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Abstract—An effective approach is suggested for calculating the
Green’s function of an axially symmetric sheet magnetic current placed
on a circular cylindrical metal surface. Upon improving convergence
of the available Fourier transform, it has been possible to explicitly
develop the Green’s function logarithmic singularity at the source.
Also, the Green’s function behavior at the branch point in the spectral
domain has been considered, ending up with the singularity extraction
in the space domain. It is shown that this branch point singularity
(pole) corresponds to the cylindrical quasi-TEM mode of the cylinder
exterior. Finally, the rest of the Green’s function is effectively
numerically calculated.

1. INTRODUCTION

The Green’s function problem of an axially symmetric sheet magnetic
current placed on a circular metal cylinder is an area of interest in
conformal antenna theory [1, 2]. In particular, the conformal antenna
can radiate via the aperture excitation, including an axially symmetric
aperture on a cylindrical surface. The aperture, in turn, can be
stimulated, for one, by a wave travelling in the cylinder interior. In
this case, the equivalence principle [3] allows the aperture modeling
as two sheets of oppositely directed magnetic currents placed in the
aperture proximity on both sides of it [4]. The integral equation of
the magnetic current on the aperture surface is formulated, and the
space Green’s function for the sheet magnetic current plays the key
part there. The solution strategy implies the method of moments for
solving the integral equation in the space domain.
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The excitation of a circular metal cylinder by external currents is
a classical problem, not new in the literature. In particular, the general
problem solution upon inverse Fourier transform (IFT) in cylindrical
coordinates is presented in [5]. Although the solution from [5] is
numerically available for the external current in any appearance, the
integral equation of the aperture radiation problem cannot be furnished
in the considered problem when the aperture is accommodated on a
cylindrical surface. The trouble is that the Green’s function singularity
at the source has not been developed yet.

The novelty of this paper is in that the source singularity of
the spatial Greens function for an axially symmetric sheet magnetic
current placed on the surface of a circular metal cylinder has been
obtained in an explicit form. This has been reached by the extraction
of the spectral Greens function asymptote in the spectral domain and
the addition of its spatial-domain equivalent evaluated analytically.
In addition, the branch point contribution to the spatial Greens
function has been developed in a sufficiently explicit form. On this
basis an effective algorithm of Green’s function computation will
be available wherever in the space domain, including the source
region. Opposed to [5] with the IFT developed in χ, terms (χ is the
transverse wave number), the IFT will be built in h terms (h is the
longitudinal propagation constant). This strategy has been tried in [6]
for constructing the Green’s function of an electric current sheet on a
dielectric coated metal cylinder.

2. PROBLEM FORMULATION

In Fig. 1, a circular metal cylinder of radius r1 carries a sheet of axially
symmetric magnetic current Jm(r1, z) having z and ϕ components
and distributed over a bounded surface S′. It is required to express
the magnetic field components via the magnetic currents and find the
Green’s function.

Initially, let us suppose that the sheet of axially symmetric
magnetic current is placed over the metal cylinder on the surface with
r = r0 > r1. We link to the two regions r1 < r < r0 and r > r0,
with the corresponding affiliations designated by indices p = 0 and 1,
respectively. Time dependence eiωt is assumed and suppressed. The
z-components of the magnetic field in h-IFT terms [5] are

{Ep
z (r, z), H

p
z (r, z)} =

1
2π

∞∫
h=−∞

{epz(r, h), hpz(r, h)} e−ihzdh, (1)

where i is the imaginary unit and h is the propagation constant.
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Figure 1. The excitation of the metal cylinder exterior by an axially
symmetric sheet of surface magnetic current Jm.

Expression (1) has the appearance of infinite spectrum of z-modulated
cylindrical waves travelling in the radial direction.

