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Abstract—Combined volume scattering with rough surface scattering
effects in passive microwave remote sensing of wet snow is studied
in this paper. The dense medium radiative transfer (DMRT) theory
with quasicrystalline approximation (QCA) is used to describe the
volume scattering model for densely distributed sticky coated dielectric
particles. The Numerical Maxwell Model of 3D simulations (NMM3D)
is used to simulate the rough surface bistatic scattering and emission,
and the bistatic scattering coefficients and emissivity of the rough
surfaces are utilized as the boundary conditions for the DMRT. Full
multiple scattering solutions are calculated by solving the DMRT
numerically. Wet snow model is adopted in this paper, the results
are illustrated for a layer of wet snow over a moist rough ground at
18.7 GHz and 38.5 GHz.

1. INTRODUCTION

In microwave remote sensing of snow, there are volume scattering
from the ice grains and surface scattering of the interface between
snow and the ground. The combined volume and surface scattering
were treated by classical radiative transfer theory with rough surface
boundary conditions based on physical optics or small perturbation
methods in the past [1, 2].

The two effects are combined by using the DMRT with rough
surface boundary conditions of NMM3D [3] in this paper. For
volume scattering, the DMRT is used based on the QCA for sticky
coated dielectric particles that can be of moderate size compared
with wavelength. The DMRT theory includes the effects of correlated
scattering and coherent field interaction in the near and intermediate
field range [4]. For rough surface scattering, in the past, analytic
methods such as Kirchhoff approximation or small perturbation
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method [1, 2] were utilized. However, with the advances of more
powerful computers and more efficient computation methods, we
calculate the rough surface effects through numerical solutions of three
dimensional Maxwell equations. The NMM3D simulations are based
on the sparse matrix canonical grid method (SMCG), which is a fast
method of solving the matrix equation associated with the method of
moments [3]. The Gaussian random rough surfaces with exponential
correlation functions are used because they are more applicable to
land surfaces than Gaussian correlation function [5]. The Rao-Wilton-
Glisson (RWG) basis functions are used in NMM3D to improve the
accuracy of the solution particularly in relation to energy conservation
[5].

In order to simulate remote sensing of wet snow, effective
permittivity of wet snow is important to be exactly known, which has
ever been calculated by strong fluctuation theory in recently year [6], to
effectively describe the wet snow model, the dense medium with coated
particles is considered in this paper. The coated particle consists of
two layers within each the permittivity is constant [7]. For a medium
with densely distributed coated particles, such as melting snow, wet
snow and composite materials with coated granules, the model can be
used to study waves propagating within it.

In Section 2, the DMRT theory, the rough surface boundary
conditions and the bistatic coefficients of rough surface scattering
obtained by NMM3D incorporated in rough surface boundary
conditions for DMRT for passive microwave remote sensing of wet
snow are described. Meanwhile, effective propagation constants and
attenuation rates in media with densely distributed coated dielectric
particles pertinent to wet snow are introduced. In Section 3, results for
passive microwave remote sensing at 18.7 GHz and 38.5 GHz of a layer
of wet snow overlying a rough moist soil ground are illustrated. In order
to study rigorously the frequency dependence of microwave signatures,
the same set of physical parameters of grain sizes, fractional volumes,
and rough surface rms height and correlation lengths for both 18.7 GHz
and 38.5 GHz is used to calculate the brightness temperatures.

2. METHODOLOGY

2.1. Dense Media Radiative Transfer Model for Volume
Scattering

In the DMRT model for wet snow, the sticky coated dielectric particle
model is used, where the snow grains are allowed to stick together
to form clusters. Distinguishing features of the dense media model
are: first, although the particles are small compared with wavelength,
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due to the aggregate nature of the sticky particles, the frequency
dependence of volume scattering is weaker than that by classical
Rayleigh prediction of frequency to the fourth power. Secondly, the
mean cosine of the scattering is not equal to zero in contrast to the
classical Rayleigh phase matrix. The pair distribution functions of
sticky particles are used [3, 5].

Figure 1. Geometry of the problem for simulations with DMRT
model.

