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Abstract—It has been observed that localized solution modes provide
sparse factored representations of the discrete integral equations
encountered in the simulation of electromagnetic phenomena at low
frequencies. This paper extends these results by incorporating
overlapped localizing modes. For TMz scattering from a rectangular
array of perfectly conducting obstacles, it is observed that the
complexity scaling of the resulting factorization is significantly reduced
relative to previously reported results. The memory complexity of
the resulting factored representation scales approximately as O(N) for
electrically small arrays. Limitations and possible extensions of these
results are discussed.

1. INTRODUCTION

Numerical solutions of surface integral equation formulations of time-
harmonic electromagnetic interactions with perfect electric conductors
(PECs) require solving linear systems of the form [1]

Ei + ZJ = 0, (1)

where Z is the N -by-N impedance matrix, the vector J contains the
coefficients of the basis functions used to represent the electric currents
on the conductor, and the vector Ei is determined by samples of an
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impressed electric field. The purpose of this paper is to summarize
and demonstrate a sparse direct solution strategy for discretizations of
(1) obtained for low-frequency, TMz scattering applications. These
results were initially presented as [2]. (In this paper, the phrase
“low-frequency” is used to refer to a situation in which the maximum
linear dimension of a scattering configuration is small relative to the
wavelength of the harmonic excitation.)

The low-frequency factorization and solution strategy discussed
below relies on previous work providing sparse implementations of
Z−1 using so-called local-global solution (LOGOS) modes [3–7]. A
LOGOS mode is a solution (J) of the global boundary condition (1)
that is localized to order-ε within a smaller part of the global simulation
domain. These modes can be divided into radiating and nonradiating
types. Because we restrict our attention in this paper to low-frequency
applications of (1), it is only necessary to incorporate the nonradiating
modes in order to determine O(N) factored representations of Z.

In [3–7], a nonradiating LOGOS mode is defined as a solution
to (1) in which both the surface current and the associated scattered
fields are localized to the same small spatial region. In the following
we generalize previous definitions of nonradiating LOGOS modes
to include solution modes in which the currents are localized to
overlapping spatial regions. However, as in [3–7], the scattered fields
remain localized to non-overlapping spatial regions. Such modes
are hereinafter referred to as overlapped localizing LOGOS (OLL)
modes. The use of such modes in determining O(N) sparse factored
representations of the impedance matrix was originally reported in [2].

The remainder of this paper is organized as follows. Section 2
outlines the components of the proposed solution strategy. Section 3
summarizes the multilevel quad-tree grouping strategy and some
related notation, and Section 4 recapitulates the multilevel simply
sparse method (MLSSM), which provides a sparse representation of Z.
Sections 5 to 8 define the overlapped LOGOS modes, the associated
sparse factorization strategy of the MLSSM representation of Z, and
the resulting sparse direct solution strategy for (1). Section 9 contains
representative numerical examples. The paper is summarized and areas
for additional work are identified in Section 10.

2. OUTLINE OF SPARSE SOLUTION STRATEGY

Given an arbitrary set of linearly independent excitation vectors, Ei,
and a sparse representation of Z, we are interested in efficiently
determining a sparse factored representation of Z, accurate to order-
ε, which can be used to rapidly determine the corresponding solution
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Figure 1. Proposed direct solution strategy. This paper discusses the
algorithms associated with the blocks inside the dashed box.

vectors, J = −Z−1Ei.
Figure 1 illustrates the structure of the solution strategy

considered in this paper. The procedure begins by using a fast scheme
to determine a sparse, O(N logN), SVD-based representation of Z
from sparse samples of the underlying free-space TMz kernel. The
procedure used to determine the SVD-based representation from sparse
samples of Z is essentially similar to algorithms previously reported
elsewhere [8] and will not be discussed further here. As indicated in
the figure, the relative RMS error between the compressed form and
the actual impedance matrix is required to be O(ε2), where ε is the
desired RMS error in the boundary condition (1).

The sparse, SVD-based representation is subsequently trans-
formed into the O(N) sparse MLSSM (multilevel simply sparse
method) representation discussed in [9] and summarized below. The
details of the procedure used to determine the O(ε2) MLSSM represen-
tation of Z from the SVD-based representation will be communicated
separately.

This paper focuses on the remaining two blocks of the solution
procedure indicated in Figure 1. In particular, the following discussion
assumes the availability of an O(ε2) MLSSM representation of Z
and proceeds to manipulate this into a factored form amenable to
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fast sparse implementations of Z−1 via overlapped, localizing LOGOS
modes.

3. SPATIAL GROUPS

The LOGOS factorization algorithm for the MLSSM representation
of Z relies on a multilevel spatial decomposition of the underlying
geometry. This is accomplished in the following examples using a
multilevel quad-tree. The resulting spatial groupings are similar to
those used to implement the multilevel fast multipole algorithm in
two dimensions [10]. As demonstrated elsewhere, alternate multilevel
organizations of target points may provide additional efficiency gains
in some instances [6]. This possibility is not considered here.

The number of levels in the quad-tree will be denoted by L. The
individual levels are indexed by l, l = 1, . . . , L. The level l = 1 is
the root level of the tree. The root level consists of a single group
containing all spatial samples. The number of nonempty groups at the
lth level of the tree is M(l), and the number of spatial samples in each
group is approximately m(l) = N/M(l). The total number of levels,
L, is chosen so that the smallest spatial group in each branch of the
multilevel tree contains approximately ten points.

At a given level (level-l) of the tree, those groups having
boundaries which touch the box bounding the ith group are referred
to as the level-l near-neighbors of the ith group. (The ith group is also
considered to be a near-neighbor to itself.) The remaining groups at
level-l are referred to as distant (or non near-neighbor) groups.

In the following discussion it will at times be convenient to indicate
the ith group at level-l using the notation i(l). Similarly, the notation
Gi(l) will be used to indicate the columns of a given matrixG associated
with sources in the ith level-l group. The notation {i(l), n} will be
used to indicate the set of all level-l groups which are near-neighbors
of group i(l). Thus, the matrix G{i(l),n} indicates the columns of G
associated with source degrees of freedom located in groups which are
near-neighbors of group i(l).

4. MLSSM REPRESENTATION OF Z

The multilevel simply sparse method (MLSSM) provides a compressed
representation of the impedance matrix [9]. The complexity of
the MLSSM representation of Z is O(N) for electrically small
configurations (this is demonstrated by the numerical examples of
Section 9). The MLSSM also provides a convenient representation
of the LOGOS-based projections of Z indicated by (8) and (9) below.



Progress In Electromagnetics Research, PIER 61, 2006 295

The structure of the MLSSM is indicated by the following
multilevel recursion:

Zm = Ẑm + UH
mZm−1Vm. (2)

If the MLSSM recursion indicated by (2) is used to provide a multilevel
compressed representation of Z in (1), the original impedance matrix
is recovered from (2) when m = L (i.e., Z = ZL).

In (2), Ẑm is the sparse matrix containing all near-neighbor
interactions at level-m of the quad-tree which were not represented
at a finer level of the tree. The matrices Um and Vm are non-
rectangular, orthonormal, block diagonal matrices which effectively
compress interactions between non-touching groups at level-m of the
quad-tree. This compression is accomplished by using a singular value
decomposition to determine the minimum number of DoF (degrees of
freedom) required to represent interactions between separated sources
and observers [9].