In each region p = 0, 1, the field spectral components are sought
as a solution of the one-dimensional Helmholtz equation(

∆ + k̃2
)
{epz(r, h), hpz(r, h)} = 0. (2)

Here ∆ is the one-dimensional Laplace operator in variable r (the
consideration is axially symmetric), epz(r, h) and hpz(r, h) are the
spectral components of the electric and magnetic fields, k̃2 = k2

0 −
h2, k2

0 = ω2 · ε0 · µ0 and k0 = 2π/λ0, where λ0 is the free-space
wavelength and ε0, µ0, are the absolute permittivity and permeability
of a vacuum.

After satisfying the boundary condition on the metal conductor
surface, one has the solution of (2) in the form

{epz(r, h), hpz(r, h)} =
{
Bpγp(r, h), Bpγp(r, h)

}
, (3)

with

γ0(r, h) = γ0(r, h) =
H

(2)
0 (k̃r)

H
(2)
0 (k̃r0)

;

{γ1(r, h), γ(r, h)} =
J0(k̃r)
J0(k̃r1)

+

{
Γ1
H

(2)
0 (k̃r)

H
(2)
0 (k̃r1)

,Γ1
H

(2)
0 (k̃r)

H
(2)
0 (k̃r1)

}
;
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Γ1 = −J0(x1)
J0(x1)

H
(2)
0 (x1)

H
(2)
0 (x1)

; Γ1 = −J
′
0(x1)
J0(x1)

H
(2)
0 (x1)

H
‘(2)
0 (x1)

; (4)

x2
1 = (k0r0)2{1 − h2}; x2

1 = (k0r1)2{1 − h2}; h = h/k0,

where Bp, Bp are the unknown coefficients, h is the normalized
propagation constant, and J0(x) and H(2)

0 (x) are the zero-order Bessel
and Hankel functions, respectively. The coefficients Bp, Bp come from
satisfying the boundary condition on the magnetic current interface
r = r0

e0ϕ(r0, h) − e1ϕ(r0, h) = −jmz (h), h0
z(r0, h) − h1

z(r0, h) = 0, (5a)

e0z(r0, h) − e1z(r0, h) = −jmϕ (h), h0
ϕ(r0, h) − h1

ϕ(r0, h) = 0, (5b)

where jms (h) is the direct Fourier transform of surface currents
Jms (r1, z); subscript s stands for either z or ϕ. In (5a) and
(5b), the transverse components are expressed via the longitudinal
components in the well-known manner [5]. As the axial symmetry
case goes with polarization splitting, the consideration falls into the
two independent problems for the H-waves (Hz, Hr, Eϕ) (5a) and the
E-waves (Ez, Er, Hϕ) (5b) produced, respectively, by the z- and ϕ-
components of the magnetic current. Coefficients Bp, Bp are provided
by Appendix A.

From now on, the sheet magnetic current will be placed on the
metal cylinder surface (some relevant transformations can be found
in Appendix A). Hence r0 = r1, and the spectral components of
the magnetic field on the interface r = r1 are (in the following, the
superscript of the spectral field will be omitted)

hz(r1, h) = χmz (r1, h) · jmz (h) (6)

hϕ(r1, h) = χmϕ (r1, h) · jmϕ (h) (7)

For spectral functions χms (r1, h), see Appendix A.
The further step should be the transformation of (6) and (7) for

the space domain. To improve the Green’s function convergence in the
space domain, (6) is expressed in terms of so-called mixed potentials
[6] as follows

hz(r1, h) = χmz (r1, h)jmz (h) = gmJ
z (r1, h)jmz (h) + ihgmσ(r1, h)ihjmz (h).

(8)
For spectral functions gm(J,σ)

s , see Appendix A. Formula (8) is the
definition of changing from the standard formulation to that in the
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mixed-potential form; superscripts J and σ stand for current and
charge, respectively. Notice that in the considered axially symmetric
case, (7) need not be changed as just shown. Transforming (6) and
(7) from the spectral to the space domain yields the magnetic field
components in current terms with the use of Green’s functions as
follows

Hz(r1, z) =
L∫

0

Jmz (z′)GmJ
z (r1, z − z′)dz′

+
d

dz

L∫
0

∇′
tJ

m(z′)Gmσ(r1, z − z′)dz′ (9)

