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Abstract—A general method is introduced to frequency domain
analysis of lossy Inhomogeneous Planar Layers (IPLs). In this method,
the IPLs are subdivided to several thin homogeneous layers, at first.
Then the electric and magnetic fields are obtained using second order
finite difference method. The accuracy of the method is studied using
analysis of some special types of IPLs.

1. INTRODUCTION

Inhomogeneous Planar Layers (IPL) are widely used in electromagnet-
ics as optimum shields and filters and etc. Also, the IPLs potentially
provide less scattering, less stress, larger bandwidth and better cou-
pling effects than homogeneous planar layers [1–8]. The differential
equations describing IPLs have non-constant coefficients and so except
for a few special cases no analytical solution exists for them. The IPLs
with variations such as inverse of distance (1/z), inverse of distance
with power two (1/z2) and exponential of distance (ez) are some of
these special cases [8]. Of course, the most straightforward method to
analyze IPLs is subdividing them into many thin homogeneous layers
then using the concept of analysis of multilayer structures [9].

The subject of this paper is using second order finite difference
method to analyze lossy and dispersive IPLs. In this method, the
IPLs are subdivided to several thin homogeneous layers, at first. Then
the electric and magnetic fields are obtained using second order finite
difference method. Some closed relations, for which second derivative
of the fields has been considered, are obtained for this purpose. This
method is applicable to all arbitrary lossy and dispersive IPLs. The
accuracy of the method is studied using analysis of some special kinds
of IPLs.
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Figure 1. Incident plane wave to IPL structures a) TEz polarization
mode b) TMz polarization mode.

2. THE EQUATIONS OF IPLS

In this section, the frequency domain equations of the IPLs are
reviewed. Figure 1 shows a typical IPL with the thickness of d. Two
different polarizations are possible, one the TMz and other the TEz. It
is assumed that the incident plane wave propagates obliquely towards
positive x and z direction with an angle of incidence θi , electric filed
strength of Ei and the velocity of c (the velocity of the light in the free
space).

It is evident that all components of the electric and magnetic fields
can be expressed as follows

f(x, y, z, ω) = g(z, ω) exp(−jkxx) (1)

in which

kx =
ω

c
sin(θi) (2)

First, two following parameters are defined versus the angular
frequency, ω, and the distance from the first surface of the layer, z.

Ẑ(z, ω) = jωµ0µr(z, ω) (3)

Ŷ (z, ω) = σ(z, ω) + jωε0εr(z, ω) (4)

The differential equations describing lossy and dispersive IPLs are
given by

dEy(z, ω)
dz

= Ẑ(z, ω)Hx(z, ω) (5)
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dHx(z, ω)
dz

=
(
Ŷ (z, ω) + k2

xẐ
−1(z, ω)

)
Ey(z, ω) (6)

Hz = jkxẐ
−1(z, ω)Ey (7)

for TEz polarization and

dEx(z, ω)
dz

= −
(
Ẑ(z, ω) + k2

xŶ
−1(z, ω)

)
Hy(z, ω) (8)

dHy(z, ω)
dz

= −Ŷ (z, ω)Ex(z, ω) (9)

Ez = −jkxŶ
−1(z, ω)Hy (10)

for TMz polarization.
Furthermore, there are two boundary conditions as follows

Ey(0, ω) − η0

cos(θi)
Hx(0, ω) = 2Ei(ω) (11)

Ey(d, ω) +
η0

cos(θi)
Hx(d, ω) = 0 (12)

for TEz polarization and

Ex(0, ω) + η0 cos(θi)Hy(0, ω) = 2Ei(ω) cos(θi) (13)
Ex(d, ω) − η0 cos(θi)Hy(d, ω) = 0 (14)

for TMz polarization. In (11)–(14), η0 =
√
µ0/ε0 is the wave

impedance in the free space. After determining the electric and
magnetic fields along the IPLs, other electromagnetic functions of the
structure will be obtainable using their defined relations. For example
the reflection and the transmission coefficients will be determined as
follows

Γin(ω) =




1
Ei

Ey(0, ω) − 1, TE

1
Ei cos(θi)

Ex(0, ω) − 1, TM
(15)