The MLSSM representation (2) will be used in the following to
compress both the impedance matrix, Z, and level-l projections of the
impedance matrix (cf. (8) and (9)). In all such instances, (2) is valid
for m = 3, . . . , l. When m = 2, equation (2) reduces to

Z2 = Ẑ2. (3)

The matrices U2 and V2 are not defined in this case because all
interactions at level-2 are between touching (i.e., near-neighbor)
groups. For the same reason, the recursion indicated by (2) and (3) is
not continued to level-1. The original impedance matrix is recovered
from (2) when m = l = L:

Z = ZL. (4)

The MLSSM discussed above and in [9] is a multilevel modification of
the simply sparse method (SSM) previously discussed by Canning and
Rogovin [11].

The LOGOS-based factorization procedure discussed below
assumes the availability of an O(ε2) L-level MLSSM representation
of Z. Given this representation, the remainder of the paper illustrates
the determination of a sparse, O(ε) factored representation of Z via
overlapped, localizing LOGOS modes.

5. OVERLAPPED LOCALIZING LOGOS MODES

Previously reported LOGOS-based sparse factorization algorithms for
Z at low frequencies utilize nonoverlapped, localizing LOGOS modes
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Figure 2. Two-level quad-tree decomposition of a general scatterer
in two dimensions.

[3–7]. These modes were obtained by analyzing the impedance matrix
to determine surface current modes satisfying (1) for which both
the current, J , and the scattered field, ZJ , are localized (within
O(ε)) to identical spatial groups. Due to the reliance on standard,
nonoverlapping, multilevel spatial decompositions (quad- and oct-
trees), the computational efficiencies of these algorithms are limited
to approximately O(N1.5) in two dimensions and O(N2) in three
dimensions.

These computational efficiencies are a consequence of constraining
LOGOS modes to nonoverlapping spatial groups. For example,
consider the two-level quad-tree decomposition of a general two-
dimensional target illustrated in Figure 2. Assuming a total of N
unknowns and a uniform discretization of the shaded region indicated
in the figure, it follows that there are O(

√
N) degrees of freedom along

any line which crosses through the center of the scatterer. Two such
boundaries are introduced at level-2 of the quad-tree decomposition of
the target. Any DoF which might be localized in a small neighborhood
which intersects one of the level-2 boundaries cannot be captured until
the root level of the quad-tree is reached. Since there are about
O(

√
N) such DoF (for large N at low frequency), it follows that the

computational complexity of previously reported LOGOS factorization
algorithms are bounded from below by O(N1.5) for general targets in 2-
D. A similar argument demonstrates that the complexity of previously
reported 3-D LOGOS factorization algorithms is bounded from below
by O(N2).

These complexities can be significantly reduced by expanding Z
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Figure 3. Illustration of overlapped LOGOS mode definition.
Rectangles represent different groups at a given level of the quad tree
decomposition. The black shaded block represents the “self ” group,
and the gray shaded blocks represent the self group’s near-neighbors.
For the indicated self group: an overlapped, localizing LOGOS (OLL)
mode is defined as a current (J) that is generally nonzero in all the
shaded blocks (self and near-neighbor), and which produces a scattered
field, ZJ , that is nonzero only within the self group (to O(ε)).

in a basis of overlapped localizing LOGOS (OLL) modes. An OLL
mode is defined by a source (J) which is generally confined to a larger
spatial region than the scattered field (ZJ) [2]. The specific OLL mode
definition used in this paper is provided in Figure 3. As indicated in
the figure, at level-l, an overlapped localizing LOGOS mode associated
with group i(l) is defined as a current (J) which is nonzero in the set
of near-neighbor groups, {i(l), n}, and produces a scattered field, ZJ ,
which is nonzero only within the self group, i(l).

The LOGOS-based factorization algorithm described below uses
a multilevel basis of these OLL modes to obtain a sparse factorization
of the MLSSM representation of Z.

6. LOGOS FACTORIZATION OF MLSSM
REPRESENTATION OF Z

The LOGOS-based factorization strategy summarized in this section
consists of combining the Schur decomposition strategy reported in [7]
with: (1) the MLSSM representation summarized above and in [9],
and (2) the OLL modes defined in the previous section. We begin the
discussion by recapitulating the basic features of the LOGOS-based
Schur factorization algorithm.
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6.1. LOGOS-based Schur Factorization

The LOGOS-based Schur factorization algorithm is reported in [7].
The matrix

Λl =
[
Λ(L)

l ,Λ(N)
l

]
(5)

indicates the decomposition of the columns of the level-l LOGOS
transformation (Λl) into current modes that generate scattered fields
which are (Λ(L)

l ) and are not (Λ(N)
l ) localized within a single level-

l group. A similar segregation of the columns of the associated
projection matrix, Pl, is also possible (we use Pl to indicate the
projection operator in this paper; the same operator was denoted Vl in
[7]):

Pl =
[
P

(L)
l , P

(N)
l

]
. (6)

As discussed in [7], the block diagonal matrix Pl is determined by
the (localized) scattered fields, ZΛ(L)

l . Notice in (5) and (6) that the
superscript (L) is used to indicate portions of the operators Λl and Pl

associated with LOGOS modes that generate scattered fields localized
to a single level-l group. The superscript (N) is used to indicate
quantities with degrees of freedom (DoF) that are not localized to
a single level-l group.

With these definitions, the level-l impedance matrix can be
represented as

Z
(NN)
l+1 =

(
PH

l

)−1
PH

l Z
(NN)
l+1 ΛlΛ−1

l ≈
(
PH

l

)−1


 I Z

(LN)
l

0 Z
(NN)
l


 Λ−1

l ,

(7)
where the approximation is accurate to O(ε) [7]. (Observe that the
level-l transformations Λl and Pl are applied to the level-(l+1) operator
Z

(NN)
l+1 .) When l = L we recover the impedance matrix: Z = Z(NN)

l+1 .

The submatrices Z(LN)
l and Z(NN)

l in (7) are defined in terms of
the components of Λl and Pl,

Z
(LN)
l =

(
P

(L)
l

)H
Z

(NN)
l+1 Λ(N)

l , (8)

Z
(NN)
l =

(
P

(N)
l

)H
Z

(NN)
l+1 Λ(N)

l . (9)

The submatrix Z(LN)
l indicates the simultaneous projection of (i) the

domain of Z(NN)
l+1 onto non-localizing level-l LOGOS modes, Λ(N)

l , and

(ii) the range of Z(NN)
l+1 onto the conjugate (cf. [7]) of the scattered
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Figure 4. Illustration of the general structure of overlapped LOGOS
transformation matrix, Λl. The structure of the decomposition (5) is
evident in the figure, with the nondiagonal, localizing submatrix Λ(L)

l
appearing on the left, and the block diagonal, nonlocalizing submatrix
Λ(N)

l on the right.

fields Z(NN)
l+1 Λ(L)

l . The matrix Z(NN)
l is similarly interpreted. The

dimensions of the submatrices appearing on the right side of (7) are
determined by the number of local (L) and nonlocal (N) LOGOS
modes determined at level-l, which in turn depends on the properties
of the underlying scattering problem.