Hϕ(r1, z) =
L∫

0

Jmz (z′)GmJ
ϕ (r1, z − z′)dz′, (10)

where L is the linear size of the axially symmetric sheet current in the
z-direction, ∇′

t = z0
∂
∂z′ , and the Green’s function is

Gm(J,σ)
s (r1, z − z′) =

1
2π

∞∫
h=−∞

gm(J,σ)
s (r1, h)e−ih(z−z′)dh. (11)

The second term is missing from (7), (10) because ∂
∂ϕ = 0 in the axially

symmetric case. The integration in (11) proceeds along the real axis
of propagation constant h (Fig. 2).

x'>0 
x''<0 

x'>0 
x'>0 

Reh 

Imh 

x'<0 
x''<0 

x'>0 
x''<0 

cut 

Branch point 
h= k0 

contour
x'>0 
x''<0 x'<0 

x''<0 

+_

Figure 2. The basic sheet of the Riemann surface; x′ and x′ stand for

the real and the imaginary parts of x = kr1
√

1 − h2, respectively.
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Now that (9), (10) have been obtained, the key problem is the
evaluation of Green’s function (11). The straightforward calculation is
not possible because of the singular behavior of the spectral function.
The primary trouble is a slow decrease of the spectral Green’s function
in parameter h. Furthermore, the integral of (11) diverges as the
observation point approaches the source. The second trouble is the
branch point singularity of the spectral Green’s functions. In the
further paragraphs, some ways of effective calculation of (11) will be
discussed.

3. ASYMPTOTIC BEHAVIOR OF SPECTRAL GREEN’S
FUNCTIONS AT A LARGE h. GREEN’S FUNCTION
SINGULARITY AT THE SOURCE

Examine the asymptotic behavior of the spectral Green’s functions as
h → ∞. From (4) it follows that the arguments of the cylindrical
functions are purely imaginary when h → ∞. Then the cylindrical
functions change into the modified cylindrical functions (see Appendix
B) approximated in the large argument case to the leading term (B4).

Insert (B4) into (B2) to get spectral Green’s functions
g
m(J,σ)
s (r1, h) in the asymptotic representation

gAS,m(J,σ)
s (r1, h) =

AJ,σs f(h)
k0r1h

, (12)

AJz = AJϕ = 1/w0; Aσz = 1/(k2
0w0); f(h) = 1 − e−k0th,

where w0 =
√
µ0/ε0 is the wave resistance of the free space.

Notice the introduction of complementary function f(h) into (12)
to compensate the singular behavior at h = 0. However arbitrarily
valued, quantity k0t is necessarily positive to provide the decrease
as h grows. The appearance of (12) reveals a slow decay of the
spectral Green’s function, which causes, as will be seen later, the
source singularity in the space domain. The spectral Green’s functions
gmJ
s (r1, h) and their asymptotes gAS,mJ

s (r1, h) are viewed in Fig. 3.
Formulae (A5) show that the spectral Green’s functions are even

functions of h. This makes us free to take the integrals of (11) over
(0,∞). So

Gm(J,σ)
s (r1, z − z′) =

1
π

∞∫
0

gm(J,σ)
s (r1, h) cos[h(z − z′)]dh. (13)
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Figure 3. The spectral Green’s functions gmJ
s (r1, h) and the spectral

asymptote gAS,mJ
s (r1, h) versus normalized propagation constant h =

h/k0 in the region h > 2 at f = 3.3 GHz and r1 = 0.05 m.

