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Abstract—The guided modes in a left-handed material (LHM) asym-
metric slab waveguide are studied in this paper. Dispersion properties
of electromagnetic guided waves are discussed by introducing three
normalized parameters. The guidance conditions of guided modes in
waveguide are determined by using a graphical method. Then we put
emphasis on the surface wave modes with respect to different waveg-
uide parameters and structures. The power flux in LHM asymmetric
waveguide according to the Poynting vector is investigated in the end.

1. INTRODUCTION

Left-handed material (LHM), whose permittivity ε and permeability µ
are simultaneously negative, has been firstly introduced by Veselago [1]
in 1968. It posses a number of peculiar properties that different from
normal dielectrics, such as Negative Refraction, Reversed Cerenkov
Radiation and Reversed Doppler Effect. Pendry [2, 3] proposed the
possibility that the LHM can be fabricated by some novel artificial
microstructured metallic materials. After the fabrication of LHM
over the microwave frequency by Smith [4, 5] in 2001, it opens up
a heat discussion around the world because of its diverse potential
application. One of attractive studies about LHM is the propagation
of electromagnetic waves in LHM waveguides.

Zhang et al. [6] theoretically investigated the electromagnetic
properties of multi-layer LHM waveguide, and Kong et al. [7]
demonstrated a unique negative lateral shift for a Gaussian beam
reflected from a grounded LHM slab, which is distinctly different
from a shift caused by a regular grounded slab. In LHM waveguides,
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there exists a sort of unique electromagnetic waves termed as “surface
waves” [8] which cannot exist in normal waveguides. The surface waves
appear when the wave number becomes purely imaginary. Cory et al.
[9] investigated the electromagnetic guided waves of LHM symmetric
slab waveguide. Shadrivov et al. [10] studied the linear guided waves
propagating in a slab waveguide made of LHM, and they revealed
many peculiar properties, including the absence of fundamental modes
and the sign-varying energy flux. In particular, they predicted the
existence of novel types of guided waves with a dipole-vortex structure
of the Poynting vector. Kim et al. [11] theoretically analyzed guidance
characteristics of circular LHM rod waveguide including the dispersion
and power confinement characteristics. Mohammed et al. [12] derived
and analyzed the anomalous dispersion relation of grounded LHM slab
waveguide and compared with that of conventional grounded dielectric
slab waveguide. They also got the cut-off frequencies of guided
modes in such a waveguide. These investigations of LHM waveguides
can pave the way for the design of new filters and resonances.
S. F. Mahmoud [13] also analyzed the same structure and showed
that, unlike a slab with positive parameters, the dominant mode can
have evanescent fields on both sides of the interface between the slab
and the surrounding air. J. He and S. He [14] studied the dispersion
properties of the guided modes propagating along a dielectric slab
waveguide with a left-handed material substrate and they also showed
that both the oscillating and surface modes can propagate very slowly
along such a waveguide. If the thickness of the core layer is chosen
appropriately, the propagation speed of the guided waves can even
approach zero. K. L. Tsakmakidis et al. [15] identify and classify all
surface plasmon polarition (so-called SPP) eigenmodes supported by
generalized asymmetric slab heterostructures. They pursued a rigorous
analytical study and proved that a total of 30 solutions to the involved
characteristic equation giving the SPP eigenmodes can exist for all
choices of the refractive index distribution, constitutive parameters ε
and µ, and the thickness of the core.

In this paper, we introduce 3 normalized parameters — the
normalized frequency V , the normalized propagation constant p2 and
the rate of asymmetric ∆ — to discuss the guided modes of an
asymmetric slab waveguide with a core of LHM sandwiched between
two normal dielectric slabs. Dispersion properties of electromagnetic
waves including guided modes and surface wave modes with different
waveguide parameters are discussed. We determine the guidance
conditions of guided modes in waveguide by using a graphical method
and find that the guided mode in LHM waveguide is very different from
that in normal dielectric waveguide such as the absence of fundamental
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mode. Then we put emphasis on the discussion of surface wave
modes with respect to different waveguide parameters and structures
by analyzing the dispersion equation using normalized parameters
hereinbefore and we found that the existence of the guided modes
depends much on the parameters and structures of the waveguide. We
lastly analyze the power flux in waveguide according to the Poynting
vector by introduce the normalized power. We find that when the
frequency of guided mode reaches to a certain value, the net power
flow of the guided mode can be 0.