For the wet snow layer overlying ground with a rough moist soil
surface under consideration, it was modeled by a slab of densely-
distributed sticky spherical ice coated with thin water film and
embedded in a background medium of permittivity ε0 (air)(Fig. 1).
Its effective permittivity is ε1. The layer thickness is d. The moist
soil has a permittivity εg = ε′g + ε

′′
g . The DMRT equations for passive

remote sensing are in the following form [2]:

cos θ
dIu(z, θ)
dz

=−κeIu(z, θ) +
∫ π

2

0
dθ′ sin θ′ · P (θ, θ′) · Iu(z, θ′)

+
∫ π

2

0
dθ′ sin θ′ · P (θ, π−θ′) · Id(z, θ′)+κa · CT (1)

− cos θ
dId(z, θ)
dz

=−κeId(z, θ) +
∫ π

2

0
dθ′ sin θ′ · P (π − θ, θ′) · Iu(z, θ′)

+
∫ π

2

0
dθ′ sin θ′ ·P (π−θ, π−θ′)·Id(z, θ′)+κa ·CT (2)
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where Iu(z, µi) =

[
I
v
u(z, µi)
I
h
u(z, µi)

]
, Id(z, µi) =

[
I
v
d(z, µi)
I
h
d(z, µi)

]
, v and h are,

respectively, the vertical and horizontal polarization directions of the
incident wave, T is snow’s brightness temperature, κe, κa, P are snow’s
extinction rate, absorbing coefficient and phase matrix respectively
[3, 8, 9]. They are calculated by using QCA theory. Using the same
theory, the effective propagation constant of wet snow is calculated,
which depends on fractional volume, diameter and permittivity of the
water-coated ice. The effective permittivity ε1 of wet snow is equal
to the square of the ratio of its effective propagation constant to
the propagation constant of air. Upon discretation using Gaussian
Legendre Quadrature in the discrete ordinate-eigenanalysis method,
the DMRT equation can be approximated by a quadrature formula as
follows

µ
dIu(z, µ)
dz

= −κe · Iu(z, µ) + α · P (µ, µ′) · Iu(z, µ′)

+α · P (µ,−µ′) · Id(z,−µ′) + κa · CT (3)

µ
dId(z, µ)
dz

= −κe · Id(z, µ) + α · P (−µ, µ′) · Iu(z, µ′)

+α · P (−µ,−µ′) · Id(z,−µ′) + κa · CT (4)

where

µ =

[
µv 0
0 µh

]
, µv/h =




µ1

µ2

. . .
µi

. . .
µN



, µi = cos θi,

i = 1, . . . , N , αi is the Christoffel weighting functions. There are 2N
µi values and 2N αi value, µi = −µ−i, αi = α−i .

At the surface between snow and air (z = 0), the boundary
condition is

Id(µ, z = 0) = r10 · Iu(µ, z = 0) (5)

where µ =
[
rv 0
0 rh

]
is the flat surface’s reflectivity.

At the rough surface of soil (z = −d), the boundary condition is

Iu(θ, z = −d) · cos θ = γc · Id(θ′, z = −d) · cos θ
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+
∫ π

2

0
dθ sin θ·

∫ 2π

0
dϕ′γic(θ, ϕ, θ′, ϕ′)·cos θ′ ·Id(θ′, z = −d)+e(θ)Tg cos θ

(6)

where γc =

[
γvc 0
0 γhc

]
and γic =


 γvvic γvhic

γhvic γhhic


 are the coherent

and incoherent bistatic scattering coefficients of rough surfaces. e =[
ev 0
0 eh

]
is thermal emissivity of the rough soil surface, and Tg is

soil’s brightness temperature.
We set

Γic(θ, θ′) =
∫ 2π

0
dϕγic(θ, ϕ, θ′, ϕ′ = 0) (7)

cos θ · Iu(θ, z = −d) = cos θ · γc(θ) · Id(θ, z = −d)

+
∫ 2π

0
dθ sin θΓic(θ, θ′) · cos θ′ · Id(θ, z = −d) + e(θ) · Tg cos θ (8)