Rearrange the integrand in (13) by adding and subtracting the
asymptotic behavior of spectral Green’s function (12). In turn, the
IFT of the spectral asymptote

GSING,m(J,σ)
s (r1, z − z′) =

1
π

∞∫
0

gAS,m(J,σ)
s (r1, h) cos[h(z − z′)]dh (14)

is calculated by the formula [9]

∞∫
0

(1 − e−dh)
h

cos(bh)dh =
1
2

ln

(
b2 + d2

b2

)
. (15)

The final explicit representation of the singular part of the Green’s
function in the space domain is

GSING,m(J,σ)
s (r1, z − z′) = −

ik0A
J,σ
z,ϕ

4π
ln

[
k2

0(z − z′)2 + (k0t)2
]

[
k2

0(z − z′)2
] . (16)

According to (16), the Green’s function has a logarithmic
singularity at the source.
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4. BRANCH POINT BEHAVIOR OF SPECTRAL
GREEN’S FUNCTIONS gm,J

ϕ AND gm,J
z

Recall that the Fourier integral in (13) is taken along the real axis
of propagation constant h (see Fig. 2). To be more specific, the area
of the analytic continuation of the spectral Green’s function is the
infinite-sheeted Rieamann surface of the function ln[(h− k0)(h+ k0)].
The points h = ±k0are branch points. The integral in (13) is taken
along the real axis of the Riemann basis sheet defined by the conditions
Im

√
k2

0 − h2 < 0 for |h| > k0 and −π/2 < Arg
√
k2

0 − h2 < π/2. To
develop the square root branches, the cuts are made from the branch
points to the infinity, as shown in Fig. 2. The integration contour
bypasses the branch points so as to satisfy the radiation condition, or
what is the same, the limiting absorption principle [7].

Consider the branch point behavior of the spectral Green’s
functions. Owing to the small-argument asymptotic representation of
the Hankel function with its derivative (x < 1 or z < 1) [8], functions
g
m(J,σ)
s given by (A5) can be approximated in the branch point vicinity
h < 1 and h > 1 as follows

gmJ
z = k2

0g
mσ
z = −πk0r0

2

(
1 + x2 ln

γx

2

)
+ i

[
−k0r0π

2

8
x2 + ln

γx

2

]

for h < 1, (17)

gmJ
z = k2

0g
mσ
z = i ln

γz

2
for h > 1, (18)

gmJ
ϕ = − (2/π)k0r1

x[1 + (4/π2) ln2(γx/2)]
− i (4/π2)k0r1 ln(γx/2)
x2[1 + (4/π2) ln2(γx/2)]

for h < 1, (19)

gmJ
ϕ = i

k0r1
z2 ln(γz/2)

for h > 1, (20)

where

γ = 1.781072, x ≈ 2k0r1

√
1 − h, and z ≈ 2k0r1

√
h− 1. (21)

Note that the spectral Green’s functions demonstrate a singular
behavior near the branch point. From (17)–(18) it follows that the
real part of gm(J,σ)

z (h) is a discontinuous function having different
limiting values, zero and a constant, as h→ 1 from the right and from
the left, respectively. The branch point behavior of the rigorous and
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Figure 4. The real (solid line) and imaginary (dashed line) parts of
the spectral Green’s function gmJ

z (r1, h) versus normalized propagation
constant h = h/k0 in the branch point vicinity at f = 3.3 GHz and
r1 = 0.05 m. Curves 1 and 2 correspond to the rigorous calculation, 3
and 4 come from approximate formulas (17)–(18).

the approximately calculated by (17)–(18) spectral Green’s function
g
m(J,σ)
z (h) is viewed in Fig. 4. According to (17)–(18), the imaginary

part gm(J,σ)
z (h) of has a logarithmic singularity at the branch point.

Even though the singularity is integrable, it is good to analytically
evaluate the integral of the imaginary part of function g(mJ)

z using
approximation (17)–(18).

Thus, the singular behavior of gm(J,σ)
z (h) in the branch point

vicinity is accounted for both the cylindrical functions such as the
logarithm-carrying zero-order Hankel function and the mixed potential
scheme causing the singular factor 1/x2 (see (A4)–(A5)).

