, z, z′) = G̃0(β, z, z′)−G̃k(β, z, z′). From the Bessel-Parseval
relation (4) we infer that minimizing the weighted squared error

E =
1
2π

∫ ∞

0
|Ẽ(β, z, z′)|2γ dγ (47)

in the Hankel domain is equivalent with minimizing the same weighted
squared error in the spatial domain.
There remains to find particular choices for z, z′. From the Corollary
and since the bounds (37)–(39) are strictly increasing with z, it seems
natural to take z = z′ = 1, the endpoint of the interval under
consideration. Since β dβ = −γ dγ, we can redefine the weighted
squared error E as

E =
1
2π

∫ k0

0
|Ẽ(β, 1, 1)|2β dβ +

1
2π

∫ ∞

0
|Ẽ(−iβ, 1, 1)|2β dβ (48)

Defining the Grammian matrix K as

Kk,l =
1
2π

∫ k0

0
Ẽk(β, 1, 1)Ẽl(β, 1, 1)β dβ

+
1
2π

∫ ∞

0
Ẽk(−iβ, 1, 1)Ẽl(−iβ, 1, 1)β dβ (49)
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it is straightforward to show that the solution of the constrained
minimization of E under constraint (45) is given by the vector

q = K−1f/f∗K−1f (50)

where f is a vector with all its entries ones. The minimum value for E
is given by

E = q∗Kq = 1/f∗K−1f (51)

By construction, we have that the minimal value satisfies E ≤
minkKk,k, and hence, in order to measure the amelioration produced
by the optimization procedure, we can define the enhancement factor
A as

A = min
k
Kk,k/E ≥ 1 (52)

Of course, the integrals (49) defining the entries of the Hermitian
symmetric positive definite Grammian matrix K have to be evaluated,
and this may be a difficult task. But it is an even more stringent
requirement to ensure that these integrals are actually finite. It is
sufficient to prove that the diagonal elements Kk,k < ∞, since by the
Cauchy-Schwartz inequality we have that

|Kk,l|2 ≤ Kk,kKl,l (53)

If we restrict ourselves to Dirichlet and Neumann ArBC’s we have

ẼD(β, 1, 1, b) =
φ(β, 1)

φ′(β, 1) + βφ(β, 1) cotβ(b− 1)
− φ(β, 1)
φ′(β, 1) + iβφ(β, 1)

(54)

and

ẼN (β, 1, 1, b) =
φ(β, 1)

φ′(β, 1) − βφ(β, 1) tanβ(b− 1)
− φ(β, 1)
φ′(β, 1) + iβφ(β, 1)

(55)

Since φ(β, z) and φ′(β, z) tend to the unperturbed functions sin(βz)/β
and cos(βz), respectively, for |β| → ∞ [12], we can insert these
unperturbed functions in (54) and (55), yielding

ẼD,∞(β, 1, 1, b) = 2i
sin2 β

β
(
1 − e2iβb

) (56)



Progress In Electromagnetics Research, PIER 62, 2006 79

and

ẼN,∞(β, 1, 1, b) = 2i
sin2 β

β
(
1 + e2iβb

) (57)

For integrals of the form (48) to be finite for ẼD,∞(β, 1, 1) and
ẼN,∞(β, 1, 1) it is not hard to show by inspection that the complex
thickness b must mandatorily belong to the quadrant D0 defined as

D0 = {z ∈ C : 
z > 1 and �z ≤ 0} (58)

However, it is better to work in the open quadrant D ⊂ D0 defined as

D = {z ∈ C : 
z > 1 and �z < 0} (59)

since when b ∈ D, it is seen that the error functions ẼD,∞(β, 1, 1)
and ẼN,∞(β, 1, 1) decrease exponentially when β → ∞ in R+ and also
when β → −i∞ in I− .