Applying discrete ordinate-eigenanalysis method, the rough surface
scattering boundary condition equation can be approximated by a
quadrature formula as follow

Iu(µ, z = −d) =
(
rc(µ) + µ−1 · α · Γic(µ, µ′) · µ′

)
· Id(µ, z = −d)

+e(µ) · Tg (9)

Define
rg(µ, z = −d) =

(
rc(µ) + µ−1 · α · Γic(µ, µ′) · µ′

)
(10)

yields

Iu(µ, z = −d) = rg(µ, z = −d) · Id(µ, z = −d) + e(µ) · Tg (11)

2.2. Numerical Implementation of Rough Surface Boundary
Conditions

A tapered plane wave [3, 5] impinging from wet snow onto the moist
ground is considered in Fig. 2. The ground and snow interface has a
random height profile. The incident electromagnetic wave is tapered
so that the illuminated rough surface can be confined to a finite size.
Numerical simulations of Maxwell equations are performed by the
NMM3D, in which the PMCHW formulation with RWG basis functions
is used [3, 5], and the SMCG fast matrix solver is adopted.
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Figure 2. Geometry of the rough surface problem for simulations with
NMM3D model.

The bistatic scattering coefficients are normalized by the incident
power by using NMM3D, which are subsequently used in the boundary
conditions of DMRT model. The bistatic scattering coefficients are [3],

γαβ(θs, ϕs; θi, ϕi) =

∣∣∣Esα∣∣∣
2η1P incβ

(12)

where α and β are the polarizations of the scattering and incident
wave, respectively.

Unlike infinite surfaces, the coherent scattering from finite surfaces
is bistatic. In the simulations, the coherent bistatic scattering
coefficients from the finite surface are calculated by

γcαβ(θs, ϕs; θi, ϕi) =

∣∣∣〈Esα〉∣∣∣
2η1P incβ

(13)

where 〈 〉 denotes ensemble average over realizations. Incoherent
bistatic coefficients from the finite surface are next calculated by
subtracting the coherent scattering from the total scattering

γicαβ(θs, ϕs; θi, ϕi) = γαβ(θs, ϕs; θi, ϕi) − γcαβ(θs, ϕs; θi, ϕi) (14)

To obtain the coherent reflectivity for ”infinite” surface, the coherent
bistatic scattering coefficients of finite surfaces over scattered angles is
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integrated. The coherent reflectivity at incident angle (θi, ϕi) is

γc(θi, ϕi) =
∫ π

2

0
sin θsdθs

∫ 2π

0
dϕsγ

c
αβ(θs, ϕs; θi, ϕi) (15)

Emissivity of the rough surface at incident angle (θi, ϕi) is
transmissivity, which by reciprocity and energy conservation, is equal
to

eα(θi, ϕi) = 1

−
∫ π

2

0
sin θsdθs

∫ 2π

0
dϕs (γhα(θs, ϕs; θi, ϕi) + γvα(θs, ϕs; θi, ϕi)) (16)

When applying discrete ordinate-eigenanalysis method to the DMRT
equations (3) and (4) and rough surface boundary condition equation
(11), αi, µi(i=1,...,N) will be used. In general, the choice of the order of
quadrature N is dependent on the angular variation of the integrand.
N = 16 is commonly chosen in the simulations. There are 16 incident
angles (θi, ϕi). Assuming azimuthal symmetry, we can take ϕi equal to
0. For each θi, γicαβ (θs, ϕs; θi, ϕi = 0) owns 16 θs and many ϕs. Then

we use integration over ϕs to get Γic(θs, θi) as indicated in Eq. (7).
The surface area needs to increase when the incident angle increases
[5]. In the simulations a surface of area 8 wavelengths by 8 wavelengths
is used, which is not large enough when the incident angle exceeds 60
degrees. However, since the forward scattering in the specular direction
dominates and resembles that of flat surface when the incident angle
is large, for incident angle larger than 60◦, flat surface results are used
for the boundary conditions of the transfer equation.