Consider the branch point behavior of function gmJ
ϕ shown in

Fig. 5. There the rigorous data are compared with the approximate
calculations by (19)–(20). According to (19)–(20), both the real and
the imaginary parts of gmJ

ϕ (h) are discontinuous functions with a
singularity at the branch point: the real part of gmJ

ϕ (h) possesses
an integrable singularity, while the imaginary part of gmJ

ϕ (h) has a
nonintegrable singularity O(1/x2 ln(x)). Notice that in this case the
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Figure 5. The spectral Green’s function gmJ
ϕ (r1, h) versus normalized

propagation constant h = h/k0 in the branch point vicinity at f =
3.3 GHz and r1 = 0.05 m. The solid line is for the real part of the
spectral Green’s function, the dashed line is for the imaginary part.
Curves 1 and 2 correspond to the rigorous calculation, curves 3 and 4
come from approximate formulas (19)–(20).

mixed potential scheme has not been introduced with any singularity
added.

Despite the fact of nonintegrable singularity, integral (13) of
function gmJ

ϕ exists in the sense of principal value and can be evaluated.
Some important comments on improper integrals appearing in EM
theory can be found in [11].

5. GREEN’S FUNCTION EVALUATION

Now the space Green’s function can be written as a sum of the singular
and numerical parts

Gm(J,σ)
s (r1, z− z′) = GSING,m(J,σ)

s (r1, z− z′)+GNUM,m(J,σ)
s (r1, z− z′).

(22)
In the numerical part, the ∆-vicinity of the branch point is developed
and treated as follows

GNUM,m(J,σ)
s (r1, z − z′) = GBRA,(mJ)

s (r1, z − z′)
+G1NUM,m(J,σ)

s (r1, z − z′) (23)
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G1NUM,m(J,σ)
s (r1, z − z′) =

k0

π

1−∆∫
0

g1m(J,σ)
s (r1, h) cos[hk0(z − z′)]dh

+
k0

π

∞∫
1+∆

g1m,(J,σ)
s (r1, h) cos[hk0(z − z′)]dh

−k0

π

1+∆∫
1−∆

gAS,m(J,σ)
s (r1, h) cos[hk0(z − z′)]dh

(24)

GBRA,(mJ,σ)
s (r1, z − z′) =

k0

π

1+∆∫
1−∆

gm(J,σ)
s (r1, h) cos[hk0(z−z′)]dh (25)

g1m(J,σ)
s (r1, h) = gm(J,σ)

s (r1, h) − gAS,m(J,σ)
s (r1, h) (26)

For the further details of the GBRA,(mJ,σ)
s evaluation, see Appendix C.

With the spectral Green’s function decrease as O(h−1) in view of
(12), the finding of Green’s function (13) reduces to the evaluation of
IFT (24)–(25) of a function decreasing at least as O(h−2), which is
good enough to provide the numerical calculations. Notice that of the
three spectral Green’s functions of (11), only two need be calculated
because gm,J

z (r0, h) = k2
0g

m,σ
z (r0, h).

The numerically obtained space Green’s functions are viewed in
Figs. 6a (GmJ

z ) and 6b (GmJ
ϕ ). The Green’s functions GNUM,mJ

s (not
plotted separately) run their peaks at the source point remaining finite.
To better visualize the physics of the curves of Fig. 6 and compare them
with the results of [5], the currents are put in the circular (ring-shaped)
dipole form

JmJ
ϕ (r1, z′) = Im0ϕδ(z

′ − 0), (27)

JmJ
z (r1, z′) = Im0zδ(z

′ − 0). (28)

This assumption simplifies the relationship between the magnetic field
components and the Green’s functions in (9) and (10). Namely, as
shown in Appendix D,

Hϕ(r1, z) = 2πIm0ϕr1G
mJ
ϕ (r1, z − 0), (29)

Hz(r1, z) = 2πr1Im0zΦ(z − z′)|z′=0, (30)

where function Φ(z − z′) comes from (D5). Also, Jez = Hϕ and
Jeϕ = −Hz at the perfectly conducting surface.
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Analysis of the curves of Fig. 6 and the results from Appendix
D suggest the following conclusion. First, as one would expect,
the Green’s functions oscillate with a period equal to the free space
wavelength, which means dealing with space waves whose phase
velocities are equal to the speed of light in free space. Second, the
amplitude of the space wave related to the Jez component of the electric
current decreases much slower than the Jeϕ-related amplitude does.
The reason is that the ϕth magnetic current excites a weakly radiating
cylindrical quasi-TEM wave [5]. It is this wave that causes the singular
behavior of the spectral Green’s function. And as this wave magnetic
field is purely transverse, no other electric current but longitudinal
appears on the cylinder surface.