T (ω) =




1
Ei

Ey(d, ω), TE

1
Ei cos(θi)

Ex(d, ω), TM
(16)

Combining (5) with (6) and (8) with (9), gives the following general
differential equations for IPLs.

d2F (z, ω)
dz2

− f(z, ω)
dF (z, ω)

dz
− g(z, ω)F (z, ω) = 0 (17)
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G(z, ω) = −h−1(z, ω)
dF (z, ω)

dz
(18)

Where

F (z, ω) ∆
=

{
Ey(z, ω); TE
Hy(z, ω); TM

(19)

G(z, ω) ∆
=

{
Hx(z, ω); TE
Ex(z, ω); TM

(20)

g(z, ω) = Ẑ(z, ω)Ŷ (z, ω) + k2
x (21)

h(z, ω) =

{
−Ẑ(z, ω); TE

Ŷ (z, ω); TM
(22)

f(z, ω) =
dh(z, ω)

dz
h−1(z, ω) (23)

Furthermore, the boundary conditions in (11)–(14) can be written as
follows

F (0, ω) + PG(0, ω) = Q(ω) (24)
F (d, ω) − PG(d, ω) = 0 (25)

where

P =




− η0

cos(θi)
; TE

1
η0 cos(θi)

; TM
(26)

Q(ω) =




2Ei(ω); TE
2Ei(ω)

η0
; TM

(27)

One sees from (17)–(25) that, analytically solving the equations of
general type IPLs is a very hard problem.

3. ANALYSIS OF IPLS USING FINITE DIFFERENCE
METHOD

In this section, the analysis of arbitrary IPLs using finite difference
method is proposed. First, the IPLs are subdivided to N thin
homogeneous layers with thickness of ∆z = d/N . Then, two
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differential Equations (17) and (18) are discretized to obtain the
following difference equations, respectively

F (d− (n + 1)∆z, ω)

∼= 2F (d− n∆z, ω) − F (d− (n− 1)∆z, ω) +
d2F (z, ω)

dz2 |z=d−n∆z

∆z2

=
(
2 + g(d− n∆z, ω)∆z2 − f(d− n∆z, ω)∆z

)
F (d− n∆z, ω)

+ (f(d− n∆z, ω)∆z − 1)F (d− (n− 1)∆z, ω);
n = 1, 2, · · · , N − 1 (28)

G(d− n∆z, ω) = −h−1(d− n∆z, ω)
dF (z, ω)

dz |z=d−n∆z

∼= −h−1(d− n∆z, ω) (F (d− (n− 1)∆z, ω)
−F (d− n∆z, ω)) /∆z; n = 1, 2, · · · , N (29)

To obtain (28)–(29), the forward difference and three points
approximations has been used for the first and second derivatives of
the function F (z), respectively. To use (28), the function F (z) at
z = d − ∆z is required. It can be found using (17)–(18) and the
boundary condition (25) as follows

F (d− ∆z, ω)

∼= F (d, ω) − dF (z, ω)
dz |z=d

∆z +
d2F (z, ω)

dz2 |z=d

∆z2/2

= F (d, ω) + h(d, ω)G(d, ω)∆z

+ (−f(d, ω)h(d, ω)G(d, ω) + g(d, ω)F (d, ω)) ∆z2/2

=
(
1 + h(d, ω)P−1∆z + 0.5g(d, ω)∆z2

−0.5f(d, ω)h(d, ω)P−1∆z2
)
F (d, ω) (30)

Using (28)–(30), the electric and magnetic fields of all thin layers are
obtained step-by-step from z = d to z = 0. However, F (d, ω), which
behaves like a scale factor, is required to be known in this process. This
unknown parameter can be assumed unit, at first. Then its correct
value is obtained so that the boundary condition (24) is satisfied. In
this way, we will have

F (d, ω) =
Q(ω)

F (0, ω) + PG(0, ω)
(31)
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4. EXAMPLES AND RESULTS

In this section, two special types of IPLs are considered to analyze
using the presented method. The time consumed for the examples was
less than 1.0 sec. using a Pentium-4 PC and MATLAB program.