In this paper we are interested in using a Schur decomposition with
the same structure used in [7] (indicated by (5) through (9) above),
but which is based on the overlapped localizing LOGOS (OLL) modes
discussed in the previous section. The primary difference introduced
by this modification is in the structure of the submatrix Λ(L)

l of Λl.
The matrices Λl and Pl used with the Schur factorization algorithm
reported in [7] were both permuted block diagonal matrices for all l
(see illustrations in [7]). Due to the present use of the overlapping
LOGOS modes, the Λl obtained in the algorithm reported in this
paper are no longer block diagonal. Figure 4 illustrates the typical
structure of the Λl associated with the algorithm reported in this
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paper. It is evident from the figure that the structure of the Λ(L)
l

component of Λl is no longer block diagonal. However, the portion of
Λl associated with modes that are not localized to level-l (i.e., Λ(N)

l )
remains block diagonal. Similarly, due to the manner in which the
overlapped localizing LOGOS modes have been defined (see Section
5), the projection operators Pl remain block diagonal.

Hence, apart from the modification of Λl resulting from our use
of overlapped localizing LOGOS modes to define Λ(L)

l , the structure of
the multilevel Schur factorization algorithm reported in [7] remains
unchanged. That algorithm consists of recursively applying the
decomposition strategy indicated by (7) to the submatrices Z(NN)

l
obtained at each level of the recursion. In this way, a factored
representation of Z is determined which is defined by the matrices
Λl, Pl, Z

(LN)
l and the matrix Z(NN)

3 obtained at level-3, at which level
the multilevel recursion stops. (The multilevel recursion was continued
to level-2 in [7]. Due to our use of overlapped modes in the present
paper, the recursion is herein terminated at level-3.)

In order to render this overlapped factorization algorithm
more computationally efficient than previously reported results, two
requirements must be met:

1. It is necessary to define a fast algorithm capable of determining
the overlapped localizing modes (used to define Λl and Pl at each
level) from the Z(NN)

l .

2. A sparse storage format is required for the Z
(LN)
l and the

intermediate Z(NN)
l operators. (As indicated above, although only

Z
(NN)
3 is required in the final factored representation for Z, the
Z

(NN)
l must be temporarily stored at each level of the recursion

and used to define the subsequent transformation matrices Λl−1

and Pl−1.)
Both of these requirements are satisfied below using the MLSSM
representation. The use of the MLSSM to store Z(LN)

l and Z(NN)
l

(requirement 2) is discussed in Section 6.2. The resulting MLSSM
representations can subsequently be used to compute the OLL modes
at each level (requirement 1). The algorithm used to accomplish this
is described in Section 6.3.

Finally, we observe that alternate versions of the LOGOS-based
factorization strategy discussed in this paper can be obtained by
using other methods capable of providing sparse representations of the
impedance matrix and its projections. One such possibility is indicated
in Section 10.
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6.2. Sparse Representations of Z(LN)
l and Z(NN)

l

The MLSSM provides a convenient format to store the impedance
matrix, Z, and its projections, Z(LN)

l and Z(NN)
l , at each level of the

multilevel tree. To illustrate, consider the level-l projection of Z(NN)
l+1

indicated by (7). Assume that the matrix Z(NN)
l+1 on the left of this

equation has an l-level MLSSM representation with the form indicated
by (2):

Zm = Ẑm + UH
mZm−1Vm, (10)

where 3 ≤ m ≤ l. In this case, Z(NN)
l+1 is recovered from (10) when

m = l : Z(NN)
l+1 = Zl.

As discussed above, the matrices Λl and Pl are (permuted) block
diagonal, except for the columns of Λl which correspond to overlapped
level-l localizing modes (i.e., the submatrix Λ(L)

l ). Furthermore, the
diagonal blocks of Λ(N)

l and Pl are coincident with the diagonal blocks
of Ul and Vl obtained from the MLSSM representation (10) when
m = l. Hence, the block diagonal portions of Λl and Pl can be
rapidly applied to the MLSSM representation of Z(NN)

l+1 by applying
them only to the exterior Ul and Vl matrices and the sparse near-
neighbor operator Ẑl obtained from (10) when m = l.

In this way, the MLSSM representation of Z(NN)
l in (7) is obtained

from the MLSSM representation of Z(NN)
l+1 indicated by (10) as

Z
(NN)
l =

(
P

(N)
l

)H
Z

(NN)
l+1 Λ(N)

l

=
(
P

(N)
l

)H (
Ẑl + UH

l Zl−1Vl

)
Λ(N)

l , (11)

= Ẑ
(NN)
l +

(
U

(N)
l

)H
Zl−1V

(N)
l

where Ẑ(NN)
l =

(
P

(N)
l

)H
ẐlΛ

(N)
l , U

(N)
l = UlP

(N)
l , V

(N)
l = VlΛ

(N)
l and

Zl−1 is unaffected by the projections. The MLSSM representation of
Z

(LN)
l is similarly obtained.

At this point it is useful to make two observations. First, notice
that the non block-diagonal portion of Λl (Λ(L)

l , cf. Figure 4) is not
used in obtaining the matrices Z(LN)

l and Z
(NN)
l required by the

factorization (7). (The effect of Λ(L)
l is to generate the submatrices

I and 0 in (7).) This is essential to maintaining the basic, nested
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structure of the MLSSM representation at each level of the recursive
factorization indicated by (7).

Secondly, we observe that the multilevel factorization algorithm
of [7] applies the LOGOS factorization indicated by (7) to the
Z

(NN)
l obtained at successively coarser levels of the multilevel tree.

For example, the next step in the multilevel LOGOS-based Schur
factorization of (7) will consist of determining Λl−1 and Pl−1 from,
and applying them to, Z(NN)

l . Because Λl−1 and Pl−1 must be defined
on groups at level-(l−1), it is necessary to collapse the l-level MLSSM
representation of Z(NN)

l in (7) to an (l−1)-level MLSSM representation
prior to determining Λl−1 and Pl−1. This collapse of the MLSSM
representation is efficiently accomplished by expanding Zl−1 in the last
line of (11) to obtain

Z
(NN)
l = Ẑ

(NN)
l +

(
U

(N)
l

)H
Ẑl−1V

(N)
l

+
(
U

(N)
l

)H
(Ul−1)HZl−2Vl−1V

(N)
l

= Ẑ
(NN)
l−1 +

(
U

(N)
l−1

)H
Zl−2V

(N)
l−1 (12)

where

Ẑ
(NN)
l−1 = Ẑ

(NN)
l +

(
U

(N)
l

)H
Ẑl−1V

(N)
l , (13)

U
(N)
l−1 = Ul−1U

(N)
l , (14)

V
(N)
l−1 = Vl−1V

(N)
l . (15)

Due to the nested nature of the multilevel quad-tree used to define the
MLSSM representation, the matrices U (N)

l−1 and V (N)
l−1 of (14) and (15)

are block diagonal, with each diagonal block corresponding to a single
level-(l− 1) group. Similarly, Z(NN)

l−1 is a sparse matrix whose nonzero
entries correspond only to interactions between near-neighbors at level
(l−1). The remaining component of Z(NN)

l in (12), Zl−2, is unchanged
from its original definition in (10). Consequently, equation (12) is an
(l − 1) level MLSSM representation of Z(NN)

l (with the minor caveat
that U (N)

l−1 and V (N)
l−1 are no longer orthonormal transformations).

The fact that the Schur decomposition (7) yields submatrices
Z

(NN)
l that can be collapsed to an MLSSM representation at the

next coarser (i.e., parent) level is significant. It implies that if we
are given an algorithm for computing OLL modes from the MLSSM
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representation of a general matrix, this algorithm can be applied
repeatedly to the blocks Z(NN)

l resulting from the decomposition (7)
at different levels of the quad-tree. Due to the upper triangular nature
of (7), this in turn yields a factored representation of the impedance
matrix.