The problem of metal cylinder excitation by a circular dipole
as that of (27) has been treated in [5], ending up with the current
component expression

Jez = Hϕ =
Im0 ωε0

2π

∞∫
χ=−∞

e±
√
χ2−k2z√
χ2 − k2

H
(2)′

0 (χr1)

H
(2)
0 (χr1)

dχ. (31)

In (31), the χ-IFT is seen as an infinite spectrum of plane cylindrical
waves propagating along the z-axis in both directions from the source.
Except for the source region, the numerical analysis of (31) was made
[5], the current component Jez on the cylinder surface was plotted for
different values of k0r1 parameter. The Jez results obtained in the
present paper fully agree with that from [5]. In support, the amplitude
and the phase of the electric current component Jez normalized, as in
[5], to 2Im0ϕ/(π

2r1) and calculated for four values of k0r1 are plotted in
Fig. 7a versus k0(z − z′) parameter.

Fig. 7a evidences that the larger is k0r1, the sharper is the decay of
the electric current amplitude away from the origin. In physical terms,
an electrically small cylinder supports the cylindrical quasi-TEM mode
with less attenuation than an electrically large cylinder does. Also, in
Fig. 7a, results obtained in [5] using formula (31) are plotted with
circles.

According to Fig. 7b, the wave phase velocity equals the speed of
light. Namely,

vΦa3 = ck0

[
dψ

dz

]−1

= c. (32)

The curves of Figs. 7a,b coincide, within the graphical accuracy,
with the results from [5].

It is important that the χ-expansion integrand in (31) is not
even, whereas the h-expansion in (13) is. Attempts at developing
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Figure 6. Green’s function GmJ
s (r1, z − z′) versus the wavelength-
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solid line shows the real part of the Green’s function, the dashed line
is for the imaginary part.
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the singularity of (31) by means of the asymptote explicit inversion
yield the integral unsolvable in elementary functions. Therefore the h-
expansion taken in the present study suits better for the development
of Green’s function singularity at the source.

6. CONCLUSION

Thus, an effective approach has been presented for calculating the
Green’s function of an axially symmetric sheet magnetic current placed
on a circular metal cylinder. In essence, the method reduces to the
extraction of the asymptotic behavior of the Green’s function in the
spectral domain with the addition of this function IFT in the space
domain. As a result, the Green’s function appears to consist of two
terms. The first explicitly describes the field singularity at the source,
while the second is effectively computer calculated. Also, the spectral
Green’s function specific features in the branch point vicinity have been
traced. Some ways of the integration of the singular behavior of the
spectral Green’s functions have been shown. This singular behavior
is due to the quasi-TEM wave, which propagates along the cylinder.
The obtained Green’s function is good enough to solve the radiation
problem of an aperture accommodated on a cylindrical surface. The
problem extension to the case of non-symmetric sheet magnetic current
will be the topic of a separate paper. There the singularity development
will be reported for spatial Green’s function of sheet magnetic current
of an arbitrary (non-symmetric) distribution.
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APPENDIX A. SPECTRAL GREEN’S FUNCTIONS

Coefficients Bp, Bp are expressed as

B0 =
iF0

∆E
0

jmϕ (h), B0 = χmz (r0, h)jmz (h),

B1 =
B0 − jmϕ (h)
γ1(r0)

, B1 =
B0 + jmϕ (h)
γ1(r0)

.

(A1)

where

χmz (r0, h) = − 1
∆H

0 w0k0r0
, ∆E

0 = −i[Φ0 − F0], ∆H
0 = i[Φ0 − F 0],
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Φ0 =
γ′0(r0)
x1γ0(r0)

, F0 =
γ′1(r0)
x1γ1(r0)

, F 0 =
γ′1(r0)
x1γ1(r0)

.

