
Progress In Electromagnetics Research, PIER 59, 325–333, 2006

MUTUAL COUPLING EFFECT ON THERMAL NOISE
IN MULTI-ELEMENT ANTENNA SYSTEMS

S. Krusevac

RSISE, The Australian National University
National ICT Australia
ACT 0200, Australia

P. B. Rapajic

Medway School of Engineering
University of Greenwich at Medway
Pembroke, Chatham Maritime, United Kingdom

R. Kennedy

RSISE, The Australian National University
National ICT Australia
ACT 0200, Australia

Abstract—In this paper, we investigate the thermal noise behavior
of the multi-antenna communication systems, when antenna elements
are closely spaced. We analyze the mutual coupling effect on thermal
noise. We apply the Nyquist’s thermal noise theorem to determine
thermal noise power in the multi-antenna system and to confirm the
partial correlation of thermal noise for antenna spacing lower then one
wavelength. Simulation results confirm the decrease of thermal noise
power level when antenna spacings drop below a half wavelength.

1. INTRODUCTION

MULTIPLE-INPUT multiple output (MIMO) wireless systems,
characterized by multiple antennas at the transmitter and receiver,
have demonstrated the potential for increased capacity by exploiting
the spatial properties of the multipath channel [1]. If the channel
matrix coefficients are i.i.d (independent identically distributed)
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complex Gaussian variables, then linear increase in capacity with the
number of antenna is possible. The mutual independence of channel
coefficients is generally achieved by wide inter-element spacing in
the multi-antenna system. However, wide antenna spacing is not
always achievable due to physical size constraints of subscriber units
in wireless communication systems.

As the consequence of the small antenna spacings, correlation
arises among the antenna elements. The impact of the correlation due
to mutual coupling effect on the antenna arrays has been evaluated by
examining its influence on adaptive array performance in [2]. Then,
the model for evaluation the mutual coupling effect on MIMO channel
capacity was presented in [3]. Additionally, the mutual coupling effect
on MIMO channel capacity through the radiated power and the power
collection capability was assessed in [4].

While above studies present important contributions concerning
the effect of array mutual coupling on MIMO system performance,
they neglect mutual coupling effect on thermal noise. The quantitative
analysis of the mutual coupling effect on thermal noise is a missing
puzzle to complement the analysis of the mutual coupling effect on the
performance of the multi-element antenna systems. The real insight
into the physical phenomenon of thermal noise behavior for coupled
antennae can be obtained by investigating the thermal noise correlation
due to the mutual coupling effect.

In this paper, we investigate the mutual coupling effect on
thermal noise in the multi-antenna systems with closely spaced antenna
elements. The Nyquist’s thermal noise theorem [5] enables to identify
the correlated part of the thermal noise from the total thermal noise
and to confirm the correlation of noise for antenna spacing below one
wavelength. We calculate noise correlation coefficients to additionally
assure the existence of the noise correlation.

The rest of this paper is organized as follows. In Section 2, the
effect of mutual coupling in the multiple antenna element system is
presented. In Subsection 3.1, the mutual coupling on thermal noise
is elaborated. Subsection 3.2 is devoted to thermal noise power
evaluation in two-dipole array. Simulation results are presented in
Section 4. While, concluding remarks are given in Section 5.

2. MUTUAL COUPLING EFFECT

The principal feature of an antenna is to convert an electromagnetic
field into an induced voltage or current. However, for closely spaced
antenna element, the total (measured) voltage on each antenna
elements is a function not only of the excited field but also of the
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voltages on the other elements. The phenomenon is known as the
mutual coupling effect and can be including in the received voltage
model, by inserting the coupling matrix [3]

y = MHcx + n (1)

Thus, the new channel matrix that considers the electromagnetic
behavior of antennae is H ′ = MHc [3]. Using fundamental
electromagnetic and circuit theory, the coupling matrix of an array
antenna can be written as [2]

M = (ZA + ZT )(Z + ZT I)−1 (2)

where ZA is the antenna impedance, ZT is the impedance of
the measurement equipment at each element and Z is the mutual
impedance matrix.

3. MUTUAL COUPLING EFFECT ON THERMAL NOISE

The electromagnetic properties of thermal noise is discussed in [8].
Also, thermal noise radiation is classified into self-radiated thermal
noise (self-noise) and induced thermal noise of radiated body in
antenna element [8]. Then, the partially correlated thermal noise in
two closely spaced antennae with isolated receivers is discussed in [6],
based on Nyquist’s thermal noise theorem [5].