6.3. Efficient Determination of Overlapped Localizing Modes

Given the LOGOS transformation matrices, Λl, associated with each of
the Z(NN)

l , the LOGOS-based Schur decomposition algorithm outlined
above provides an efficient method of determining a sparse, factored
representation of the impedance matrix. In this section we describe
an efficient algorithm for determining the OLL modes (and thus the
Λl) from the MLSSM representation of the impedance matrix and its
projections.

To motivate this algorithm, Section 6.3.1 summarizes the original
procedure [3, 5] used to determine localizing LOGOS modes from the
full columns of the impedance matrix. In so doing, we also make
the minor extension of using the associated LOGOS mode calculation
algorithm to find the OLL modes described above. (References [3, 5]
only consider the determination of non overlapping modes from full
columns of the impedance matrix.) Section 6.3.2 demonstrates the
existence of an efficient alternative to the procedure used to find
LOGOS modes in Section 6.3.1. The specific OLL mode calculation
algorithm used in the numerical examples of Section 9 is finally outlined
in Sections 6.3.3 and 6.3.4.

6.3.1. Original Algorithm

Consider the determination of overlapped localizing LOGOS modes
associated with group i at level-l, i(l), from Z

(NN)
l+1 . (Recall that, as

indicated by (7), level-l LOGOS modes are used to project the level-
(l + 1) matrix Z(NN)

l+1 .) Let the submatrix Z(NN)
{i(l),n} indicate the (full)

columns of Z(NN)
l+1 associated with sources located inside group i(l)

and its near-neighbors. The SVD-based LOGOS mode calculation
procedure described in [3, 5] can be straightforwardly applied to
Z

(NN)
{i(l),n} in order to determine excitation modes spanning group i(l)

and its neighbors which generate scattered fields localized (to O(ε))
within group i(l). To summarize this procedure, let

Z
(NN)
{i(l),n} = usvH (16)
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indicate the SVD of Z(NN)
{i(l),n}, and let ui(l) indicate rows of the unitary

matrix u associated with observers located in group i(l). Because ui(l)
is a submatrix of a unitary matrix, an additional SVD of ui(l) suffices to

identify transformations of the original matrix, Z(NN)
{i(l),n}, which generate

scattered fields localized only to group i(l) [3, 5].
The primary computational limitation of this algorithm for

determining OLL modes arises from the need to compute the SVD
indicated by (16). For example when l = L, Z(NN)

{i(l),n} has N rows, and
O(N) such decompositions are required (since the number of level-L
groups is O(N)). These considerations indicate that computing the
overlapped LOGOS modes at level-L will require O(N2) operations
using the procedure reported in [3, 5]. The remainder of Section 6.3
summarizes a more efficient procedure which can be used to determine
the overlapped localizing LOGOS modes at all levels (l = 3, . . . , L).
However, in order to simplify the discussion, we only explicitly consider
the efficient determination of OLL modes at the finest level (l = L) of
the tree, which involves the original impedance matrix, Z(NN)

l+1 = Z.
Extension of the results to coarser levels (l < L) is straightforward, as
indicated in Section 6.3.5.

6.3.2. Motivation of an Efficient Alternative

To motivate a computationally efficient procedure for determining
the required OLL modes, consider decomposing the columns of Z
associated with group i(L) and its near-neighbors as

Z{i(L),n} =


 Z

(n)
{i(L),n}

Z
(f)
{i(L),n}


 , (17)

where Z(n)
{i(L),n} indicates those rows of Z{i(L),n} associated with all

observers contained by level-L groups that are near-neighbors of at
least one of the groups in the set {i(L), n}. The matrix Z(f)

{i(L),n}
contains the remaining rows of Z{i(L),n}, which are associated with
observers located in groups that are separated from group i(L) and all
of its near-neighbors by at least one level-L group.

Recall that, for sufficiently long wavelengths, only O(1) DoF
(degrees of freedom) are required to represent the fields radiated by
sources located inside group i(L) and its near-neighbors to separated
observers within a given tolerance [12]. From this fact it follows that
the number of modes that must be retained in the SVD of Z(f)

{i(L),n} to
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maintain an O(ε2) representation is similarly O(1) (i.e., the number of
required modes is independent of the number of sources contained by
group i(L) and its near-neighbors):

Z
(f)
{i(L),n} = u(f)s(f)(v(f))H +O(ε2), (18)

with s(f) an O(1) ×O(1) matrix. Inserted in (17), this provides

Z{i(L),n} =
[
I 0
0 u(f)

] 
 Z

(n)
{i(L),n}

s(f)(v(f))H


 +O(ε2). (19)

Because the leading matrix in (19) is unitary, the desired OLL modes
can be determined by applying the original SVD-based calculation
of [3, 5] (indicated above by (16) and the associated discussion) to a
reduced submatrix, Z(r)

{i(L),n}, instead of the original submatrix Z{i(L),n}
where

Z
(r)
{i(L),n} =


 Z

(n)
{i(L),n}

s(f)(v(f))H


 =


 Z

(n)
{i(L),n}

Z̃
(f)
{i(L),n}


 , (20)

and we have used
Z̃

(f)
{i(L),n} = s(f)(v(f))H . (21)

The advantage of applying the original, SVD-based analysis of [3, 5]
to (20) rather than to Z{i(L),n} is that the former has dimension
O(1) ×O(1), whereas the dimension of the latter is N ×O(1).

Having thus established that it is possible to determine overlapped
LOGOS modes via an SVD-based analysis of the reduced matrix
Z

(r)
{i(L),n}, we continue by specifying a computationally efficient

procedure for determining the reduced representation (20) from a
sparse representation of Z. In particular, as suggested by Figure 1,
we outline an efficient algorithm for determining Z

(r)
{i(L),n} (and

subsequently ΛL) from the MLSSM representation of Z. The
discussion of this algorithm is contained in the following two
subsections. Section 6.3.3 summarizes an algorithm with an O(N)
memory complexity for determining Z

(r)
{i(L),n} from the MLSSM

representation of Z. Section 6.3.4 discusses a modified version of this
algorithm with significantly improved CPU performance.
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6.3.3. Computing Z(r)
{i(L),n} from MLSSM representation of Z

As indicated by (20), Z(r)
{i(L),n} is determined by the submatrices

Z
(n)
{i(L),n} and Z̃

(f)
{i(L),n}. Because Z(n)

{i(L),n} is O(1) × O(1), in the

numerical examples reported below this part of Z(r)
{i(L),n} is simply

computed by directly expanding the relevant portion of the MLSSM
representation (2) for Z = Z

(NN)
L+1 . Computing Z̃(f)

{i(L),n} is somewhat
more complicated, and the pseudo-code for the algorithm described in
this section is indicated in Figure 5.

1) Initialize  to an empty matrix.

2) Loop over all levels, proceeding from coarse to fine:
for 

a) Initialize  to an empty matrix.

b) Loop over all level-  observer groups, , which
are both not near-neighbors of the level-  parents
of , and which have not been previously
included at a coarser level.

i) For each such group, extract the matrix 
of (22) from the MLSSM representation of  and
append to existing :

- End loop over far-field observer groups.

c) Use SVD to compress  matrix, maintaining a
 representation.

d) Append compressed  to :

- End loop over coarse levels ( )

3) Use SVD to compress , maintaining  accuracy.