3.1. Examples

As a first example we consider the approximation of the grounded
unperturbed halfspace Green’s function (5) in the Hankel domain
by means of a mixture of M = 2 ArBC Green’s functions. We
take k0 = 1, b1 = 1.3 − 0.5i and b2 = 1.3 − 0.6i inside D. Note
of course that q2 = 1 − q1. For a mixture of two Dirichlet ArBC
Green’s functions with error functions Ẽ1(β, 1, 1) = ẼD,∞(β, 1, 1, b1)
and Ẽ2(β, 1, 1) = ẼD,∞(β, 1, 1, b2) we obtain q1 = −1.41351−3.565961i
with an enhancement factor A = 1.989. For a mixture of a Dirichlet and
a Neumann ArBC Green’s functions with error functions Ẽ1(β, 1, 1) =
ẼD,∞(β, 1, 1, b1) and Ẽ2(β, 1, 1) = ẼN,∞(β, 1, 1, b1) we obtain q1 =
0.502025 + 0.112657i with a better enhancement factor A = 8.82408.
As a second example we consider the one-layer configuration

U(z) = u for 0 ≤ z ≤ a ≤ 1 else U(z) = 0 (60)

The regular solution and its derivative are given by

φ(β, z) =
sin(z

√
β2 − u)√

β2 − u
φ′(β, z) = cos(z

√
β2 − u) (61)
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for 0 ≤ z ≤ a and (in convenient matrix format)

(
φ(β, z)
φ′(β, z)

)
=


 sinβz

β
cosβz

cosβz −β sinβz





 sinβa

β
cosβa

cosβa −β sinβa




−1

·




sin(a
√
β2 − u)√

β2 − u
cos(a

√
β2 − u)


 (62)

for a ≤ z ≤ 1. The complex thicknesses b1 and b2 remain as before and
we take a = 0.5 and u = 1. For a mixture of two Dirichlet ArBC
Green’s functions with error functions Ẽ1(β, 1, 1) = ẼD(β, 1, 1, b1)
and Ẽ2(β, 1, 1) = ẼD(β, 1, 1, b2) we obtain q1 = −1.3422 − 3.52712i
with an enhancement factor A = 2.01611. For a mixture of a
Dirichlet and a Neumann ArBC Green’s functions with error functions
Ẽ1(β, 1, 1) = ẼD(β, 1, 1, b1) and Ẽ2(β, 1, 1) = ẼN (β, 1, 1, b1) we
obtain q1 = 0.492679 + 0.110289i with a better enhancement factor
A = 8.69621. The integrations were performed with the standard
MATHEMATICA r© function NIntegrate. We may therefore conclude
that mixtures of Dirichlet and Neumann ArBC’s generally exhibit
better enhancement factors.

4. EIGENEXPANSIONS

Suppose we impose the ArBC

G̃′(β, b, z′) = τG̃(β, b, z′) (63)

with b ∈ D. Then, taking into account the grounded condition
G̃(β, 0, z′) = 0, it is clear [7, 8] that solving the eigenvalue problem

d2

dz2
ψ(z) + κ(z)2ψ(z) = −λψ(z) (64)

with boundary conditions

ψ(0) = 0, ψ′(b) = τψ(b) (65)

leads to a comprehensive series expansion for the spatial Green’s
function G(ρ, z, z′) with defining equation (1), which can be
reformulated as

∇2
ρG(ρ, z, z′) +

d2

dz2
G(ρ, z, z′) + κ(z)2G(ρ, z, z′) =

1
2πρ

δ(ρ)δ(z − z′)
(66)



Progress In Electromagnetics Research, PIER 62, 2006 81

Using separation of variables [8] we obtain the Green’s function series
expansion

G(ρ, z, z′) =
i

4

∞∑
n=1

H
(2)
0 (−iρ

√
λn)ψn(z)ψn(z′) (67)

where the {ψn(z)} are the normalized eigenfunctions. From the
construction of the regular solution φ(β, z), it is readily verified that
the eigenfunctions can be written as

ψn(z) = dnφ(βn, z) (68)

and are b−orthonormal in the assumption of non-degeneracy, i.e.,
∫ b

0
ψn(z)ψm(z) dz = δn,m (69)

