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Abstract—In the present paper, a combined method of auxiliary
sources (MAS)-reaction matching (RM) approach is presented for
the analysis of arrays of arbitrarily located cylindrical dipoles. It is
shown that the addition of auxiliary monopole terminal sources to
each array element results in a superior solution with regard to the
numerical stability of the computed quantities, the behavior of the
current distributions of the array elements and the resulting errors of
the electric field boundary condition. Numerical results are presented
for various representative array configurations, in order to illustrate
the features of the proposed method and exhibit its advantages over
conventional Method of Moments (MoM) schemes, especially in cases
of moderately large-scale arrays. Finally, a few concluding remarks are
discussed.

1. INTRODUCTION

Arrays of parallel cylindrical dipoles are probably the most widely
spread and the most exhaustively studied antenna arrays during the
past decades. The reasons behind this fact are the simplicity in
their realization, the existence of approximate analytical and numerical
methods for the accurate prediction of their behavior, as well as their
suitability to a large variety of practical applications. It is well known
that the current distributions along the elements of any dipole array
are governed by coupled integro-differential equations or equivalent
integral equations, which are very difficult to cope with, especially
when the array configuration is not characterized by symmetries.
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Approximate analytical methods have been derived for the analysis
of various regular arrays (such as linear, collinear, circular, etc),
which have been summarized in a recent textbook [1]. However,
in practice, wire antenna arrays are usually analyzed, designed and
optimized by applying the method of moments (MoM), which has
been extensively developed by numerous researchers in several variants.
Nevertheless, significant discrepancies are usually encountered in the
solutions obtained from different numerical methods or variants of the
same method (e.g., MoM with different basis/testing functions) [2–
5]. These are related to modeling inadequacies and differences in the
degree to which each method has reached numerically stable results.
Moreover, the numerical methods are usually accompanied by innate
difficulties in the convergence of their solutions. This fact is an outcome
of the non-solvability of the coupled equations discussed above when
the approximate kernel is used. In particular, the failure of any method
based on the approximate kernel to reach the exact solution in the case
of an isolated tubular dipole has been elucidated in [6, 7] from a mixed
mathematical and practical point of view. Apart from this fact, the
matrix equations obtained from numerical methods when applied to
such problems are highly susceptible to ill-conditioning, which restricts
severely the number of expansion terms. It is worth mentioning that
the latter is caused by round-off errors, and is not related to solvability
issues.

In this paper, a method that is based on the combination of the
method of auxiliary sources (MAS) with reaction matching (RM) is
presented for the analysis of arrays of parallel cylindrical dipoles. The
proposed method is an extension of the method presented in [8] for
a single dipole. The MAS is a well-established numerical method,
which has been recently recognized to be a branch of the generalized
multipole techniques (GMTs) [9, 10]. Herein, as in [8], the RM [11] is
utilized in conjunction with the MAS, which leads to the adoption of
the initials MAS-RM. Although the resulting matrix equation is similar
to that obtained from the MoM with piecewise sinusoidal (PWS)
basis and testing functions, there are critical differences between the
two methods, which are discussed hereinafter. As it will be shown,
the proposed method is capable of analyzing large-scale arrays using
very low discreteness densities, without significant degradation of
the solution quality, which is in contrast to the well-known trade-
off between the solution accuracy and the computational cost that
accompanies conventional matrix methods.
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Figure 1. General arrangement of arbitrarily located parallel dipoles.

2. PROBLEM STATEMENT

Consider an arrangement of Nd parallel cylindrical dipoles with their
centers located at (xp, yp, zp), where p = 1, 2, . . . , Nd, as shown in
Fig. 1. The length and wire radius of each dipole are denoted by
Lp and ap, respectively. For the sake of convenience, the dipoles are
assumed to be oriented along the z-axis of a coordinates system, as also
depicted in Fig. 1. Moreover, an exponential exp(jωt) time dependent
factor is assumed and suppressed throughout the analysis. Each dipole
is driven either symmetrically or asymmetrically by a voltage generator
of strength Vp, which imposes a driving field that is given by

Eg
p(z) = −Vpδ(z − zg

p), (1)

where zg
p is the location of the voltage generator. Apparently, parasitic

elements can be modeled by setting Vp = 0.

3. FORMULATION

Although the fundamental ideas behind the MAS are quite simple,
there are many important aspects, such as the type of the auxiliary
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sources, the locations of the auxiliary sources and matching points, as
well as the correlation between them and the convergence behavior of
the solution, that render the application of the method nontrivial [10].