2. ANALYSIS OF GUIDED MODES

Consider an asymmetric waveguide structure with a core of LHM
sandwiched between two normal dielectric slabs as shown in Figure 1.
LHM layer in region 2 has the thickness of d, and the two claddings
marked with region 1 and region 3 are normal dielectric slabs that
have positive ε1, µ1, ε3 and µ3, respectively. The coordinate is shown
in Figure 1. We also assume that ε3µ3 > ε1µ1, which means the
refractive index of region 3 is bigger than that of region 1. Taking
the transverse electric (TE) mode into consideration (results for TM
waves can be obtained from duality), the electric field is polarized along
the y-axis. We can see that the electric field Ey can be expressed
as Ey(x, z, t) = E(x) exp[−i(ωt − βz)], where β is the propagation
constant along the z-axis. The electric fields in three regions can be
written as

E(x) =



A1 exp[−α1(x− d)], x > d
A2 cos(k2x+ ϕ), 0 ≤ x ≤ d
A3 exp(α3x), x < 0

(1)

where α1 =
√
β2 − k2

0n
2
1 and α3 =

√
β2 − k2

0n
2
3 are the evanescent

rates in region 1 and region 3. k2 =
√
k2

0n
2
2 − β2 is the transverse wave

number in region 2, which can either be real or imaginary. n1, n2,
and n3 are the refractive index in three regions separately. k0 is the
wave number in vacuum, ϕ = tan−1(−µ2α3/(µ3k2)) is the phase shift
of guided mode in region 2.

To find the guidance conditions, the boundary conditions at x = 0
and x = d are applied, and the dispersion equation of guided modes
can be obtained as follow

k2d = mπ + tan−1
(
µ2α1

µ1k2

)
+ tan−1

(
µ2α3

µ3k2

)
(2)
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Figure 1. Geometry for an asymmetric LHM slab waveguide. Region
2 is LHM, regions 1 and 3 are normal dielectrics.

Here we introduce three normalized parameters


V = k0d
√
n2

2 − n2
3

p2 =
N2 − n2

3

n2
2 − n2

3

∆ =
n2

3 − n2
1

n2
2 − n2

3

(3)

where V is the normalized frequency which increases with the
frequency increases. p2 is the normalized propagation constant whose
value range is [0, 1], when p2 = 0, the guided mode vanish. N is the
effective refractive index N = β/k0. ∆ is a parameter depicts the rate
of asymmetric in a three layers waveguide. When ∆ = 0, it means a
symmetric waveguide. From these transformations we can get a new
normalized dispersion equation:

V (1− p2) 1
2 = mπ+tan−1


µ2

µ3

(
p2

1 − p2

) 1
2


 +tan−1


µ2

µ1

(
p2 + ∆
1 − p2

) 1
2




(4)
For a given parameters, the dispersion curve is shown in Figure 2.

We can see from Figure 2 that for a given frequency V , we can get p2,
and then the propagation constant of guided mode is determined and
that with the increase of V , the LHM waveguide can accommodate
more and more high-order guided modes. When V is small enough,
all the guided modes in waveguide are forbidden. That is to say each
guided mode in LHM waveguide has a cutoff frequency. For a certain
range of V (V (p2 = 1) ∼ V (p2 = 0)), the mode TE1 appears. The TE1

guided mode can not coexist with any other higher-order modes. This
is a novel property indicate a possible bandpass filtering effect of the
LHM waveguide without apparent uses of resonant structures. We can
also see that the guided mode TE0 cannot be found for any V in the
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Figure 2. The normalized dispersion curve of TE guided mode with
ε1 = 1, µ1 = 1, ε2 = −2, µ2 = −2, ε3 = 2, µ3 = 1.

LHM waveguide. It’s very different from the conventional dielectric
waveguides whose TE0 modes can exists if beyond a cutoff frequency.

The distributions of electric field of guided mode TE1, TE2 and
TE3 are shown in Figure 3. The properties of them are very similar
to those of conventional guided modes in normal dielectric waveguides.
As the figure show, the electric field is oscillatory in region 2 while it
becomes evanescent outside the region 2. m represent the number of
intersections between the fields and the x-axis in region 2. We can
also see from the figure that the peaks of transverse distribution are
asymmetric because of its asymmetric structure.

 

Figure 3. Distribution of amplitudes of electric field components of
guided modes, where (a) V = 1.1363 (b) V = 10 (c) V = 10. m
represent the number of intersections between the fields and the x-axis
in region 2.



208 Wang and Dong

3. ANALYSIS OF SURFACE WAVE MODES

In LHM waveguide, there exists a sort of unique electromagnetic waves
termed as the “surface waves” that decay exponentially away from,
but propagate along, the two dielectric interfaces. As we know, the
TE surface wave modes exist when the magnetic permeability of two
dielectrics have different signs, while for TM surface wave modes the
electric permittivity of two dielectrics should be of different signs.