Nyquist Thermal Noise Theorem - The theorem states that
for passive network in thermal equilibrium it would appear possible to
represent the complete thermal-noise behavior by applying Nyquist’s
theorem independently to each element of the network [5]. In the
case of the multi-antenna system these elements are self-impedances
and mutual-impedances. In addition, the general nonreciprocal
network with a system of internal thermal generators all at absolute
temperature T can be represented as the source-free network together
with a system of noise current generators Ir and Is with infinite internal
impedance [6]. In that case, the Nyquist’s thermal noise theorem[5]
states that the nodal current cross-correlation is given by

IsIrdf = 2kT (Ysr + Y ∗
sr)df (3)

Alternatively the internal noise sources can be represented by a system
of nodal voltage generators Vr and Vs, with zero internal impedance.
The correlation of nodal voltage generators is given by:

VsVrdf = 2kT (Zsr + Z∗
sr)df (4)
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where Zsr and Ysr are the mutual impedance and admittance,
respectively and k is Boltzmann constant. Correlation is zero when
the mutual coupling is purely reactive.

Thermal noise coupling matrix - In this subsection, we derive
thermal noise coupling matrix for two-antenna array based on the
generalized Nyquist’s thermal noise theorem. Although, we use this
simple model, it still enables significant conceptual insight to be gained
into thermal noise behavior of the multiple antenna systems.
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Figure 1. Nodal network representation for two antenna array.

One can write the noise current for two-antenna array from Fig. 1
in terms of its spectral density by

J1 = y11V1 + y12V2 = jL1 + j1 − YL1V1

J2 = y21V1 + y22V2 = jL2 + j2 − YL2V2
(5)

where Ji, i = 1, 2 are the total noise current spectrum and Vi, i = 1, 2
associated noise voltage spectrum of ith antenna element. ji, i = 1, 2
are the nodal noise current spectrum of ith port, jLi, i = 1, 2 are
the noise current spectrum associated with load admittance of receiver
YLi, i = 1, 2 of ith antenna elements.

Following that,

jL1 + j1 = (y11 + YL1)V1 + y12V2

jL2 + j2 = y21V1 + (y22 + YL2)V2
(6)

[
jL1 + j1

jL2 + j2

]
=

(
y11 + YL1 y12

y21 y22 + YL2

) [
V1

V2

]
(7)

[
V1

V2

]
=

(
y11 + YL1 y12

y21 y22 + YL2

)−1 [
jL1 + j1

jL2 + j2

]
(8)

V1 =
1
|D| ((y22 + YL2)(jL1 + j1) − y21(jL2 + j1)) (9)
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V2 =
1
|D| ((y11 + YL1)(jL2 + j2) − y12(jL1 + j1)) (10)

where |D| is determinant of the following matrix(
y11 + YL1 y12

y21 y22 + YL2

)
(11)

The average power absorbed dissipated in the receiver load of the
first antenna is proportional to PL1 in the following form

PL1 =
1
2
(YL1 + Y ∗

L1)V1V ∗
1 (12)

Similarly, for the second antenna:

PL2 =
1
2
(YL2 + Y ∗

L2)V2V ∗
2 (13)

Substituting the expressions (9) in (12) yields

PL1 =
YL1 + Y ∗

L1

2|D||D∗| ((y22 + YL2)(y∗22 + Y ∗
L2)(iL1i∗L1 + i1i∗1)

−y21(y∗22+Y ∗
L2)i1i∗2−y∗21(y22+YL2)i∗1i2 + y21y

∗
21(iL2i∗L2 + i2i∗2))

(14)

Using (3) for nodal current correlation, the expression (14) becomes

PL1 = 2kT
(YL1 + Y ∗

L1)
2|D||D∗| ((y22+YL2)(y∗22+Y ∗

L2)((YL1+Y ∗
L1)+(y11+y∗11))

−y21(y∗22 + Y ∗
L2)(y12 + y∗12) − y∗21(y22 + YL2)(y12 + y∗12)

+y21y
∗
21((YL2 + Y ∗

L2) + (y22 + y∗22))) (15)

The spectral density of thermal noise power dissipated in the
received load of first antenna PL1 consists of two parts, self-noise and
induced thermal noise [9]. Self-noise originates in its own resistive
element, while induced thermal noise arises from the adjacent antenna
element. The induced thermal noise exists due to thermal noise mutual
coupling effect.