With regard to the case under consideration, each element is
modeled with the aid of an axially distributed set of auxiliary sources.
Such a distribution of the auxiliary sources is proper only when the
elements are sufficiently thin (compared to the operating wavelength).
For reasons that have been reported elsewhere [8, 12], the auxiliary
sources are selected to be sinusoidal dipoles, instead of elementary
dipoles that are usually employed with the MAS [10]. The auxiliary
dipoles are spatially overlapped in a manner that the center of each
one is placed exactly at the ends of the two adjacent ones. Moreover,
as in [8], two auxiliary monopoles are also introduced in each element,
which are located in such a way that their inner ends coincide with the
centers of the outer auxiliary dipoles and their outer ends are situated
exactly at z = zp ± Lp/2.

In the following, the analysis is focused on the comparison between
the solutions resulting in the presence and absence of the terminal
monopoles. In accordance with the conventional model, 2Np + 1
auxiliary dipoles are located inside the element denoted by p, which
are centered at positions zp + nδp, n = 0, ±1, . . . , ±Np, with δp
designating the distance between the centers of two adjacent auxiliary
dipoles of length 2δp = Lp/(Np + 1). With regard to the improved
model discussed above, two properly oriented auxiliary monopoles
of length δp are added. All the auxiliary sources carry sinusoidal
currents of unknown amplitudes w(p, n), which can be expressed as
w(p, n)f(p, n)(z)s(p, n)(z), where f(p, n)(z) are properly shaped PWS
functions and s(p, n)(z) are corrective functions that form the currents
of the terminal monopoles, given by

f(p, n)(z) =

{
sin[k0(δp − |z − zp − nδp|)], |z − zp − nδp| ≤ δp,

0, elsewhere

(2)

s(p, n)(z) =

{
1, |n| ≤ Np

u(Lp/2 ∓ z ± zp), n = ±(Np + 1),
,

where u(z) =

{
1, z ≥ 0
0, z < 0

, (3)

where k0 = 2π/λ is the wavenumber of the vacuum, while u(z) is the
well known step function.

The unknown EM field at any observation point is expressed as
the superimposition of the EM fields produced by the auxiliary sources,
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thus

�F (�r) =
Nd∑
p=1

Np+1∑
n=−(Np+1)

w(p, n)
�F(p, n)(�r). (4)

The field vector �F stands for the total radiated electric �E or magnetic
field �H, while �F(p, n) is the corresponding field radiated by the auxiliary
source denoted by the subscript pair (p, n). The latter is obtained by
properly shifting the EM field of a sinusoidal dipole or monopole, as
follows

�F(p, n)(x, y, z) =

{
�FD(x− xp, y − yp, z − zp − nδp), |n| ≤ Np

�F∓
M (x− xp, y − yp, z − zp − nδp), n = ±(Np+1)

.

(5)
In (5), the vector �FD stands for the EM field generated by a sinusoidal
dipole, while the vectors �F+

M and �F−
M stand for the EM fields generated

by the upper and lower half of a sinusoidal dipole, respectively, which
correspond to the positive and negative monopoles described in [8].

The unknown weighting coefficients entering into (4) are derived
by enforcing the electric field boundary condition associated with each
one of the elements composing the array under consideration; therefore

Ez(xq + aq cos γq, yq + aq sin γq, z) = Eg
q (z), |z − zq| ≤

Lq

2
, (6)

where γq is the angle of azimuth as measured with respect to the
element axis denoted by q. Following a procedure similar to that
presented in [8], the boundary condition of (6) is enforced in the RM
sense. The latter consists in the multiplication of both sides of (6)
with a projection of the sinusoidal current distribution of each auxiliary
source onto the surface of each element and integration of the product
over the corresponding interval [8, 11]. Repetition of this procedure
for all the auxiliary sources leads to an algebraic system of equations
given by

Nd∑
p=1

Np+1∑
n=−(Np+1)

Z(p, n), (q, m)w(p, n)

= −V(q, m),

{
q = 1, 2, . . . , Nd

m = 0, ±1, . . . , ±Nq, ±(Nq + 1)
. (7)

If the terminal monopoles are not taken into account, the algebraic
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system of (7) is expressed as

Nd∑
p=1

Np∑
n=−Np

Z(p, n), (q, m)w(p, n)

= −V(q, m),

{
q = 1, 2, . . . , Nd

m = 0, ±1, . . . , ±Nq
. (8)

In both cases, the symbol Z(p, n), (q, m) designates the reaction integral,
which is expressed by means of the mutual impedance Z(s, h)
between two parallel in echelon sinusoidal sources that are separated
horizontally by s and vertically by h, as

Z(p, n), (q, m) =
 Z

(√
(xq − xp)2 + (yq − yp)2, |zq − zp +mδq − nδp|

)
, q �= p

Z(aq, |m− n|δq), q = p
.