2.3. Effective Propagation Constants and Attenuation Rates
in Media of Densely Distributed Coated Dielectric Particles
for Wet Snow Model

In general, a numerical technique is required to solve for the effective
propagation constants when particle sizes are comparable to or large
than wavelength. The case of moderate size coated particles (Fig. 3)
will be illustrated using the quasi-crystalline approximation in this
section. The QCA multiple scattering equations and dispersion
relation are formulated in term of the T-matrix formulism and vector
spherical wave function is utilized as basis functions [10].

Let Einc(r) be the incident electric field in a medium with multiple
species of N particles, and E

S
j (r) the scattered field from the jth
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Figure 3. wet snow model.

particle. The total field at a point r is the sum of the incident field
and the scattered fields from all the particles.

E(r) = E
inc(r) +

N∑
j=1

E
S
j (r) (17)

the scattered field ESj (r) is related to the jth particle exciting field
E
e(r) by

E
e
j(r) = T

Sj

j (r) · Eej(r) (18)

where T
Sj

j is the transition operator for particle j of Sj species. The
exciting field for the jth particle can also be expressed as the total field
less its own scattered field,

E
e
j(r) = E

inc(r) +
L∑
l �=j
E
S
l (r) = E

inc(r) +
L∑
l �=j
T
Sl

l · Eel (r) (19)

Under the quasicrystalline approximation, the integral equation for the
conditional average of the jth particle exciting field,

〈
E
e
j(r)

〉
j
, is

〈
E
e
j(r)

〉
j

= E
inc(r) +

L∑
Sl=1

∫
drl · gSjSl

(rl, rj) · T
Sj

l

〈
E
e
l (r)

〉
l

(20)

where T
Sj

l

〈
E
e
l (r)

〉
l
is the field scattered by a scatterer of Sl species at

rl when excited by the field
〈
E
e
l (r)

〉
l
.
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For a plane electromagnetic wave normally incident upon a half-
space of spherical scatterers, the incident field Einc(r) = ŷeikz and the
scattered field TSl

l

〈
E
e
l (r)

〉
l
can be expanded in vector spherical waves

as [10]

E
inc(r) = eikzj

∞∑
n=1

in

2

√
4π(2n+ 1)[Rg ·M1n(krrj)−Rg ·M−1n(krrj)

+Rg ·N1n(krrj) +Rg ·N−1n(krrj)] (21)

T
Sl

l

〈
E
e
l (r)

〉
l

=
∞∑
n=1

n∑
m=−n

[T (M)Sl · aSl
mn(zl) ·Mmn(krrl)

+T (N)Sl · bSl
mn(zl) ·Nmn(krrl)] (22)

where RgMmn(krrj) and RgNmn(krrj) are regular vector spherical
wave functions, and Mmn(krrj) and Nmn(krrj) are vector spherical
functions with spherical Bessel function jn replaced by spherical Hankel
functions of the first kind hn [10]. The symbol rrj is used to denote the
vector pointing from rj to r. The quantities aSl

mn, b
Sl
mn, are unknown

expansion coefficients. The scattering coefficients T
(M)Sl
n and T

(N)Sl
n

in Eq. (22), for coated spherical with outer radius aSl
, inner radius

bSl
, core wavenumber kbl , and shell wavenumber kal

, are those of Mie
scattering [11] (Fig. 3).

T
(M)Sl
n = −{[ρSl

· jn(ρSl
)]′

[
jn(ζSl

) +BSl
n · yn(ζSl

)
]

−
[
[ζSl

· jn(ζSl
)]′ +BSl

n [ζSl
· yn(ζSl

)]
]
jn(ρSl

)}

/{[ρSl
· hn(ρSl

)]′
[
jn(ζSl

) +BSl
n · yn(ζSl

)
]

−
[
[ζSl

· jn(ζSl
)]′ +BSl

n [ζSl
· yn(ζSl

)]
]
hn(ρSl

)} (23)

T
(N)Sl
n = −{[ρSl

· jn(ρSl
)]′ ζ2Sl

[
jn(ζSl

) +ASl
n · yn(ζSl

)
]