Type 1: (Lossy and Homogeneous Planar Layer)
Consider a lossy and homogeneous planar layer with the following

parameters

µr(z) = µr0 (32)
εr(z) = εr0 (33)
σ(z) = σ0 (34)

It is simple to show that the exact electric field of this type of planar
layers is as follows

Ey(z, ω) = 2Ei η cos(θi)
η cos(θi) + η0

1
1 − Γ2 exp(−2γzd)

(exp(−γzz) + Γ exp(γz(z − 2d))) (35)

for TEz polarization and

Ex(z, ω) = 2Ei η cos(θi)
η + η0 cos(θi)

1
1 − Γ2 exp(−2γzd)

(exp(−γzz) + Γ exp(γz(z − 2d))) (36)

for TMz polarization, where

γz =
√
jωµ0µr0(σ0 + jωε0εr0) + k2

x (37)

η =




Ẑ

γz
; TEz

Ẑ + k2
xŶ

−1

γz
; TMz

(38)

Γ =




η0 − η cos(θi)
η0 + η cos(θi)

; TEz

η0 cos(θi) − η

η0 cos(θi) + η
; TMz

(39)

Now, consider a lossy homogeneous planar layer with parameters of
εr0 = 4, µr0 = 1.5, σ0 = 0.02 and d = 40 cm. It is exposed to a plane
wave with the angle of incidence of θi = 60◦, the excitation frequency
of f = 1.0 GHz and the electric field strength of Ei = 1.0 V/m.
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Figure 2. The amplitude of the transverse component of the electric
field for TEz polarization, obtained from exact formulas and from the
presented method with N = 30 and N = 60 layers (for lossy and
homogeneous planar layer).

Figures 2, 3, compare the amplitude of the transverse component of the
electric field, obtained from (35)–(36) and from the presented method
considering N = 30 and N = 60 layers, for TEz and TMz polarizations,
respectively. One sees a good agreement between the exact solutions
and the solutions obtained from the proposed method. It is seen and
also evident that, as the number of layers, N , increases the accuracy of
the obtained solutions increases. Also, the error has been spread along
the whole thickness of the layer.

Type 2: (Lossless and Exponential Inhomogeneous Layer)
Consider a lossless and exponential IPL with the following

parameters

µr(z) = µr0 (40)
εr(z) = εr0 exp(Kz) (41)
σ(z) = 0 (42)

Now, assume that εr0 = 4, µr0 = 1.0, d = 20 cm and K = 1. A plane
wave with TEz polarization, the angle of incidence of θi = 60◦ and
the electric field strength of Ei = 1.0 V/m illuminates the assumed
structure. Figures 4, 5 compare the amplitude of the transverse
component of the electric field, obtained from the exact solution
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Figure 3. The amplitude of the transverse component of the electric
field for TMz polarization, obtained from exact formulas and from the
presented method with N = 30 and N = 60 layers (for lossy and
homogeneous planar layer).

Figure 4. The amplitude of the transverse component of the electric
field for TEz polarization at frequency of f = 1.0 GHz, obtained from
exact formulas and from the presented method with N = 30 and
N = 60 layers (for lossless and exponential inhomogeneous planar
layer).
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Figure 5. The amplitude of the transverse component of the electric
field for TEz polarization at frequency of f = 2.0 GHz, obtained from
exact formulas and from the presented method with N = 30 and
N = 60 layers (for lossless and exponential inhomogeneous planar
layer).

(in the Appendix) and from the presented method with N = 30
and N = 60 layers for the excitation frequency of 1.0 and 2.0 GHz,
respectively. Also, Fig. 6 compares the amplitude of the reflection
and transmission coefficients written in (15)–(16), versus the angle of
incidence, obtained from the exact solution and from the presented
method for the excitation frequency of f = 1.0 GHz. Again, one sees a
good agreement between the results from exact solution and the results
from the presented method. Furthermore, as the source frequency
increases, the accuracy of the method decreases. The better accuracy
for larger angles of incidence, may be due to larger wavelength along
the thickness of IPL for these angles (λz = λ/ cos θi, in which λ is the
wavelength in IPL).