(9)

When q �= p, the reaction interval lies on the element axis rather than
on its surface. The computation of the reaction terms involves the
mutual impedance between two sinusoidal sources, which may be two
dipoles, a monopole and a dipole, or two monopoles. These terms are
computable using either numerical integration algorithms or available
closed form expressions [13, 14]. The voltages V(q, m) in (7) and (8)
denote the reaction integrals of the driving fields, which are given by

V(q, m) =

{
−Vq sin[k0(δp − |zg

q − zq −mδq|)], |zg
q − zq −mδq| ≤ δq

0, elsewhere
.

(10)
After solving the linear system of (7) or (8), the EM field is readily
computable from the closed form expressions of (4) and (5). The
electric current density on the surface of each element is derived from
the magnetic field boundary condition. Extensive checks have shown
that the contribution of the distant auxiliary sources to the tangential
magnetic field on each element is negligible when compared to the
contribution of the inner auxiliary sources. Therefore, the current
distribution along each element is calculated by

Ip(z) ≈ 2πap


z� ·


n� p ×

Np+1∑
n=−(Np+1)

w(p, n)
�H(p, n) (xp + ap, yp, z)







(11)
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where n� p it the unit vector that is normal to the surface of the element
denoted by p.

In accordance with the MoM, the current distribution on
each element is computed as the weighted superimposition of the
corresponding basis functions. It is worth mentioning that the
algebraic systems of (7) and (8) are identical to those obtained from
the MoM with PWS basis and testing functions (corresponding to
the currents of the auxiliary sources discussed above). Thus, for
comparison purposes, the current distribution on each element is
obtained from

Ip(z) =
Np+1∑

n=−(Np+1)

w(p, n)f(p, n)(z)s(p, n)(z). (12)

It is noted that there is an important difference between the MAS and
the MoM, which is related to the behavior of the current distribution
near z = zp ± Lp/2. Namely, for tubular elements, the current
distribution must vanish at z = zp ± Lp/2, in order to satisfy the
current continuity, which, on the other hand, does not hold exactly
in cases of solid or capped wires. Nonetheless, in the majority of
the MoM codes, the basis functions are selected so that the current
distribution vanishes at z = zp ± LP /2. Although this is not far
from the exact situation in most cases, the drawback of this approach
is that the slopes of the current near these points are determined
exclusively from the first derivative of the outer basis functions. In
contrast, the current distribution resulting from the MAS-RM is not
accompanied by any restriction related to its value or slope, either when
the auxiliary monopoles are employed or not. Thus, it is believed that
(11) represents the true current distribution more accurately, subject
to the model limitations and the influence of the end caps. In cases
of moderately thicker elements, the accurate modeling of each element
necessitates the addition of properly selected auxiliary sources near
the ends. This would make it possible to model the radiation from
the end caps and enforce the associated boundary conditions, which
is, however, beyond the scopes of the present paper.

4. NUMERICAL RESULTS

All the examined cases were treated using auxiliary dipoles and
monopoles, as well as auxiliary dipoles only, in order to exhibit the
differences between the resulting solutions. In general, the solution
stability can be examined by checking the resulting EM field (or any
related parameter of interest) for an increasing number of auxiliary
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Figure 2. Computed self- and mutual admittance of two identical
non-staggered dipoles versus N(L/λ = 0.5, a/λ = 0.005, d/λ = 0.025).

sources. Finally, the solution is evaluated as satisfactory, though
not necessarily convergent in a strict mathematical sense, when the
calculated quantities are sufficiently stable.