When the surface wave modes exist in the LHM waveguide, the
propagation constant of region 2 is purely imaginary (k2 = iα2).
Substitute it into the dispersion equation, we get

α2d = tanh−1


−

(
µ2α1

µ1α2

)
+

(
µ2α3

µ3α2

)

1 +
(
µ2α1

µ1α2

) (
µ2α3

µ3α2

)

 (5)

Here, the tan−1 in equation (2) is replaced by tanh−1. We discuss the
existence of surface wave modes in LHM waveguide due to different
waveguide parameters as follow.

3.1. ε2µ2 > ε3µ3

We introduce three normalized parameters V, p2, ∆ analogous to the
analysis of guided modes above, then Equation (5) becomes

V (p2 − 1)
1
2 = tanh−1




(
−µ2
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) (
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p2 − 1

) 1
2

+
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) (
p2

p2 − 1

) 1
2

1 +
(
−µ2

µ1

) (
p2 + ∆
p2 − 1

) 1
2 (

−µ2

µ3

) (
p2

p2 − 1

) 1
2




(6)
Here the value range of p2 is [1,+∞). For a given waveguide parameter,
we can discuss the existence of surface wave modes with two different
cases as follow:

(1) −µ2/µ3 ≥ 1. For a given waveguide parameter, we can plot the
dispersion curve of surface wave modes as shown in Figure 4. Under
this circumstance there exists only one surface wave mode below a
certain frequency. This frequency can be known by setting p2 = 1.
The subgraph represents the distribution of amplitude of electric field
in waveguide. We can see that the amplitude of electric field in all
regions decay exponentially away from the dielectric interface. Since
there isn’t any intersection between the distribution curve and the x-
axis in region 2, we can name this mode as the “even mode”.
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Figure 4. Normalized dispersion curve of the surface wave modes with
ε1 = 1, µ1 = 1, ε2 = −2, µ2 = −2, ε1 = 2, µ1 = 1, d = 2 cm. The
subgraph represents the distribution of amplitudes of electric field.

(2) −µ2/µ3 < 1. For a given waveguide parameter, we can
plot the dispersion curves in Figure 5 with different value of −µ2/µ3.
We can see from the figure that even mode exists at all value of V ,
however another mode which called the “odd mode” appear only when a
threshold V is exceeded. As shown in figure, when −µ2/µ3 = 0.5, V =
4, there exist two surface waves solutions marked with A and B. A
represent the even mode whose amplitude of electric field is shown in
the left subgraph in Figure 5 and B represent the odd mode whose
amplitude of electric field is shown in the right subgraph in Figure 5.
We can also see from the figure that the cutoff frequency of odd mode
increases when the value of −µ2/µ3 decreases.

3.2. ε2µ2 < ε3µ3

Here, we introduce U = −iV, p2, ∆, where the value of V is purely
imaginary, then the dispersion equation becomes

U(1 − p2) 1
2 = tanh−1
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) (
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2




(7)
Here equation (7) is different from equation (6), and the value range
of p2 is (−∞, 0]. For a given waveguide parameter, we can also discuss
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the existence of surface wave modes in two different cases as follow:
(1) −µ2/µ3 ≥ 1. For a given waveguide parameter, the dispersion

curve is shown in Figure 6(a). We can see from the figure that the even
mode exists at all value of U , while there is no odd mode in waveguide.

(2) −µ2/µ3 < 1. For a given waveguide parameter, the dispersion
curve is shown in Figure 6(b). We can see from the figure that there

Figure 5. Normalized dispersion curves of the surface wave modes
with n1 = 1, n2 = −2, n3 =

√
2 where (1) −µ2/µ3 = 0.5 (2)

−µ2/µ3 = 1/3 (3) −µ2/µ3 = 0.2. The subgraph represents the
distribution of amplitudes of electric field.

Figure 6. Normalized dispersion relationship of the surface wave
modes with n1 = 1, n2 = −

√
2, n3 = 2, (a) −µ2/µ3 = 2 (b)

−µ2/µ3 = 0.5. The subgraph represents the distribution of amplitudes
of electric field.
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only exists even mode below a certain U and when the value of U falls
into a certain range, there exist two even modes that have different
sign of power flux. There is no odd mode in waveguide at any value of
U .

From this section we can come to the conclusion that in LHM
asymmetric slab waveguide there exists surface wave mode, and that
it is decay exponentially away from dielectric interfaces of core and
claddings. The existence of the surface wave mode depends on the
selection of parameters and structures of waveguides. The surface wave
mode is a novel wave mode that can not established in normal dielectric
materials.