Z̃(f)
{i(L),n}

l = 3 : L

Al,i(L)

l

l

j(l)

{i(L),n}

Aj(l),i(L)

Z
Al,i(L)

Al,i(L) =

[
Al,i(L)

Aj(l),i(L)

]

Al,i(L)

O(ε2)

Al,i(L) Z̃(f)
{i(L),n}

Z̃(f)
{i(L),n} =

[
Z̃(f)
{i(L),n}
Al,i(L)

]

l

Z̃(f)
{i(L),n} O(ε2)

Figure 5. Pseudo-code for the algorithm used to compute the
submatrix Z̃(f)

{i(L),n} of (20) for a given level-L source group, i(L). The
notation {i(L), n} is used to denote the set of level-L groups which are
near-neighbors of group i(L). This set includes the self-group, i(L).
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The basic idea behind the algorithm is to build up Z̃(f)
{i(L),n} for

a given level-L group, i(L), by determining the contributions to this
matrix due to non near-neighbor interactions occurring at the coarsest
possible levels of the quad tree. This is indicated by the loop, l = 3 : L,
specified as item 2 in Figure 5. For a given set of source groups,
{i(L), n}, at each level, l, the algorithm subsequently loops (item
2b) over all observer groups, j(l), which satisfy the following two
conditions:

1. The observer group j(l) is not a near-neighbor to any of the level-l
parents of any of the groups contained in the set {i(L), n}.

2. The corresponding interactions between the source groups,
{i(L), n}, and the observer group, j(l), have not previously been
incorporated at a coarser level.

For each level-l group satisfying these two conditions, the matrix
Aj(l),i(L), which defines the DoF radiated from the source region to
the observer group j(l), is extracted from the MLSSM representation
of Z and appended to matrix Al,i(L) (item 2bi). The latter matrix
(Al,i(L)) is used to accumulate the Aj(l),i(L) for all j(l).

The matrix Aj(l),i(L) is represented in terms of the MLSSM
representation of Z as the nonzero part of

Aj(l),i(L) = Ij(l)
(
UH

l Zl−1 Vl Tl

)
I{i(L),n}, (22)

where the matrices Tl are defined by the MLSSM source transforma-
tions:

Tl−1 = VlTl, (23)

with TL an N × N identity matrix, TL = IN×N . In (22), I{i(L),n}
is a matrix with ones on its diagonal for columns associated with
sources located in groups {i(L), n}. All other entries of I{i(L),n} are
zero. Ij(l) is similarly defined, having ones in the diagonal entries
associated with observers located in group j at level-l. These exterior
matrices are used in (22) to indicate extraction of the appropriate
rows and columns from the MLSSM representation of the level-l DoF
radiated from groups {i(L), n} to distant observers in j(l). In the
numerical examples reported in Section 9, the extraction indicated by
these operators is implemented by extracting only those elements of
the MLSSM representation of Z which provide a nonzero contribution
to Aj(l),i(L).

After completing the loop over all of the level-l observer groups,
and before proceeding to incorporate interactions defined at the next
finer level of the tree, the accumulated matrix Al,i(L) is compressed
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(item 2c of Figure 5) using an SVD. This is accomplished by first
computing the O(ε2) representation of the existing Al,i(L) matrix
(Al,i(L) = usvH +O(ε2)) followed by the replacement

Al,i(L) ⇐ svH . (24)

As indicated in item 2d of Figure 5, the compressed form of Al,i(L)

is subsequently appended to Z̃(f)
{i(L),n}, and the foregoing procedure is

repeated at the next finer level of the quad-tree.
Finally, after completing the loop over the levels, an O(ε2) SVD

representation of the matrix Z̃(f)
{i(L),n} is computed (cf. (18)), followed

by the replacement (item 3)

Z̃
(f)
{i(L),n} ⇐ s(f)(v(f))H . (25)

At this point, Z̃(f)
{i(L),n} provides a mapping from sources in groups

{i(L), n} to the DoF necessary to represent these sources to distant
observers located in all groups at levels 3 to L which are not
near-neighbors to any of the source groups, {i(L), n}. Finally, by
augmenting the matrix Z̃(f)

{i(L),n} with the near-neighbor interaction

matrix, Z(n)
{i(L),n}, we obtain the desired, O(1) × O(1), reduced matrix

of (20), which can subsequently be used to determine the overlapped
localizing LOGOS modes associated with group i(L).

Because it relies on the sparse MLSSM representation of Z, the
algorithm just described for Z(r)

{i(L),n} has an O(N) memory complexity
at low frequency. However, the CPU cost of the algorithm is
unnecessarily high due to a large number of repeated computations
performed in computing the Z̃(f)

{i(L),n} matrices. These costs can be
reduced by computing and storing the data required to form the Al,i(L)
in Figure 5. This results in a small increase in the total memory
requirement.

6.3.4. A CPU Efficient Algorithm

To more efficiently determine the Z̃(f)
{i(L),n} matrices from the MLSSM

representation of Z, it is useful to represent Aj(l),i(L) of (22) as the
product of two matrices,

Aj(l),i(L) = Xj(l),P (l,i(L))TP (l,i(L)),i(L), (26)
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where

Xj(l),P (l,i(L)) = Ij(l)U
H
l Zl−1VlIP (l,i(L)), (27)

TP (l,i(L)),i(L) = IP (l,i(L))TlI{i(L),n}, (28)

and Tl was defined in (23).
In (27) and (28), the symbol P (l, i(L)) is used to indicate all

groups which are level-l parents of at least one group in the set
{i(L), n}. IP (l,i(L)) is a matrix with ones on its diagonal for columns
associated with these level-l groups. All other entries of IP (l,i(L)) are
zero. Thus, the matrix TP (l,i(L)),i(L) transforms the DoF in groups
{i(L), n} to the associated nonzero level-l DoF required for interactions
with distant groups. The matrix Xj(l),P (l,i(L)) contains all level-l
interactions between observer group j(l) and the level-l source groups
which are parents of at least one group in the set {i(L), n}.

Using the definitions indicated in (26) to (28), Figure 6
summarizes a more CPU efficient version of the algorithm reported
in Figure 5. The computational advantages of the improved algorithm
are consequences of two modifications:

1. The matrices TP (l,i(L)),i(L) are filled (item 1b in Figure 6) and
applied (item 2b) only once for each different source group.

2. The coarse level interaction matrices, Xl,P (l,i(L)), are only
recomputed (item 2a) if they have not been previously stored (item
2aiv) subsequent to calculation for a different source group.

The CPU advantages of the first modification are evident. For a
given i(L), the algorithm in Figure 5 effectively requires re-computing
TP (l,i(L)),i(L) for each different j(l), whereas the modified algorithm in
Figure 6 only requires that TP (l,i(L)),i(L) be computed once for each
i(L). Furthermore, the additional memory costs introduced by this
modification are negligible. It is never necessary to store more than
O(logN) of the TP (l,i(L)),i(L) at a given time in the calculation, and
the TP (l,i(L)),i(L) are O(1) ×O(1) at low frequency.

The savings obtained by the second modification listed above
are more significant than those obtained from the first. However,
these larger CPU savings are obtained at the expense of an increase
(approximately ten percent) in the overall memory required by the
algorithm.