−
[
[ζSl

· jn(ζSl
)]′ +ASl

n [ζSl
· yn(ζSl

)]′
]
ρ2
Sl

· jn(ρSl
)}

/{[ρSl
· hn(ρSl

)]′ ζ2Sl

[
jn(ζSl

) +ASl
n · yn(ζSl

)
]

−
[
[ζSl

· jn(ζSl
)]′ +ASl

n · [ζSl
· yn(ζSl

)]′
]
ρ2
Sl

· hn(ρSl
)} (24)

where

BSl
n = − [ξSl

· jn(ξSl
)]′ · jn(ηSl

) − [ηSl
· jn(ηSl

)]′ · jn(ξSl
)

[ξSl
· yn(ξSl

)]′ · jn(ηSl
) − [ηSl

· jn(ηSl
)]′ · yn(ξSl

)
(25)
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ASl
n = −

[ξSl
· jn(ξSl

)]′ η2
Sl

· jn(ηSl
) − [ηSl

· jn(ηSl
)]′ ξ2Sl

· jn(ξSl
)

[ξSl
· yn(ξSl

)]′ η2
Sl

· jn(ηSl
) − [ηSl

· jn(ηSl
)]′ ξ2Sl

· yn(ξSl
)

(26)

and yn(·) is the spherical Neumann function. The symbols ρSl
,ζSl

,ξSl

and ηSl
are defined as ρSl

= kaSl
, ζSl

= kal
aSl

, ξSl
= kal

bSl
,

ηSl
= kblbSl

, respectively.
To solve Eq. (20), assume the trial solutions

aSl
µν(zj) = α

Sj
µνe

iKzj (27)

bSl
µν(zj) = β

Sj
µνe

iKzj (28)

with K being the effective propagation constant. The vector
translational addition theorem is used to expand the spherical vector
waves Mmn(krrl) and Nmn(krrl) about rj as center in terms of the
regular spherical waves RgMmn(krrl) and RgNmn(krrl). Equating
terms with the same RgMmn(krrl) and the same RgNmn(krrl) gives
the following relations [10].

K − k = −πi
k2

L∑
Sl=1

∞∑
n=1

nSl

[
T

(M)
Sl

·XSl
1n + T (N)

Sl
· Y Sl

1n

]
(2n+ 1) (29)

and

XSl
1ν = −2π

L∑
Sl=1

∞∑
n=1

∞∑
p=0

nSl
(2n+ 1)[Lp(k,K|RSjSl

) +Mp(k,K|RSjSl
)]

×{T (M)Sl
n ·XSl

1n · a(1, n| − 1, ν|p) ·A(n, ν, p)

+T
(N)Sl
n · Y Sl

1n · a(1, n| − 1, ν|p, p− 1) ·B(n, ν, p)} (30)

Y Sl
1ν = −2π

L∑
Sl=1

∞∑
n=1

∞∑
p=0

nSl
(2n+ 1)[Lp(k,K|RSjSl

) +Mp(k,K|RSjSl
)]

×{T (M)Sl
n ·XSl

1n · a(1, n| − 1, ν|p, p− 1) ·A(n, ν, p)

+T
(N)Sl
n · Y Sl

1n · a(1, n| − 1, ν|p) ·B(n, ν, p)} (31)

where the coefficients XSl
1ν and Y Sl

1ν are related to the trial solutions
αSl

1ν and βSl
1ν by, respectively

X
Sj

1ν =
2i−ν√

4π(2ν + 1)
α
Sj

1ν (32)
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Y
Sj

1ν =
2i−ν√

4π(2ν + 1)
β
Sj

1ν (33)

The expressions for a(m,n|µ, ν|p), a(m,n|µ, ν|p, q), A(n, ν, p),
B(n, ν, p) and quantities Lp(k,K|RSjSl

) and Mp(k,K|RSjSl
) are all

given in Ref. [7].
Eqs. (30)–(31) form a system of simultaneous homogeneous

equations for the unknown XSl
1n and Y Sl

1n . For nontrivial solution, the
determinant of the coefficients must vanish. The requirement for the
vanishing of the determinant gives an equation for efficient wavenumber
K. Thus, the effective propagation constant K is then calculated by
searching in the complex plane such that the determinant of Eqs. (30)–
(31) vanishes. Numerical algorithm about the effective propagation
constant K can be referred [7].

