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Abstract—Spectral domain approach for continuous spectrum of wide
class of microwave integrated circuit (MIC) lines is proposed. The
continuous spectrum is treated as a continuum of so called hybrid
radiation modes. They are the limits of volume modes of line in
which lower and/or upper shieldings are moved to infinity. In the
preliminary part of analysis a convenient classification of MIC lines
into one-side opened and two-sides opened lines is introduced. The
spectral domain representation of hybrid radiation modes is discussed
in detail and boundary conditions for visible and invisible parts of
spectrum are formulated. The normalization conditions in spectral
domain are also proposed for both classes of lines. In the next part
of paper an iterative approach in spectral domain is proposed for hr
modes of one-side opened line. The boundary conditions for hybrid
radiation modes are combined with spectral domain approach and the
second order equation is formulated for unknown spectral amplitudes
of electric or magnetic fields in visible part of spectrum. Two schemes
of iteration are presented and they both lead to solutions classified
as hybrid EH(y) and HE(y) modes. In the case of two-sides opened
lines the solution is a sum of two partial solutions corresponding to
symmetrical and unsymmetrical sources distributions. Each partial
solution can be found by the iterative procedure proposed for one-side
opened lines. The efficiency of proposed procedure was verified for
the case of hybrid radiation modes of microstrip line. The results of
calculations of amplitudes and phases of spectral amplitudes in visible
spectrum part for examplary hybrid radiation modes are shown. As an
example of an application of the hybrid radiation modes concept, the
advanced cavity model of rectangular patch antenna is proposed. This
model allows to calculate the parameters with acceptable precision
nearly ten times faster than professional full-wave design tools. In the
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conclusion other possible applications of this approach are proposed
e.g., in modal analysis of discontinuities including the radiation effect
or 3D rectangular patch analysis.

1. INTRODUCTION

The radiation from microwave integrated circuit (MIC) and millimetre
microwave integrated circuits (MMIC) waveguiding structures is
interesting in both its theoretical and practical aspects. It is caused by
the fact that this phenomenon cannot be neglected in many practical
cases so its exact description is necessary to anticipate the properties
of open structures. It is a well known fact [1] that the radiation from
the dielectric slab waveguide can be represented by the continuum of
the TE and TM radiation modes. Radiation modes are orthogonal
mutually as well as they are orthogonal to the surface waves, which
form the discrete part of slab waveguide spectrum. In the case of
microstrip or slot-like lines simple representation in form of TE and
TM modes is not valid so during the last decades different approaches
have been proposed to describe more or less exactly the radiation effect.

The first group of methods approached the radiation as a
continuum of the modal functions. M. Davidovitz [2] proposed such
functions for air slot-line in the elliptical coordinate system. To find
the modal function for dielectric microstrip line T. Rozzi and G.
Cerri [3] applied LSM and LSE representation. Another approach
has been proposed in [4] for layered slot-line. The authors adopted
spectral domain approach (SDA) to the case of radiation modes.
They introduced the continuous modes which were the effects of the
illuminations of the line from both sides by TE and TM waves.

Second group of the methods applied the concept of leaky waves
to describe the radiation from an open waveguide. The complex phase
constant kz = β − jα, α �= 0 was introduced in lossless open line in
order to simulate the radiation. Leaky wave does not fulfil the radiation
condition but it can be used to describe partially the effect of the
radiation loss. The concept of application of leaky waves arose from
the suitable deformation of integration path during the implementation
the saddle point method in asymptotic calculation of total field around
the line. The choice of different paths of integration in complex plane
of transversal phase constant can lead to the solutions [5, 6] which
describe the different mechanisms of losses (e.g., surface wave loss,
space wave loss or volume wave loss in the case of covered line).

There is also another group of methods in which the loss
for radiation are calculated indirectly. P. B. Katehi [7] solved
Poclington equation for open microstrip line and found the standing
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wave distribution. Afterwards the complex reflection coefficient
were determined and the radiation conductance of open end of
the microstrip. In another approach total radiation loss of open
discontinuities is found by integration of Poynting vector of far field.
The loss for surface waves are calculated as the residues of the
integral over side wall of cylinder surrounding the discontinuity [8].
T. K. Sarkar et al., proposed the application of Matrix Pencil Approach
[9, 10] to decompose the current distribution on the structure in a
forward and backward waves as well as the higher modes. The
S-parameters was obtained from modal amplitudes of incident and
reflected waves so the radiation loss could be evaluated from unitary
properties of S-matrix for a lossless structure.