The CPU savings provided by the second modification follow from
the fact that many of the Xl,P (l,i(L)) are identical to one another, both
at a given level (level-L in the present case), and across multiple levels.
These redundancies are a simple consequence of the fact that, for l < L,
multiple sets of level-L groups (i.e., the {i(L), n}) have the same set of
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1) Initialization:

a) Initialize  to an empty matrix

b) Compute  for .

2) Loop over all levels, proceeding from coarse to fine:
for 

a) If  has not yet been computed:

i) Initialize  to an empty matrix.

ii) Loop over all level-  observer groups, ,
which are both not near-neighbors of the level-
parents of , and which have not been
previously included at a coarser level.

(1) For each such group, extract the matrix
 of (27)from the MLSSM representation

of  and append to existing :

- End loop over far-field observer groups.

iii) Use SVD to compress  matrix, maintaining
 representation.

iv) Store compressed  for re-use.

b) Append compressed  to  using (26):

- End loop over coarse levels ( )

3) Use SVD to compress , maintaining  accuracy.

Z̃(f)
{i(L),n}

3 ≤ l ≤ LTP(l,i(L)),i(L)

l = 3 : L

Xl,P(l,i(L))

Xl,P(l,i(L))

l j(l)
l

{i(L),n}

Xl,P(l,i(L))

Z

Xl,P(l,i(L)) =

[
Xl,P(l,i(L))

Xj(l),P(l,i(L))

]Xl,P(l,i(L))

O(ε2)
Xl,P(l,i(L))

Al,i(L)

Xl,P(l,i(L))

Z̃(f)
{i(L),n}

Z̃(f)
{i(L),n} =

[
Z̃(f)
{i(L),n}

Xl,P(l,i(L))TP(l,i(L)),i(L)

]

l

Z̃(f)
{i(L),n} O(ε2)

Figure 6. A more CPU efficient version of the algorithm summarized
in Figure 5.

level-l parents. This fact implies that many of the Xl,P (l,i(L)) required

by (26) can be stored and reused to construct the Z̃(f)
{i(L),n}. In contrast,

the algorithm of Figure 5 effectively requires computing each of the
Xl,P (l,i(L)) from scratch (i.e., via the MLSSM recursion indicated in

(22) and the loop over the j(l) in Figure 5) for each Z̃(f)
{i(L),n}.

The additional memory required to store all of the Xl,P (l,i(L))
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in the algorithm of Figure 6 is a relatively small, though not
insignificant, fraction of the total memory. For all of the numerical
examples reported in Section 9, the total memory required to store the
Xl,P (l,i(L)) is less than ten percent of the total memory required by the
factorization algorithm. At low frequencies, this memory requirement
was observed to scale approximately as O(N) for large N .

Once each Z̃(f)
{i(L),n} has been computed via the algorithm indicated

in Figure 6, the reduced matrix Z(r)
{i(L),n} of (20) can be formed by

augmenting Z̃(f)
{i(L),n} with Z(n)

{i(L),n}. As indicated at the beginning of
the previous subsection, the cost of the latter operation is O(1) for
each i(L). Finally, given Z(r)

{i(L),n}, the SVD-based analysis of [3, 5] can
be used to determine the overlapped LOGOS modes associated with
group i(L) in O(1) operations.

6.3.5. Multilevel LOGOS Mode Calculation

The previous subsections outline the algorithm used in the following
numerical examples to determine the Z(r)

{i(L),n}. Once the reduced
matrices have been thus determined, the procedure used to calculate
the corresponding elements of ΛL and PL from the Z

(r)
{i(L),n} is

essentially unchanged from that described in [3, 5].
The foregoing discussion for efficiently determining the reduced

matrices, and thereby ΛL and PL, has been specialized to level-L
for convenience and notational clarity. The modifications required to
determine ΛL and PL from Z

(NN)
l+1 for l < L are straightforward and will

not be explicitly indicated (the required changes amount to changing
subscript labels, etc.).

7. SUMMARY OF MULTILEVEL FACTORIZATION
ALGORITHM

Figure 7 summarizes the discussion of previous sections by indicating
the flow of the multilevel LOGOS-based factorization procedure for
the MLSSM representation of the impedance matrix. Given an input
MLSSM representation of Z, the factorization algorithm indicated
in Figure 7 recursively finds the overlapping LOGOS modes for
the Z(NN)

l+1 submatrices using the algorithm discussed in Section 6.
These modes are used to form the sparse transformation (Λl) and
projection (Pl) matrices, which are subsequently used to project Z(NN)

l+1
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Store  and 

Store MLSSM repre-
sentation of

Define  with

 the  MLSSM

repr. of impedance matrix

for 

Compute LOGOS modes
from MLSSM repre-
sentation of 

Compute and store
standard LU

factorization of 

Construct LOGOS
transform, , and

projection operator, 

Apply  to
MLSSM representation

of 

Z(NN)
L+1 =Z

O(ε2)

l = L : −1 : 3

Λl

Pl

Z(LN)
l

Z

Z(NN)
l +1

PlΛl

 and PlΛl

Z(NN)
l +1

Z(NN)
3

Z(NN)
3

Z(NN)
l

Figure 7. LOGOS-based factorization of MLSSM representation of
Z.

into the submatrices Z(NN)
l and Z

(LN)
l of (7) using the MLSSM-

based procedure discussed in Section 6.2. The submatrices Z(LN)
l

are stored for use in the back substitution procedure discussed in
Section 8, and the foregoing procedure is repeated for Z(NN)

l at the
next coarser level of the quad tree. Finally, when the primary loop has
finished, the remaining matrix, Z(NN)

3 , is inverted using a standard LU
decomposition.
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7.1. Complexity Estimate

It has been observed (via the numerical implementation reported in
Section 9) that the CPU cost of the algorithm proposed in Figure 7
is dominated at low frequencies by the computation of overlapped
modes at level-L of the quad tree. Therefore, we estimate the overall
computational complexity of the proposed factorization algorithm by
estimating the cost to determine the level-L OLL modes.

The cost to compute the OLL modes at level-L can be decomposed
into three components. These components and their estimated
complexities follow.

1. Cost to build all of the Xl,P (l,i(L)).
We begin by recalling that the Xl,P (l,i(L)) define the interactions
between the level-l parents of sources in the set {i(L), n} and
non near-neighbor level-l observers that could not be represented
at a coarser level. Due to the redundancies indicated in Section
6.3.4, the number of unique Xl,P (l,i(L)) to be calculated scales as
O(N). Furthermore, our assumption of low frequency applications
implies that each Xl,P (l,i(L)) is O(1) × O(1). Together, these
facts imply that the total cost to store the Xl,P (l,i(L)) will scale
as O(N) (as indicated in Section 6.3.4, this is consistent with
our observations of the numerical implementation reported in
Section 9). However, the CPU cost to compute any one of the
Xl,P (l,i(L)) is bounded by O(logN) (and not O(1)). For example,
when l ≈ L, calculation of a single Xl,P (l,i(L)) via equation (27)
can require up to O(logN) operations due to the need to traverse
the multilevel tree. Combining this estimate for the cost to
compute a single Xl,P (l,i(L)) with the fact that there are O(N)
such matrices to be computed yields an upper complexity bound
for this operation of O(N logN).

2. Cost to compress the Z̃(f)
{i(L),n}.

As indicated in item 2b of Figure 6, each of the Z̃(f)
{i(L),n} is obtained

by accumulating the Al,i(L). Since (i) there are O(logN) levels,
and (ii) each of the Al,i(L) is O(1)-by-O(1), it follows that the

SVD-based compression required for each Z̃(f)
{i(L),n} has a cost of

O(logN). Because there are O(N) groups at level-L, the total
cost for this operation is O(N logN).