3. NUMERICAL RESULTS AND DISCUSS

We illustrate the brightness temperature for passive microwave remote
sensing of wet snow. The wet snow and moist soil temperatures are all
260K. Frequencies are at 18.7 GHz and 36.5 GHz. The rough surface
parameters are rms height of 0.4 mm, and correlation length 2.8 mm.
The permittivity, for water is εwater = 68.44 + i35.39, for ice grain is
εice = 3.15 + i0.002 at 18.7 GHz and εice = 3.15 + i0.0039 at 36.5 GHz,
for wet snow is ε1 = 1.43+i0.002, and for moist soil is εg = 15.34+i3.66,
except stated otherwise. Fractional volume is 30%, and snow layer
thickness is 50 cm. The observation angle is 30 degrees. The stickiness
parameter is τ = 0.1.

3.1. Comparison of Brightness Temperatures between
Rough and Flat Surfaces for Small Grain Size Case

In Figs. 4 to 7 we compare the brightness temperatures between rough
and flat surfaces. To show the roughness effects, we first choose coated
dielectric grain and core ice diameters to be 0.2 mm and 0.1999999 mm
respectively in Figs. 4 and 5 so that volume scattering effects are small.

Fig. 4 shows the brightness temperature at 18.7 GHz as functions
of angle in air region. For both horizontal and vertical polarizations,
brightness temperature for rough surface is smaller than that of
flat surface, which shows that contribution from rough surface is
smaller than that from flat surface. This is because multiple
scattering occurring along the rough surface will enhance the scattering
wave extinction so as to reduce the scattering from rough surface.
Meanwhile, for horizontal polarization, when observation angle is larger
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Figure 4. Comparison between rough and flat surface at different
observation angles, f = 18.7 GHz.

Figure 5. Comparison between rough and flat surface at different
observation angles, f = 36.5 GHz.
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Figure 6. Comparison between rough and flat surface at different
observation angles, f = 18.7 GHz.

Figure 7. Comparison between rough and flat surface at different
observation angles, f = 36.5 GHz.
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Figure 8. Comparison between rough and flat surface at different
snow depths, f = 18.7 GHz.

than 40◦, the difference of brightness temperatures between rough and
flat surfaces becomes smaller with increasing observation angle. On
the other hand, at the higher frequency of 36.5 GHz in Fig. 5, volume
scattering becomes important. When observation angle is larger than
50◦, the difference of brightness temperatures between rough and flat
surfaces becomes even smaller with increasing observation angle.

Figs. 6 and 7 compare results of flat and rough surfaces as
functions of observation angle for the case of larger coated dielectric
grain and core, whose sizes of diameter are 0.6 mm and 0.5999999 mm,
respectively. Volume scattering becomes important at 18.7 GHz. When
observation angle is bigger than 50◦, the difference of brightness
temperatures between rough and flat surfaces becomes even smaller
with increasing observation angle. In particularly, at high frequency
of 36.5 GHz, the effect on rough surface’s roughness on the reduction
the brightness temperatures will be furthermore pronounced. Thus
when observation angle is bigger than 45◦, the difference of brightness
temperatures between rough and flat surfaces will be decreased for
both horizontal and vertical polarizations, and even be the same as for
horizontal polarization.

Figs. 8 and 9 compare results of flat and rough surfaces as
functions of depth of snow; the sizes of coated dielectric grain and core
ice are the same as above. At 18.7 GHz, with increasing depth of snow,
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Figure 9. Comparison between rough and flat surface at different
snow depths, f = 36.5 GHz.

contribution from volume scattering to brightness temperature will be
enhanced, and contribution from surface scattering will be reduced,
so the difference of brightness temperatures between rough and flat
surfaces is smaller for both vertical and horizontal polarization. In
Fig. 9, we see that at high frequency of 36.5 GHz, saturation occurs
at large snow depth. Volume scattering becomes dominant and rough
surface scattering has a negligible effect.