Note that the complex integration path [0, b] in (69) must consist of the
real interval [0, 1] together with a simple Jordan arc from 1 to b. The
parameters βn are obtained by solving the transcendental equation

φ′(β, b) = τφ(β, b) (70)

and the eigenvalues λn are given by

λn = β2
n − k2

0 (71)

Equation (70) can be solved by tracing back to b = 1 by means of
equations (30)–(31). Furthermore, since the values of φ(β, 1) and
φ′(β, 1) for all β ∈ C are uniquely determined by the the values
φ(nπ, 1) and φ′(nπ, 1) with n ∈ Z, we could utilize the cardinal series
(41) and (42) to actually calculate the βn as in [13]. However, both
that approach and the explicit solving of (70) require accurate root
finding programs, and these are not in general easily come by. A more
appealing technique is the following perturbation approach. Suppose
we have obtained the eigenfunctions {χn(z)} and the eigenvalues {µn}
pertaining to the unperturbed eigenvalue problem

d2

dz2
χ(z) = −µχ(z) (72)

with the same boundary conditions

χ(0) = 0, χ′(b) = τχ(b) (73)
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If we suppose the {χn(z)} complete in L2[0, 1], we can expand any
eigenfunction ψn(z) of the original eigenvalue problem (64)–(65) as

ψn(z) =
∑

k

Dn,kχk(z) (74)

Inserting this in (64) we obtain

−
∑

k

Dn,kµkχk(z) + κ(z)2
∑

k

Dn,kχk(z) = −λn

∑
k

Dn,kχk(z) (75)

Utilizing the b−orthonormality (69) we obtain via Galerkin projection

−Dn,mµm +
∑

k

Dn,k

∫ b

0
χm(z)κ(z)2χk(z) dz = −λnDn,m (76)

If we truncate the expansions (67) and (74) to their first N terms, the
equations (76) can be written in matrix format as

DΥ +DP = ΛD (77)

where the entries of the matrix P are given by

Pk,l = −
∫ b

0
χk(z)κ(z)2χl(z) dz =

∫ 1

0
χk(z)U(z)χl(z) dz − k2

0δk,l

(78)

and Υ = diag (µ1, . . . , µN ), Λ = diag (λ1, . . . , λN ). The eigendecom-
position

P + Υ = QΛQ−1 (79)

then provides the eigenvalues λn and the matrix D = Q−1, assuming P
diagonalizable. Since P is complex symmetric, in other words P = P T

(but not Hermitian symmetric: P 
= P ∗ in general), the eigenvectors
can be chosen to be complex orthonormal [16], i.e., QTQ = I, in
conformity with the b−orthonormality requirementDDT = I, see (69).
Next we discuss the important Dirichlet and Neumann cases.

4.1. The Dirichlet Case

In the unperturbed Dirichlet case τ = ∞, U(z) = 0 we have the Hankel
domain Green’s function

G̃D,∞(β, z, z′, b) = −sinβz<
β

sinβ(b− z>)
sinβb

(80)
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The corresponding spatial Green’s function, being the Hankel
transform (3) of (80), can be written [15] as

GD,∞(ρ, z, z′, b) = − 1
4π

∼
∫

R
H

(2)
0 (γρ)

sinβz<
β

sinβ(b− z>)
sinβb

γ dγ (81)

where ∼
∫

R stands for an integral over a path in the open lower halfplane
just below the branch-cut [−∞, 0], together with the positive real axis
(0,∞]. Since the integrand in (81) is meromorphic in the open lower
halfplane, and since γ dγ = −β dβ, we can utilize the residue theorem
to write down the expansion

G(ρ, z, z′) =
i

4

∞∑
n=1

H
(2)
0

(
−iρ

√
µn − k2

0

)
χn(z)χn(z′) (82)

where the eigensystem {χn(z) , µn} is given by

χn(z) =

√
2
b

sin
(nπz
b

)
µn =

(nπ
b

)2
(83)