3. Cost to compute LOGOS modes from the Z(r)
{i(L),n}.

Because each of the Z(r)
{i(L),n} is O(1)×O(1), the cost to determine
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the level-L overlapped localizing LOGOS (OLL) modes from the
Z

(r)
{i(L),n} for a single group, i(L), is O(1). Since there are O(N)

such groups, the total CPU cost required to determine all level-L
OLL modes given the Z(r)

{i(L),n} is O(N).

Together these estimates indicate that the CPU cost to determine
the level-L OLL modes from the MLSSM representation of Z is
O(N logN). Because (i) the time to determine LOGOS modes always
dominates the total CPU time, and (ii) the time to determine LOGOS
modes for each projection of the impedance matrix, Z(NN)

l+1 , decreases
rapidly with l, we conclude that this estimate (i.e., O(N logN)) for
the cost to determine the level-L OLL modes also bounds the total
CPU complexity of the proposed factorization algorithm. This (non
rigorous) estimate is evaluated in Section 9 through a comparison with
numerical data.

8. SPARSE IMPLEMENTATION OF Z−1

The LOGOS-based factored representation of the impedance matrix
yields the following sparse algorithm for implementing J = −Z−1Ei.

1. For l = L : −1 : 3, use the projection matrices, Pl, to compute:
 E

(L)
l

E
(N)
l


 =

[
P

(L)
l , P

(N)
l

]H
E

(N)
l+1 , (29)

where E(N)
L+1 ≡ −Ei. Due to its recursive form, the level-l

quantities on the left side of (29) can be stored in the memory
space initially used to store E(N)

l+1 on the right side of the equation.
The indicated recursion terminates when l = 3, by which point the
memory initially used to store the incident vector is replaced by
the transformed quantity Ẽ,

Ei ⇐ Ẽ =
[
E

(L)
L , E

(L)
L−1, . . . , E

(L)
3 , E

(N)
3

]T
. (30)

The elements of Ẽ are the projections of the incident field onto
the fields scattered by the overlapped, localizing modes at levels L
through 3. The final portion of Ẽ, E(N)

3 , represents the projection
of the incident field onto the scattered fields associated with modes
which could not be localized at levels l ≥ 3.
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2. The back substitution procedure continues with the calculation of
the quantity

J
(N)
3 =

(
Z

(NN)
3

)−1
E

(N)
3 , (31)

where E(N)
3 is extracted from Ẽ in (30). The inverse operation in

(31) is performed using a standard LU decomposition.
3. Given (30) and (31), the entire solution vector is obtained via back

substitution. For l = 3 : L:

J
(N)
l+1 = Λl


 E

(N)
l − Z(LN)

l J
(N)
l

J
(N)
l


 , (32)

4. The desired solution vector is J = −Z−1Ei ≈ J (N)
L+1.

The solution procedure indicated by (29) through (32) is used in the
following numerical examples.

9. NUMERICAL EXAMPLES

In the following numerical examples, MATLAB implementations of
the sparse factorization and solution algorithms summarized above are
applied to the EFIE formulation of TMz scattering from the square
arrays of dihedral cylinders indicated by Figure 8. In particular,
configurations consisting of 8 × 8, 16 × 16, 32 × 32 and 64 × 64
dihedral elements are considered. Table 1 lists the associated numbers
of unknowns and quad-tree levels used for each array size.

Table 2 lists the number of nonzero (nnz) complex double precision
numbers required to store the LOGOS factored impedance matrix
for several element sizes (L) and two different values of the inter-
element spacing: ∆ = 0.4L and ∆ = 2.4L. Table 3 reports the
wall-clock times required to perform the standard LU factorization
and the LOGOS factorization of Z. The LU factorization was
performed using MATLAB’s built-in “lu” function, which relies on
tuned LAPACK libraries. The LOGOS factorization times were
obtained from a straightforward MATLAB implementation of the
factorization algorithm discussed above. It is likely that the latter
MATLAB timings could be significantly reduced by further improving
our implementation. This was not done, however, because the primary
purpose of the TMz implementation reported here is to evaluate
the asymptotic complexities of the proposed factorization strategy.
More efficient implementations will be developed for three-dimensional
electromagnetic applications.



316 Adams, Zhu, and Canning

L

∆

L

∆

Figure 8. (Left) 4-by-4 array of dihedral PEC cylinders. (Right)
Single element. The numbers of array elements in x, y-directions are
Nx and Ny. The spacing between array elements is ∆. The thickness of
each array element is zero. In all cases, each individual array element
is discretized using 10 facets. The side length of each dihedral element
is indicated by the letter “L.”

Referring to Table 2, we observe that the memory complexity of
the LOGOS/MLSSM factored representation of Z scales nearly linearly
with N for electrically small arrays and large values of N . For example,
when L = 0.001λ, the complexity of the factored representation
increases by factors of 4.21 (∆ = 0.4L) and 4.15 (∆ = 2.4L) when N is
increased by a factor of 4 fromN = 10240 toN = 40960. The electrical
dimensions of the associated 64× 64 element arrays are approximately
0.09λ× 0.09λ (∆ = 0.4L) and 0.22λ× 0.22λ (∆ = 2.4L).

Comparing these results to those listed in Table 2 for larger
values of L, it is clear that the complexity of the factored LOGOS
representation scales more rapidly with N as the electrical size of the
array increases. For example, when L = 0.1λ the complexity of the
LOGOS representation increases by factors of 4.6 (∆ = 0.4L) and 4.5
(∆ = 2.4L) when the array size increases from 32 × 32 to 64 × 64
elements. In these cases, the electrical dimensions of the associated
64 × 64 element arrays are approximately 9λ × 9λ (∆ = 0.4L) and
22λ × 22λ (∆ = 2.4L). These results suggest that, although the
complexity of the factored representation increases with electrical size,
the algorithm still provides a relatively efficient representation for
targets which are several wavelengths in each linear dimension.

The factorization times reported in Table 3 indicate that the CPU



Progress In Electromagnetics Research, PIER 61, 2006 317

Table 1. Number of unknowns and number of quad tree levels for
various square array dimensions used in numerical examples.

array dim. N levels
640 4
2560 5
10240 6
40960 7

8 × 8
16 × 16
32 × 32
64 × 64

Table 2. Complexity of factored representation (ε = 0.001).

array L/λ nnz nnz
dimension ∆ = 0.4L ∆ = 2.4L

8 × 8 0.001 1.738 × 105 1.553 × 105

16 × 16 0.001 1.002 × 106 8.741 × 105

32 × 32 0.001 4.945 × 106 4.400 × 106

64 × 64 0.001 2.081 × 107 1.825 × 107

8 × 8 0.01 1.809 × 105 1.616 × 105

16 × 16 0.01 1.086 × 106 9.522 × 105

32 × 32 0.01 5.439 × 106 4.899 × 106

64 × 64 0.01 2.368 × 107 2.228 × 107

8 × 8 0.1 2.068 × 105 2.015 × 105

16 × 16 0.1 1.324 × 106 1.495 × 105

32 × 32 0.1 7.038 × 106 9.216 × 106

64 × 64 0.1 3.239 × 107 4.908 × 107

time of the LOGOS factorization scales somewhat more rapidly than
the memory complexity. Furthermore, the LOGOS factorization time
is slower than the LU factorization until the problem size exceeds
about 104 unknowns. The latter observation may in part be a result of
our use of a non-optimized MATLAB implementation of the LOGOS
algorithm. It is possible that the LOGOS factorization times reported
in Table 3 could be reduced by optimizing the MATLAB code. This
possibility will be more fully explored for the 3-D implementation of
the factorization algorithm.
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Table 3. LU and LOGOS factorization times in seconds. LOGOS
timings obtained with ∆ = 2.4L and ε = 0.001. LU timings reported
for N > 2560 obtained by extrapolating from the N = 2560 time
assuming at an N3 scaling rate. All timing results obtained using a
PC with a 3 GHz Pentium 4 processor.