3.2. Brightness Temperature Variations with Grain Size,
Observation Angle and Snow Depth

In this section, we study brightness temperature from wet snow with
increasing coated grain size. Figs. 10 and 11 show the angular
variations of brightness temperature for several coated dielectric grain
sizes of diameter. The brightness temperature decrease with increasing
grain size. This is because with increasing coated grain size, scattering
among the coated grains will enhance. Meanwhile, emission from the
ground is scattered and thus unable to reach the air region, which
accounts for the decrease in brightness temperature.

Figs. 12 and 13 show that for small coated dielectric grain size,
brightness temperature will increase with increasing thickness of the
snow layer, up to saturation at 38.7 GHz. For larger grain size,
brightness temperature will decrease with increasing snow depth at



158 Li

Figure 10. Varying coated dielectric grain size and as a function of
observation angle, f = 18.7 GHz.

Figure 11. Varying coated dielectric grain size and as a function of
observation angle, f = 36.5 GHz.
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Figure 12. Varying coated dielectric grain size and as a function of
snow depth f = 18.7 GHz.

Figure 13. Varying coated dielectric grain size and as a function of
snow depth f = 36.5 GHz.



160 Li

18.7 GHz. For 36.5 GHz, saturation effects occur as functions of snow
depth.

3.3. Brightness Temperature Variations with Proportion
between Inner and Outer Radius of Coated Grain,
Observation Angle and Snow Depth

In this section, we study brightness temperature from wet snow
with varying proportion between outer and inner radius of coated
grain. Outer radius of coated grain is fixed at 0.6mm, inner radius
of coated grain is varying with three cases, 0.5 mm, 0.5999 mm
and 0.5999999 mm, respectively. Fig. 14 and Fig. 15 show that
with increasing inner radius of coated grain (ice), the brightness
temperature from wet snow will enhance for both 18.7 GHz and
36.5 GHz. The reason is that with decreasing inner radius of coated
grain (ice), the thickness of the water thin film surrounded ice will
increase, so does the wet snow’s absorptivity; on the other hand,
since the outer radius of coated grain is unvaried, scattering among
the coated grains will remain almost unchanged in this wet snow
model. In this way, wet snows emissivity will enhance, and brightness
temperature will increase.

Fig. 16 and Fig. 17 show that with increasing depth of wet
snow, brightness temperature from wet snow will enhance for both
18.7 GHz and 36.5 GHz cases. Meanwhile, saturation effects occur
when the proportion between outer and inner radius is 0.6/0.59 for
both 18.7 GHz and 36.5 GHz, which means brightness temperature
from wet snow for both horizontal and vertical polarizations will be
unvaried with increasing depth of wet snow. This saturation also occurs
for other two proportion cases at 36.5 GHz when the depth of wet snow
exceeds 50 mm.

4. SUMMARY

Volume scattering and rough surface scattering effects in passive
microwave remote sensing of wet snow are studied in this paper. The
volume scattering model is based on DMRT theory with QCA for
densely distributed sticky coated dielectric particles. The rough surface
bistatic scattering and emission are modeled by the NMM3D. The
bistatic scattering coefficients and emissivities of rough surfaces are
utilized as the boundary conditions for the DMRT. Wet snow model is
adopted in this paper. The results for a layer of wet snow over a moist
rough ground at 18.7 GHz and 38.5 GHz are discussed.
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Figure 14. Varying proportion between inner and outer radius of
coated dielectric grain as functions of observation angle, f = 18.7 GHz.

Figure 15. Varying proportion between inner and outer radius of
coated dielectric grain as functions of observation angle, f = 36.5 GHz.
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Figure 16. Varying proportion between inner and outer radius of
coated dielectric grain as functions of snow depth f = 18.7 GHz.

Figure 17. Varying proportion between inner and outer radius of
coated dielectric grain as functions of snow depth f = 36.5 GHz.
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