4. POWER FLUX IN THE WAVEGUIDE

Energy flux in waveguide is an important parameter. We know that
the energy flux is characterized by the Poynting vector averaged over
the period T and it can be defined as S = 1

2Re [E × H∗]. For a
monochromatic plane wave, the energy flux is directed along the z-
axis. We can analyze the transverse profile of Sz of guided modes for
given waveguide parameters. We know that Sz = βE2(x)/2ωµ(x), so
the normalized distribution of energy flux is shown in Figure 7. Here we
plot the distributions of TE1, TE2 and TE3 guided modes. We can see
from the figure that the energy distribution of LHM asymmetric slab
waveguide is very different from that of normal dielectric waveguide.
The direction of energy flux in region 2 (with µ2 < 0) is opposite to
that in regions 1 and 3 (with µ > 0). That is to say the Poynting
vector in LHM layer is anti-parallel to the phase-velocity vector.

The total power flux in LHM asymmetric waveguide can be
obtained as an integral of the Poynting vector

P = P1 + P2 + P3 =
∫ +∞

d
Szdx+

∫ d

0
Szdx+

∫ 0

−∞
Szdx (8)

where P1, P2 and P3 are the power flux in region 1, 2 and 3. Substitute
equation (1) into equation (8), we can get the total power flux in region
1, 2 and 3 separately



P1 =
A2

2β cos2(α2d+ ϕ)
4ωµ1k1

P2 =
A2

2β

8ωµ2α2
[sin(2α2d+ 2ϕ) − sin(2ϕ) + 2α2d]

P3 =
A2

2β cos2 ϕ
4ωµ3k3

(9)
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Figure 7. Distribution of energy flux along the transverse profile of
waveguide for a given waveguide parameters, where (a) TE1: V =
1.1363 (b) the dashed line is TE2, the real line is TE3: V = 10.

To investigating the net power flux in waveguide we use the normalized
power which was introduced in Ref. [10]. The normalized power flux
can be expressed as

P =
P1 + P2 + P3

|P1| + |P2| + |P3|
(10)

When P < 0, the net total power flow of the guided mode is anti-
parallel with the direction of phase flow and this wave is called the
backward wave. We can get the opposite result when P > 0 and we
call this wave the “forward wave”. We take the TE2 TE2 guided mode
as shown in Figure 8, which is zoomed in partly from Figure 2. We
can see from Figure 8 that when m > 1 there exist a negative slope
portion in dispersion curve which is very different from conventional
waveguide. That is to say when V falls into a certain region, there
are two TEm modes. We call this region “the special region” shaded
in Figure 8. Just as shown in figure, when V = 5 there exists two
solutions of guided mode marked with B and C, and the point Bis
forward wave and the point C is backward wave.

We use the normalized power P to analyze the net power flux
in waveguide with different guidance solutions in Figure 8. From
calculation we know that when the guidance solution falls between
A and D, the normalized power P > 0. In this case, the portion of
the guided mode inside the LHM slab (region 2) shows the Poynting
vector to be anti-parallel to the direction of the modal phase flow and
the portion of the guided mode outside the LHM slab (region 1 and
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Figure 8. Normalized dispersion curve when m = 2. ε1 = 1, µ1 =
1, ε2 = −2, µ2 = −2, ε3 = 2, µ3 = 1.

region 3) show the Poynting vector to be parallel with the phase flow.
But the total power flow of the part of mode in region 2 is smaller
than that of the total power flow outside the region 2. In this case,
the net power flux of the guided mode is parallel with the direction
of the phase flow. That is why we call it “forward wave”. When the
curve reaches to A (the slope of this point is +∞), P = 0. In this
case, the net power flow of the guided mode is 0. After that, when
the curve shift to the position with positive slope, the portion of the
guided mode inside the LHM slab (region 2) shows the Poynting vector
to be anti-parallel to the direction of the phase flow, and the portion
of the guided mode outside the LHM slab (region 1 and region 3) show
the Poynting vector to be parallel with the phase flow. But in this case
the net power flux of guided mode is anti-parallel with the direction
of the phase flow which is different from “forward wave”. We can call
this wave “backward wave”.

5. CONCLUSION

We have analyzed above the electromagnetic properties of LHM
asymmetric slab waveguide. We determine the guidance conditions
of guided modes in waveguide by using a graphical method. There are
some novel properties in LHM waveguide: (i) There is no fundamental
node-less mode in LHM waveguide at all. (ii) The first-order guided
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modes exist only in a particular range of V , and it cannot coexist with
any other higher-order modes. (iii) When m > 1, the dispersion curves
of guided modes have a portion with negative slope, it appears a little
bit below the cutoff frequency.

Apart form the guided mode, there exist surface wave modes in
LHM waveguide. The properties of surface wave modes are analyzed
in detail for given waveguide parameters and structures. We found
that the surface waves decay exponentially away from, but propagate
along, the dielectric interfaces of core and claddings. The existence
of the guided modes depends on the parameters and structures of the
waveguide.

We analyzed lastly the power flux in LHM waveguide and found
that the power flux in region of LHM is negative while it is positive
outside the LHM slab and that the net total power flux in waveguide
determined by the parameters of waveguide as well as the frequency.
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