At first, numerical results are presented for a two-element array
of non-staggered identical elements with L/λ = 0.5 and a/λ = 0.005,
having their centers distanced by d/λ = 0.25. The computed self-
and mutual admittances are illustrated in Fig. 2 as a function of the
parameter N , where N1 = N2 = N . Obviously, the incorporation of
the terminal monopoles leads to a remarkably stable solution, since
practically unchangeable results are obtained over a wide range of
variation of the parameter N . On the other hand, when the terminal
monopoles are not taken into account, a significantly largerN is needed
to reach a solution of comparable stability. It is also noted that the
same behavior is observed when the MoM is applied, since the base
currents computed from (12) are roughly equal to those obtained from
(11) for moderately small N . However, as N tends to and becomes
larger than L/(2a), the magnitudes of the auxiliary sources currents
oscillate both near the driving point and the ends of each element.
This phenomenon, which is not contingent upon round-off errors or
the feed type, always occurs, either when the terminal monopoles
are taken into account or not, and causes nonphysical oscillations in
the current distribution resulting from (12). On the contrary, the
current distribution of (11), which is consistent with the magnetic
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Figure 3. Computed current distribution on a symmetrically driven
isolated dipole (L/λ = 0.5, a/λ = 0.005, N + 1 = 50). (a). Current
distribution near the ends. (b). Current distribution near the driving
point.



60 Papakanellos et al.

field boundary condition, is free from any nonphysical oscillations,
regardless of the oscillations in the magnitudes of the auxiliary sources
currents discussed above. This behavior is illustrated in Fig. 3, where
the resulting current distributions on an isolated dipole (with L/λ =
0.5 and a/λ = 0.005) are shown. The presented curves correspond to
both MAS-RM and MoM results for N + 1 = 50, in both the presence
and absence of the terminal monopoles and the terminal half-PWS
functions, respectively. From this sketch, it is apparent that the MoM
solutions suffer from nonphysical behavior of the resulting current
distributions near the ends and the driving point, due to the limitations
regarding their values and slopes discussed above. For much larger N
(in particular, when N � L/(2a)), numerical instabilities are typically
encountered, which are not related to the oscillations observed in Fig. 3,
but are caused by ill-conditioning of the matrix equation and render
the solution physically meaningless in any case. This is the reason
why all the above-mentioned issues can be assessed only with double
precision arithmetic. Otherwise, severe ill-conditioning is encountered
even for moderately small N , which forbids the examination of the
solution.

In addition, many different two-element array configurations (with
non-staggered and staggered elements) have been examined over a
wide range of the geometrical parameters involved. In any case, for
moderately small N , it was found that the results computed without
considering the terminal monopoles depend strongly upon N and differ
more significantly from those obtained by taking into consideration the
terminal monopoles. For larger N , the differences are insignificant, at
least from a practical point of view. Of course, after a certain limit,
the solutions become unstable and, probably, completely meaningless,
due to round-off errors. Thus, it is important to mention that all the
comments made about the solution behavior regard the dynamic range
in which the solution behavior is not affected dominantly by round-off
errors.

Another very important issue that is worth to be examined is the
degree of satisfaction of the electric field boundary condition, especially
due to the differences between the computed results for small N . In
any case, the tangential electric field varies along each element and
reaches its maximum values at zp±Lp/2, with magnitude that strongly
depends upon the specific array configuration and the number and
type of the auxiliary sources used. Selected results regarding the
magnitude of the tangential electric field are depicted in Fig. 4 for
the non-staggered configuration of Fig. 2 and N + 1 = 50. The
presented curves correspond to both symmetric (V1 = V2) and anti-
symmetric (V1 = −V2) excitation of unit amplitude. Apparently, the
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Figure 4. Plots of the magnitude of the tangential electric field
computed along symmetrically and anti-symmetrically driven identical
non-staggered dipoles (L/λ = 0.5, a/λ = 0.005, d/λ = 0.25, N + 1 =
50). (a). Symmetric excitation. (b). Anti-symmetric excitation.
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addition of the terminal monopoles leads to a noteworthy reduction
of the boundary condition error in both cases, as shown in Fig. 4.
This fact reveals that the addition of the terminal monopoles improves
the accuracy of the model and explains, at least in part, the notable
differences between the numerical results obtained with and without
utilizing the terminal monopoles for small N .