array dim. L/λ LU LOGOS

8 × 8 0.001 0.30 8.2

16 × 16 0.001 13.7 70.4

32 × 32 0.001 875 461.9

64 × 64 0.001 56000 2530

8 × 8 0.01 0.30 8.45

16 × 16 0.01 13.7 66.4

32 × 32 0.01 875 475.6

64 × 64 0.01 56000 2839

8 × 8 0.1 0.30 11.2

16 × 16 0.1 13.7 98.1

32 × 32 0.1 875 886

64 × 64 0.1 56000 6370

As discussed in Section 7, it is expected that the computational
complexity of the proposed factorization strategy will scale as
O(N logN) for electrically small targets when N is large. For L =
0.001λ, the data in Table 3 indicate that the factorization time scales
by a factor of approximately 6.56 when the array size increases by a
factor of four, from 16 × 16 to 32 × 32 elements. The factorization
time increases by the smaller factor of 5.48 when the array size is
further increased from 32 × 32 to 64 × 64 elements. These results
indicate that our implementation of the sparse LOGOS factorization
has yet to clearly demonstrate the anticipated CPU rate of O(N logN)
for problems involving up to 40960 unknowns (the factor of 5.48
corresponds to a rate of approximately N1.23 in passing from 10240
to 40960 unknowns). It will be necessary to consider larger problems
to determine if the complexity estimate of O(N logN) is accurate. This
point will be further pursued in the 3-D application of the factorization
algorithm.
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Table 4. Time (in seconds) to solve J = −Z−1Einc for 100 randomly
generated incident field vectors using standard LU and sparse LOGOS
factorizations of Z when ∆ = 2.4L. LU timings reported for N > 2560
obtained by extrapolating from the N = 2560 time assuming an N2

scaling rate. All computations done on a 3 GHz Pentium 4 processor.

array dim. L/λ LU LOGOS

8 × 8 0.001 0.16 0.30

16 × 16 0.001 2.46 2.89

32 × 32 0.001 39.4 18.6

64 × 64 0.001 630 86.3

8 × 8 0.01 0.16 0.34

16 × 16 0.01 2.46 4.02

32 × 32 0.01 39.4 20.8

64 × 64 0.01 630 102

8 × 8 0.1 0.16 0.39

16 × 16 0.1 2.46 5.86

32 × 32 0.1 39.4 38.23

64 × 64 0.1 630 251

As observed above for the memory complexity, the computational
complexity of the proposed LOGOS factorization algorithm is also
expected to increase with the electrical size of the array. This is
indeed the case for the configurations reported in Table 3. For a given
array dimension, the time to perform the factorization increases as L
is increased from L = 0.001λ to L = 0.1λ.

Table 4 shows the wall-clock time required to solve (1) using the
solution procedure summarized in Section 8. In all cases, the time to
solve (1) using the LOGOS representation is less than the time required
using the standard LU factored form.

Finally, Table 5 displays the relative RMS error in the LOGOS
factored representation of Z and the original, full impedance matrix
for the cases considered in Table 2 and Table 3. In each case, the
observed error in the boundary condition (1) is within the requested
tolerance of ε = 0.001.
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Table 5. Relative RMS error in factored representation of Z for the
dihedral arrays considered in Tables 1 and 2. The requested tolerance
was ε = 0.001.

array L/λ RMS error RMS error

dimension ∆ = 0.4L ∆ = 2.4L

8 × 8 0.001 2 × 10−4 2 × 10−4

16 × 16 0.001 4 × 10−4 5 × 10−4

32 × 32 0.001 6 × 10−4 5 × 10−4

64 × 64 0.001 3 × 10−4 6 × 10−4

8 × 8 0.01 2 × 10−4 2 × 10−4

16 × 16 0.01 3 × 10−4 1 × 10−4

32 × 32 0.01 3 × 10−4 4 × 10−4

64 × 64 0.01 6 × 10−4 6 × 10−4

8 × 8 0.1 2 × 10−4 2 × 10−4

16 × 16 0.1 5 × 10−4 6 × 10−4

32 × 32 0.1 3 × 10−4 7 × 10−4

64 × 64 0.1 6 × 10−4 7 × 10−4

10. SUMMARY AND DISCUSSION

A sparse factorization strategy for the MLSSM representation of the
impedance matrix based on the expansion of the impedance matrix in
a basis of overlapped, localizing LOGOS modes has been summarized,
and representative numerical examples have been reported. The
numerical data indicate that the complexity of the resulting, factored
representation of the impedance matrix scales approximately as O(N)
at low frequencies. The complexity of the factored representation
is observed to be somewhat larger for targets which are several
wavelengths in dimension.

The CPU complexity of the reported factorization strategy
has been estimated to scale asymptotically as O(N logN) at low
frequencies. However, the numerical examples exhibit a computational
complexity which scales of approximately as O(N1.23) in passing from
10240 to 40960 unknowns. It is expected that this rate will continue
to decrease toward the expected asymptotic rate of O(N logN) when
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larger problems are considered. This will be the subject of future
investigations.

Several improvements of the LOGOS-based algorithms discussed
above are possible. For example, the factorization algorithm reported
here relies on an MLSSM representation of Z and its projections.
It is expected that similarly efficient factorization strategies that
rely on alternate sparse representations of Z are also possible. For
example, it seems likely that the algorithms reported above could be
modified to use only SVD-based representations instead of the MLSSM
representation. However, even if this is correct, the specific advantages
provided by such alternatives remain to be determined.

As indicated in Figure 1 and Figure 7, the factorization algorithm
reported in this paper relies on an O(ε2) representation of the
impedance matrix and its projections. This was found to be necessary
in order to determine all LOGOS modes localized to O(ε) within
a given group at a given level. However, once these modes have
been determined and used to project the impedance matrix (cf. (7)),
it is no longer necessary to maintain an O(ε2) tolerance for Z(LN)

l ,
since no additional LOGOS modes will be extracted from this matrix.
This suggests that additional memory savings might be possible over
those reported in Table 2 by storing only O(ε) representations of
the Z(LN)

l . This conjecture has been corroborated by preliminary
numerical examples and will be pursued further elsewhere.

At low frequencies, the largest computational cost of the
factorization algorithm described here is associated with finding the
overlapped localizing LOGOS modes at the finest level of the quad-
tree. It may be possible to reduce this cost by modifying the proposed
algorithm to simultaneously incorporate both overlapped and non-
overlapped modes. Such a modification might also provide additional
memory savings.

Multiple additional improvements of the direct solution algorithms
reported here might also be useful. Some of these are being pursued
and will be reported if appropriate. The 3-D implementation of the
LOGOS-based factorization and solution algorithms reported here is
also in progress.
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