Recently an interesting method of analysis of the different types
of losses was presented in papers [11, 12]. The authors used delta-gap
feed on the microstrip line and transformed it (via Fourier transform)
in longitudinal direction. This process decomposed the source into
infinite set of the phased line sources. For each source Green function
was found by solving the integral equation. The strip current could
be then calculated by the inverse transform and different choice of
the integration along the longitudinal phase constants led to different
solutions. Thus the contributions of each type of the leakage could be
calculated.

As a conclusion we can notice that an analysis of radiation from
open MIC structures seems to be still attractive and interesting for
microwave researchers’ and engineers’ communities.

In this paper an unified SDA approach for continuous spectrum
(CS) of multilayered strip- and slot-like transmission lines is proposed.
CS is treated as a continuum of hybrid radiation modes (hr modes)
which are the limits of volume modes of shielded line when the shielding
recedes to infinity. In Section 2, a convenient classification of MIC lines
from the point of view of CS analysis introduced. There are defined
one-side opened and two-sides opened MIC lines. For each class the
cross section of the lines is divided into two parts: the core and the
periphery. The fundamental properties of spectral representation of hr
mode are also discussed in this section. It is shown that the verification
of the condition at infinity for hr mode [14] at the periphery of the line
leads to different conditions for visible and invisible parts of spectrum.
The SDA for one-side opened line is presented in Section 3. An iterative
procedure is proposed to solve the set of the functional equations
together with condition at infinity for hr mode. Two schemes of
iteration are proposed. The criterion of proper choice of the scheme is
the condition of finite power flux. Section 4 describes the approach for
two-sides lines. The convergence of the proposed iterative procedure
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Figure 1. One-side opened (a) and two-sides opened (b) MIC lines.

was tested and confirmed for examplary case of microstrip line. The
results of calculation are shown in Section 5. An example of an
application of specific hr mode with phase constant β ≈ 0 is a cavity
model of rectangular patch antenna presented in Section 6. The results
of calculations of the resonant frequencies and radiation resistances are
shown and compared with available data and results obtained from
commercial 2D+ and 3D simulators showing the important gain in time
of calculation. The radiation pattern is also calculated and compared
with data obtained from other approaches. The final part of the paper
contains the concluding remarks and the perspectives of the approach.

2. SPECTRAL DOMAIN REPRESENTATION OF HR
MODES IN ONE-SIDE AND TWO-SIDES OPENED MIC
LINES

Presently many different planar lines are used in the microwave
technique. They are classified using criteria such as the number
of strips, slots, presence or absence of ground plane or mechanism
of coupling. In the case of continuous spectrum analysis it seems
reasonable to introduce another classification which permits to unify
the analysis. We propose to define two classes of MIC lines: one-
side opened and two-sides opened lines. The cross sections of the lines
are shown in Fig. 1. One-side opened lines are defined as MIC lines
which are shielded from the bottom by the perfectly reflecting wall
(in practice it is the electric wall). All microstrip-like MIC lines will
belong to this group. The slot-like and coplanar-like lines without
homogeneous shielding will be classified as two-sides opened lines. At
this point we note that the side shielding is not important in this
classification since we analyse the radiation effect in ±y directions. We
will use spectral domain approach so the presence of the side shielding
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will result in application of discrete Fourier transform.
The classification we propose permits to divide the cross section

of the lines into two parts: the core and the periphery of the line. The
core of the line consists of dielectric layers and the strips and/or slots
placed in the interfaces between them or/and on the top/bottom of
the core. The core of the one-side opened line is then limited from the
bottom by the shielding whereas the two-sides lines is not limited.

The periphery Γ of the line is defined as an unbounded region:
• above the core in one-side opened line (Γ∞),
• above and below the core in two-sides opened line

As a consequence the periphery of two-sides opened line consists of
lower (Γl∞) and upper (Γu∞) parts.

Now we consider the field representation of hr mode in the core and
in the periphery of any of the defined MIC lines. Let us remind that
hr mode is the limit case of the volume mode of shielded line. It seems
natural to apply well known elements of SDA formulated for discrete
part of spectrum to CS analysis. We assume therefore (omitting the
term e−jβz) the Fourier transforms of longitudinal components of the
electric and magnetic fields of single hr mode in the periphery in the
form:{

Ezi(α, y)
ηHzi(α, y)

}
=

{
AEi(α)
AHi(α)

}
e−jγiy +

{
BEi(α)
BHi(α)

}
ejγiy (1)

where: γi =
√
ρ2
i − α2, α – transform variable, ρ2

i = k2
0 − β2,

i = Γl∞ lub Γu∞ correspond to lower and upper peripheries of the
line. Normalizing coefficient η is equal −j120π [Ω]. In the case of
one-side opened line we will omit the indices u and l.