Similarly, the spectral density of thermal noise power of second
antenna is

PL2 = 2kT
YL2 + Y ∗

L2

2|D||D∗| ((y11+YL1)(y∗11+Y ∗
L1)((YL2+Y ∗

L2)+(y22 + y∗22))

−y12(y∗11 + Y ∗
L1)(y21 + y∗21) − y∗12(y11 + YL1)(y21 + y∗21)

+y12y
∗
12((YL1 + Y ∗

L1) + (y11 + y∗11))) (16)
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where k is Boltzmann constant and T is absolute temperature.
Now, the absorbed thermal noise power in the receiver load of first

and second antennae over the bandwidth B are, respectively

Nmc(1) =
∫

B
PL1df (17)

Nmc(2) =
∫

B
PL2df (18)

The thermal noise matrix of two coupled antennae is then

Nmc =

(
Nmc(1) 0

0 Nmc(2)

)
(19)

Here, thermal noise matrix for two-coupled antennae is diagonal
matrix, because the receiver loads are isolated. In fact, the coupled
antenna system with its mutual impedance matrix translates into the
diagonal receiver load matrix. Thus, each loads absorbs thermal noise
radiation from its own antenna element and from adjacent antenna,
what represents the partially correlated noise. In such a way, we define
thermal noise matrix as eigenvalue matrix of one general thermal noise
correlated matrix. Here, the correlation is due to mutual coupling
effect.

4. SIMULATION EXPERIMENTS

To confirm results of the presented analytical analysis, we use the
simulation models consist of the uniform linear arrays (ULA) with two
and three half-wave dipoles in multi-antenna system. Mutual- and
self impedances are calculated by using SONNET software [7]. This
simplified models still enable significant conceptual insight be gained
into the multi-antenna system performance in terms of thermal noise
power level.

Fig. 2 depicts mutual coupling effect upon thermal noise power
in the multiple antenna systems. Simulation analysis shows decrease
in thermal noise power for antenna spacing below 0.5λ when mutual
coupling of thermal noise (mctn) is considered in comparison with
traditional approach which ignores the coupling interaction for thermal
noise (nmctn). Results are given for antenna spacing below 0.7λ. The
simulation results indicate on the trend that thermal noise power level
of one dipole will decrease further as the number of antenna in the
multi-antenna elements increases.

Additionally, we estimate the noise correlation coefficients in
order to drawn conclusions about mutual coupling effect on thermal
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Figure 2. Effect of mutual coupling on thermal noise power in the
multiple element antenna systems.

noise. Therefore, we analyze the two- and three-antenna array in
order to estimate the correlation coefficients of complex thermal noise
voltages within antenna spacing range [0, 1λ]. The voltage correlation
coefficient is computed as γ12 = 〈V1, V2〉. Here, Vi, i = 1, 2 is voltage
at the output port of ith antenna element. Operation 〈a, b〉 computes
the complex correlation coefficient between a and b as

〈a, b〉 =
E{[a − E{a}][b − E{b}]∗}√

E{|a − E{a}|2}E{|b − E{b}|2}
.

We calculate thermal noise voltages for two-antenna array by using (9)
and (10).

Fig. 3 plots the resulting magnitude of correlation coefficients
versus antenna spacing, for both, two-dipole and three-dipole arrays.
The correlation coefficients are calculated for the adjacent dipoles (12),
(23) (Fig. 3) and dipoles set 2∗d apart (13) (Fig. 3). Results from Fig.
3 confirm that thermal noise between the adjacent antenna elements
in the multi-antenna system is highly correlated for antenna spacing
up to 0.5λ.

The uncorrelated white noise is usually presupposed in antenna
array applications, neglecting the radiation characteristics of noise.
However, the results from Fig. 3 show that the mutual coupling
strongly correlates thermal noise in the closely spaced antenna
elements.
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Figure 3. Correlation coefficients of thermal noise voltages due to
mutual coupling effect.

5. CONCLUSION

This paper outlines a procedure for thermal noise analysis of the multi-
antenna system with coupled antennae. We present a method for
thermal noise power calculation in two-antenna array, which can be
used to determine thermal noise behavior of the multi-antenna system
with small antenna spacing. We confirm the partial correlation of
thermal noise for antenna spacing below a wavelength.
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