According the above examples, one may conclude that the
proposed method is applicable to all arbitrary IPLs. Also, it is
concluded that as the excitation frequency, the length of the line
(with respect to the wavelength) and the variations of the primary
parameters increase, the necessary number of layers increases. To
obtain a crude relation for the amount of error, consider a lossless
and homogeneous planar layer. The relative error in (28) will be as
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Figure 6. The amplitude of the reflection and transmission coefficients
for TEz polarization, obtained from exact formulas and from the
presented method with N = 30 and N = 60 layers (for lossless and
exponential inhomogeneous planar layer).

follows

Error ∼= 1
12F

∣∣∣∣∣d
4F

dz4

∣∣∣∣∣ ∆z4 =
1
12

(
ẐŶ + k2

x

)2
∆z4 =

1
12

k4
z∆z4

=
1
12

(
2π

∆z

λ
cos θi

)4

=
130
N4

(
d

λ
cos θi

)4

(43)

For example, to have the relative error less than 10−3 for d/λ = 2.2
and θi = 60◦ (as in Example 1), N must be greater than 37.

5. CONCLUSION

The second order finite difference method was used to analyze
Inhomogeneous Planar Layers (IPLs). In this proposed method,
the IPLs are subdivided to many homogeneous thin layers, at first.
Then the electric and magnetic fields are obtained using step-by-
step numerical integration. Some closed relations, for which second
derivative of the voltage has been considered, are obtained for this
purpose. It was seen that, as the variations of the IPL parameters,
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the excitation frequency and the thickness of the IPL (with respect
to the wavelength) increases and the angle of incidence decreases, the
necessary number of layers increases. The method is evaluated using
analysis of some special kinds of IPLs. The method is very simple and
fast and can be used for all arbitrary lossy and dispersive IPLs.

APPENDIX A.

The exact electric and magnetic fields of lossless exponential IPLs
for TEz polarization are determined. Using (40)–(42) in (5)–(6), the
following second order differential equation is obtained.

d2Ey(z, ω)
dz2

−
(
k2

x − k2
0εr0 exp(Kz)

)
Ey(z, ω) = 0 (A1)

Using the solution of (A1) in [8] and also (5), the following electric and
magnetic fields are obtained.

Ey(z, ω) = A1J

[
2kx

K
,
2k0

√
εr0

K
exp

(
K

2
z

)]

+A2J

[
−2kx

K
,
2k0

√
εr0

K
exp

(
K

2
z

)]
(A2)

Hx(z, ω) =
−j

√
εr0

η0
exp

(
K

2
z

) {
A1J

′
[
2kx

K
,
2k0

√
εr0

K
exp

(
K

2
z

)]

+A2J
′
[
−2kx

K
,
2k0

√
εr0

K
exp

(
K

2
z

)]}
(A3)

where the function J [α, β] is the Bessel function J of order α and
argument β and the primes indicate the first derivative of the function
with respect to its argument. From (A2)–(A3) and the boundary
conditions (11)–(12), we have

a1A1 + a2A2 = 2Ei (A4)
a3A1 + a4A2 = 0 (A5)

in which

a1 = J

[
2kx

K
,
2k0

√
εr0

K

]
+

j
√
εr0

cos(θi)
J ′

[
2kx

K
,
2k0

√
εr0

K

]
(A6)

a2 = J

[−2kx

K
,
2k0

√
εr0

K

]
+

j
√
εr0

cos(θi)
J ′

[−2kx

K
,
2k0

√
εr0

K

]
(A7)

a3 = J

[
2kx

K
,
2k0

√
εr0

K
exp

(
K

2
d

)]
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− j
√
εr0

cos(θi)
J ′

[
2kx

K
,
2k0

√
εr0

K
exp

(
K

2
d

)]
exp

(
K

2
d

)
(A8)

a4 = J

[−2kx

K
,
2k0

√
εr0

K
exp

(
K

2
d

)]

− j
√
εr0

cos(θi)
J ′

[−2kx

K
,
2k0

√
εr0

K
exp

(
K

2
d

)]
exp

(
K

2
d

)
(A9)

Finally, the unknown coefficients A1 and A2 are determined using
(A4)–(A5) as follows

A1 =
2a4

a1a4 − a2a3
Ei (A10)

A2 =
−2a3

a1a4 − a2a3
Ei (A11)
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