From physical point of view relation (1) represents a sum of
incoming and outgoing y-direction waves. The presence of both waves
in representation (1) is necessary since hr mode ”feels” the electric wall
in infinity [1]. From mathematical point of view the presence of both
waves can be explained with a help the Sturm-Liouville (S-L) operator
theory. For open MIC lines we have singular endpoints (y → ±∞) and
it results in nonself-adjoint S-L problem [13]. In such case we construct
the solution as a sum of the eigenfunctions for given problem (outgoing
wave) and the eigenfunctions of the adjoint problem (incoming wave).

We should emphasize that representation (1) concerns single hr
mode. It can be propagating mode (β – real, β ∈ (0, k0) or cut off
mode (β – imaginary, jβ ∈ (−j∞, j0)). Total continuous spectrum is
the sum of the continua mentioned above.

Representation (1), should verify the condition to be limited at
infinity according to [1]. As a consequence the spectral amplitudes
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in (1) should show different behaviour in visible and invisible parts
of Fourier spectrum. It leads to different conditions which should be
imposed on spectral amplitudes. In the invisible region of spectrum
(| α |> ρΓ, α ∈ R) we get:

• for one-side opened line:

AEΓ∞(α) = AHΓ∞(α) = 0 (2)

• for two-sides opened line:

AEΓu∞(α) = AHΓu∞(α) = 0 (3)
BEΓl∞(α) = BHΓl∞(α) = 0 (4)

In the visible region of spectrum (| α |< ρΓ, α ∈ R) we propose to
apply the condition at infinity for hr modes [14]. We obtain:

• for one-side opened line:

AEΓ∞(α)BHΓ∞(α) +AHΓ∞(α)BEΓ∞(α) = 0 (5)

• for two-sides opened line:

AEΓu∞(α) ·BHΓu∞(α) +AHΓu∞(α) ·BEΓu∞(α) = 0 (6)
AEΓl∞(α) ·BHΓl∞(α) +AHΓl∞(α) ·BEΓl∞(α) = 0 (7)

In order to normalize the z-direction power flux of hr mode we take
into account only this part which passes across the periphery — the
core of the line has limited dimension so its power flux tends to zero
as compared to finite power flowing by the periphery. From Parseval
theorem we can calculate in spectral domain the power flux Iβ for hr
mode having phase constant β. We obtain for one-side opened line:

Iβ =
2πωε0
ρ2
Γ

[
β∗

∫ ρΓ

0
| AHΓ∞(α) |2 dα+ β

∫ ρΓ

0
| AEΓ∞(α) |2 dα

]
(8)

where ρ2
Γ = k2

0 − β2 and the asterisk denotes the complex conjugate
value.
In the case of two-sides opened lines we assume that upper and lower
parts of periphery are filled with air so the following formula is valid:

Iβ =
2πωε0
ρ2
Γ

[
β∗

∫ ρΓ

0
(| AHΓu∞(α) |2 + | BHΓu∞(α) |2 +

+ | AHΓl∞(α) |2 + | BHΓl∞(α) |2)dα+

+ β

∫ ρΓ

0
(| AEΓu∞(α) |2 + | BEΓu∞(α) |2

+ | AEΓl∞(α) |2 + | BEΓl∞(α) |2)dα
]
(9)

Concerning normalizing formulas two remarks can be formulated:
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• proper behaviour of the spectral amplitudes at the limit points
α = 0 and α = ρΓ is necessary to assure the finite z-direction
power flux. This problem will be discussed in the next sections,

• the power flux is real for propagating hr modes (β – real) and
imaginary for cut off modes (β – imaginary). This fact should be
taken into account in order to normalize the power flux properly.

3. ITERATIVE APPROACH IN SPECTRAL DOMAIN
FOR HR MODES OF ONE-SIDE OPENED LINES

After having defined all necessary boundary conditions and normal-
isation formulas for hr mode we can apply them to formulate the
problem in a way similar to the SDA for discrete spectrum (bounded
modes). We introduce the iterative approach for simplified case of one-
side opened line in which the single strip is placed at the interface the
core-periphery (Fig. 2).

layered core
y

x
D

Figure 2. One-side opened line with a single strip in the core-
periphery interface.