One deduces straightforwardly that the series (82) converges
exponentially when

ρ > (z + z′)
|�b|

b (84)

and diverges exponentialy when

ρ < (z + z′)
|�b|

b (85)

a result which is in conformity with the analysis in [7]. In [10] it was
proved that {χn(z)} is complete in L2[0, 1] provided |b| ≥ 1. The matrix
P is given by

Pk,l =
2
b

∫ 1

0
sin

(
kπz

b

)
U(z) sin

(
lπz

b

)
dz − k2

0 δk,l (86)

which can be easily calculated analytically when U(z) is piecewise
polynomial, piecewise exponential, etc.

4.2. The Neumann Case

In the unperturbed Neumann case τ = 0, U(z) = 0 we have the Hankel
domain Green’s function

G̃N,∞(β, z, z′, b) = −sinβz<
β

cosβ(b− z>)
cosβb

(87)
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The corresponding spatial Green’s function is given by

GN,∞(ρ, z, z′, b) = − 1
4π

∼
∫

R
H

(2)
0 (γρ)

sinβz<
β

cosβ(b− z>)
cosβb

γ dγ (88)

yielding the expansion (82) where the eigensystem {χn(z) , µn} is now
given by

χn(z) =

√
2
b

sin
(

(n− 1/2)πz
b

)
µn =

(
(n− 1/2)π

b

)2

(89)

The series (82) with the Neumann eigensystem (89) converges or
diverges under the same conditions as in the Dirichlet case. The matrix
P is given by

Pk,l =
2
b

∫ 1

0
sin

(
(k − 1/2)πz

b

)
U(z) sin

(
(l − 1/2)πz

b

)
dz − k2

0 δk,l

(90)

4.3. Examples

We consider the examples treated in Subsection 3.1. Since mixtures of
the Neumann and Dirichlet ArBC type exhibit the best enhancement
factors we only consider this mixture type ArBC. We take k0 = 1
and the complex thickness b = 1.3 − 0.5i. The first example considers
the approximation of the grounded unperturbed halfspace Green’s
function (5) by means of a Neumann-Dirichlet ArBC mixture with
q1 = 0.502025 + 0.112657i and truncation at N = 32. The results are
shown in Figure 1. It is seen that the mixture ArBC is better than the
Neumann or Dirichlet ArBC’s taken separately.
The second example considers the one-layer configuration of Subsection
3.1 with a = 1/2 and u = 1. At the interface z = z′ = a = 1/2 the
ORBC Hankel domain Green’s function is

G̃(γ, 1/2, 1/2) =




− 1
i
√

1 − γ2 + γ coth(γ/2)
for 0 ≤ γ ≤ 1

− 1√
γ2 − 1 + γ coth(γ/2)

for γ ≥ 1

(91)

The spatial Green’s function G(ρ, 1/2/1/2) is obtained via the Hankel
transform (3) of (91). We approximate G(ρ, 1/2/1/2) by means of a
Neumann-Dirichlet ArBC mixture with q1 = 0.492679+0.110289i and
truncation at N = 32. Since the imaginary part of G(ρ, 1/2/1/2), in
contradistinction with its real part, is easily evaluated by means of a
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Figure 1. The absolute error (in dB) |GH(ρ, 1/2, 1/2) −
GArBC(ρ, 1/2, 1/2)| in the Dirichlet, Neuman and Mixture cases.
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Figure 2. The absolute error (in dB) |�[G(ρ, 1/2, 1/2) −
GArBC(ρ, 1/2, 1/2)]| in the Dirichlet, Neuman and Mixture cases.
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finite integral (evaluated with MATHEMATICA r© NIntegrate) with
integration variable γ ∈ [0, 1], as seen in (91), we only compare the
imaginary parts of the errors for the different approximations. The
results are shown in Figure 2. It is seen that the Neumann ArBC is
much better than the Dirichlet or mixture ArBC’s up to ρ ≈ 5, whereas
for ρ > 5 the mixture ArBC tends to be better.
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