In view of (A1), the spectral components of the tangential magnetic
fields h0

z(r, h) and h0
ϕ(r, h) can be written as

h0
z(r0, h) = χmz (r0, h) · jmz (h) (A2)
h0
ϕ(r0, h) = χmϕ (r0, h) · jmϕ (h) (A3)

where
χmϕ (r0, h) =

k0r0
w0

Φ0F0
1

∆E
0

Now the magnetic current is attached to the metal surface, r0 = r1
and the spectral Green’s functions χms (r1, h) become

χmz (r1, h) = − i

w0

H
(2)
0 (x)

H
(2)′

0 (x)

x

k0r1
, χmϕ (r1, h) = −k0r0

w0

H
(2)′

0

H
(2)
0 (x)

. (A4)

Then the mixed-potential spectral Green’s functions gm(J,σ)
s (r1, h)

are found in accordance with (8) in the form

gm,J
z (r1, h)=k2

0g
mσ(r1, h)=− i

w0

H
(2)
0 (x)

H
(2)′

0 (x)

k0r1
x
, gm,J

ϕ (r1, h)=χmϕ (r1, h),

(A5)

where x = (k0r1)
√

1 − h2.

APPENDIX B. ASYMPTOTIC REPRESENTATION OF
SPECTRAL GREEN’S FUNCTIONS

When h > 1, argument x of the cylindrical functions is purely
imaginary

x = −iz, z = k0r1

√
h

2 − 1. (B1)

Then functions H(2)
0 (x) and H(2)

1 (x) are expressible via the modified
Macdonald functions K0(z) and K1(z), respectively, and the spectral
Green’s functions gm(J,σ)

s (r1, h) (A5) are rewritten as

gm,J
z (r1, h) = − i

w0

K0(z)
K1(z)

k0r1
z
, gmJ

ϕ (r1, h) = − ik0r1
w0

K1

zK0(z)
. (B2)
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When h→ ∞, argument z of the cylindrical function is approximately
[8]

z ≈ z = k0r1h, (B3)

and the Macdonald functions can be approximated as follows

K0(z) ≈
√
π

2z
e−z

{
1 − 1

8z

}
; K1(z) ≈

√
π

2z
e−z

{
1 +

3
8z

}
. (B4)

Inserting the expansion leading terms (B4) into (B2) yields the
asymptotic representation of Green’s functions (12).

APPENDIX C. CALCULATION OF GBRA
s (r1, z − z′)

First consider function GBRA,(mJ)
ϕ (r1, z − z′) in the form

GBRA,(mJ)
ϕ (r1, z − z′) =

k0

π

1+∆∫
1−∆

gmJ
ϕ (r1, h) cos

[
hk0(z − z′)

]
dh. (C1)

To calculate (C1), take some approximations. Namely, since ∆ � 1,
the function cos[hk0(z − z′)] is approximated in the ∆-vicinity of the
branch point h = 1 by the first term of its Taylor series

cos
[
hk0(z − z′)

]
≈ cos[k0(z − z′)]. (C2)

Then the integrand in (C1) appears to be the total differential

GBRA,(mJ)
ϕ (r1, z − z′) = c0 cos[k0(z − z′)]

1+∆∫
1−∆

d
{
lnH0

(
xAS(h)

)}
,

(C3)
where c0 = ik0

πk0r1
; xAS(h) =

√
2k0r1

√
1 − h.

Notice that for obtaining (C3), the spectral function is
approximated in more accurate terms than it was when expressions
(19), (20) were derived. Recall that the integral in (C3) has a
nonintegrable singularity at the point h = 1, and it can be evaluated
only in the sense of leading term. For this, put (C3) in the form

GBRA,(mJ)
ϕ (r1, z − z′) = v · p ·

1+∆∫
1−∆

d{ } = lim
ε→0




1−ε∫
1−∆

d{ } +
1+∆∫

1+ε

d{ }


 .