According to the preceding, it is apparent that the proposed
method can be utilized for the analysis of moderately large-scale arrays
of cylindrical dipoles, as long as it is feasible to keep the number
of unknowns sufficiently low without degradation of the solution
quality. It is noted that conventional matrix methods are typically
characterized by N3

T order of complexity, where NT is the number of
unknowns. As an outcome, such methods become inefficient as the
number of elements is increased and the number of expansion terms
per element remains high enough to attain a reliable solution. This
fact has led to the development of efficient iterative techniques for
solving the resulting matrix equations (for example, refer to [15, 16]),
which are characterized by lower complexity. However, the complexity
reduction is not achieved without cost. For example, the algorithm
presented in [15] necessitates the selection of a proper threshold
percentage for the formation of a sparse matrix that retains only strong
interactions between segments, whereas the technique proposed in [16]
requires a proper grouping of the elements in a way that depends on
the array configuration; otherwise, the matrix solver output may be
inaccurate, unstable, or even divergent. The method presented herein
can be considered to be an alternative to any technique aiming at
the complexity reduction for solving moderately large problems. In
particular, instead of utilizing an algorithm of lower complexity to
analyze a moderately large-scale array, the proposed method can be
applied for a smaller number of unknowns per element, inasmuch as
this will not affect the solution quality. Even when the number of
unknowns is not small enough to reduce the execution time comparably
to the sophisticated iterative solvers, the proposed method has the
advantage of direct applicability to a wide range of array configurations
(e.g., arrays of unequal and/or unequally spaced elements) without any
limitations such as those discussed above. As a “benchmark case”, a
27-element Yagi-Uda array is considered, in order to check the validity
of the computed results and exhibit the important savings in the
execution time that can be potentially achieved in cases of moderately
large-scale arrays. The parameters of the antenna under consideration
are the same as those in [17], which are also contained in Table 1. The
magnitudes of the computed base currents are depicted in Fig. 5 for the
two test cases reported in Table 1. More specifically, the test cases “L”
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and “H” correspond to low and high discreteness densities associated
with the numbers of the auxiliary sources used, respectively. Obviously,
the addition of the terminal monopoles was found to lead to significant
differences between the predicted base currents for small numbers of
auxiliary sources, which become smaller as the number of the auxiliary
sources is increased. The savings in memory allocation and execution
time are obvious from the data contained in Table 2. It is apparent
from Fig. 5 that the addition of the terminal monopoles leads to reliable
results that are reached in their absence for a dramatically larger
number of unknowns, which reinforces the above-mentioned statement.

Table 1. Parameters of the 27-element Yagi-Uda array and the
associated parameters Np for the two test cases considered (L and
H).

Table 2. Numbers of unknowns and execution times for the two test
cases considered (L and H).
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Figure 5. Comparative plots of the computed current magnitudes
that correspond to the test cases L and H (Tables 1 and 2).
(a). Auxiliary Sources: sinusoidal dipoles. (b). Auxiliary Sources:
sinusoidal dipoles and monopoles.
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5. CONCLUSION

In this paper, a novel combination of the MAS with the RM technique
is proposed for the treatment of arbitrary arrays of parallel cylindrical
dipoles. From the extended checks performed, it was concluded that
the addition of auxiliary terminal monopoles leads to an essential
improvement on the numerical stability of the computed results and a
reduction of the error associated with the fulfillment of the electric field
boundary condition on each element. Furthermore, it was found that
the calculation of the current distributions by invoking the magnetic
field boundary condition results in smooth curves, which are insensitive
to oscillations that usually accompany MoM solutions as the number
of expansion terms is increased. Thereby, from a practical point of
view, the number of expansion terms is only limited by ill-conditioning
and not by the appearance of oscillations in the magnitudes of the
auxiliary sources currents. Conclusively, the remarks of this paper are
summarized as follows:

• The solutions obtained from the MAS-RM, in the presence of
the terminal monopoles, tend to remarkably stable results that
are reached by the conventional MoM (without utilizing terminal
half-PWS functions) for a significantly larger number of expansion
terms. Therefore, the addition of the terminal auxiliary sources
in the MAS-RM model (half-PWS functions in the MoM) benefits
the numerical stability of the solution.

• The current distributions resulting from the MAS-RM are smooth
and stable over a very wide dynamic range of variation for the
number of the expansion terms, regardless of any oscillations
in the magnitudes of the auxiliary sources currents. The latter
restricts the number of expansion terms in the MoM even before
ill-conditioning begins to occur, either when the terminal half-
PWS functions are added or not.

• The boundary condition errors occurring are significantly smaller
in the presence of the terminal monopoles (terminal half-PWS
functions in the MoM).

Finally, the method proposed in this paper provides an efficient
alternative to the widely spread MoM codes, especially for treating
moderately large-scale arrays.
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