(C4)



262 Svezhentsev

In view of

lim
ε→0

{
ln

[
H

(2)
0 (xAS(1 − ε))

H
(2)
0 (xAS(1 + ε))

]}
= lim

ε→0

{
ln

[
H

(2)
0 (zAS(ε))

2iπK0(zAS(ε))

]}
= 0,

(C5)
where zAS(y) =

√
2k0r1

√
y, one finally obtains

GBRA,(mJ)
ϕ (r1, z − z′) = c0 ln

[
2iπK0(zAS(∆))

H
(2)
0 (zAS(∆))

]
cos[k0(z − z′)]. (C6)

As mentioned, the real part of the function g(mJ)
ϕ has an integrable

singularity. The contribution from this singularity integration is
contained in (C6). This contribution can be also obtained by the
integration of asymptotic expression (19). Finally,

REAL
{
GBRA,(mJ)
ϕ (r1, z − z′)

}
= c0

{
−π

2
− arctg

[
2
π

ln(αγ/2) + 0.5 ln ∆
]}

cos[k0(z − z′)], (C7)

where α =
√

2k0r1. The results due to formula (C.7) are very close to
the real part of (C.6). Yet the need to calculate the special functions
is avoided. In the calculations, ∆ = 10−3.

Turn to the calculation of the function GBRA,(mJ)
z (r1, z−z′) given

as

GBRA,(mJ)
z (r0, z − z′) =

k0

π

1+∆∫
1−∆

gmJ
z (r1, h) cos

[
hk0(z − z′)

]
dh. (C8)

Notice that according to (17)–(18), only the imaginary part of
gmJ
z (r1, h) has a singularity at the branch point. That is a logarithmic

and hence integrable singularity. Using asymptotic representations
(17)–(18) and approximation (C2) gives

IMAG
{
GBRA,(mJ)
z (r0, z − z′)

}
= cos[k0(z − z′)]

k0∆k0r1
2π

[ln ∆ − 1 + 2 ln(γα/2]. (C9)

The real part of (C8) is a smooth numerically calculated function.



Progress In Electromagnetics Research, PIER 60, 2006 263

APPENDIX D. PASSAGE TO THE LIMIT FROM SHEET
MAGNETIC CURRENT TO RING MAGNETIC DIPOLE

Proceed to the case of current distribution as a circular dipole in (27)–
(28) form. Insert (27) into (10) and integrate it to

Hϕ(r1, z) =
L∫

0

Im0ϕδ(z
′ − 0)GmJ

ϕ (r1, z − z′)dz′

= 2πIm0ϕr1G
mJ
ϕ (r1, z − z′)|z′=0. (D1)

Substituting (28) into (9) yields

Hz(r1, z) =
L∫

0

Im0zδ(z
′ − 0)GmJ

z (r1, z − z′)dz′

+Im0z
d

dz

L∫
0

d

dz′
δ(z′ − 0)Gmσ(r1, z − z′)dz′

= 2πr1Im0z

[
GmJ
z (r1, z − 0) − d

dz

d

dz′
Gmσ(r1, z − z′)|z′=0

]
= 2πr1Im0zΦ(z − z′)|z′=0, (D2)

where

Φ(z − z′)|z′=0 = GmJ
z (r1, z − 0) +

d2

dz′2
Gmσ(r1, z − z′)|z′=0. (D3)

Notice that Gmσ
z (r1, z − z′) = (1/k2

0)G
mJ
z (r1, z − z′). Proceeding

from the appearance of Gm
z (r1, z − z′) function in Fig. 6a, the just

mentioned dependence when the source distance is longer than the
several wavelengths can be approximated as

GmJ
z (r1, z − z′) ≈ A(z − z′)eik0(z−z′), (D4)

where the amplitude A(z−z′) slowly decreases as (z−z′) rises. Clearly
in this case,

Φ(z − z′) ≈ −ik0A
′
z(z − z′)eik0(z−z′). (D5)

From (D5) it follows that as (z−z′) grows, function Φ(z−z′) decreases
faster than the function GmJ

z (r1, z − z′) from Fig. 6b does.
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