It should be emphasized that this case is easily extended for a
class of practical structures which contain a combination of the strips
at the different planes of the core. In SDA the change of the set of basis
functions is only necessary to take into account different structure of
strips. The transfer matrix concept can be used to describe the layered
structure of the core.

At the first step of our approach we introduce the transforms of
longitudinal components of hr modes in all layers of the core and in the
periphery. Next we apply the continuity conditions at the interfaces
inside the core and in the core-periphery interface, separately in visible
and invisible regions taking into account the condition (2). We define
the transforms of the tangential components of the fields (ẽ(α,D)) and
currents (̃j(α,D)) at the interface where the strip is placed. As a result
inhomogeneous set of linear, functional equations is obtained. It can
be written in both visible and invisible regions as:

[G][j̃] = [ẽ] + [�][ã] (10)
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where [G] is dyadic Green function and other matrices are defined as:

[ẽ] =
[
ẽx(α,D)
ẽz(α,D)

]
; [j̃] =

[
j̃x(α,D)
j̃z(α,D)

]
; [ã] =

[
AEΓ∞(α)
AHΓ∞(α)

]

The matrix [�] we will call as matrix of forcing amplitudes and it is
nonzero only in visible region. Let us note that the choice of the forcing
amplitude as δ(α−α′) corresponds to the illumination of the structure
by the wave propagating in the direction defined by the wavenumber
(α, γΓ, β).

Up to this moment we did not apply the condition (5). We
rearrange it to more suitable form:

AHΓ∞(α) = −Q ·AEΓ∞(α) (11)

where
Q =

q1 ẽz(α,D) + q2 ẽx(α,D)
ẽz(α,D)

and

q1 =
βα

ωµ0γΓ
q2 =

ρ2
Γ

ωµ0γΓ

Now we combine (10) and (11) in order to eliminate the field transforms
ẽx(α,D) and ẽz(α,D). It yields the second order equation (for visible
part of the spectrum):

pH2 [AHΓ∞(α)]2 + pE2 [AEΓ∞(α)]2 + pEH AEΓ∞(α)AHΓ∞(α)
+pE AEΓ∞(α) + pH AHΓ∞(α) = 0 (12)

where:
pH2 = �22

pE2 = �21 q1 + �11 q2
pEH = �21 + q1 �22 + q2 �12

pE = −q1(G21 j̃x(α,D) +G22j̃z(α,D))
−q2(G11 j̃x(α,D) +G12j̃z(α,D))

pH = −G21 j̃x(α,D) −G12j̃z(α,D)

It is worth mentioning that generally two solutions of Eq. (12)
are possible. In the absence of conducting strips the solution for
multilayered dielectric waveguide consists of LSM and LSE radiating
modes [15]. If we introduce conducting strips “pure” LSM and LSE
modes cannot be excited — we expect y-direction hybrid modes which
can be treated as perturbed E(y) and H(y) radiating modes. We will
denote them as EH(y) and HE(y) modes, respectively.
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Before we begin to solve Eq. (12) we note that the current
transforms j̃x(α,D) and j̃z(α,D) depend on the spectral amplitudes
AHΓ∞(α) and AEΓ∞(α). It suggests that iterative approach can be
used to solve efficiently Eqs. (12) and (10). The form of (12) shows
that two alternative formulations are possible:

• we treat spectral amplitude AEΓ∞(α) as an unknown function.
This formulation will be called {H → E},

• we treat spectral amplitude AHΓ∞(α) as an unknown function.
This formulation will be called {E → H}.

We rearrange the second order Equation (12) to the product form:

[AXΓ∞(α) − f1(AXΓ∞(α) , AY Γ∞(α))]·
[AXΓ∞(α) − f2(AXΓ∞(α) , AY Γ∞(α))] = 0 (13)

where the indices {X,Y } correspond to:

(i) {H,E} – formulation {E → H}
(ii) {E,H} – formulation {H → E}.
and f1(AXΓ∞(α) , AY Γ∞(α))], f2(AXΓ∞(α) , AY Γ∞(α)) are known
functions.

Thus in the formulation {E → H} spectral amplitude AEΓ∞(α) is
assumed as the known function and the solutions of Eq. (13) and (10)
should give the transforms of the currents and the fields corresponding
to EH(y) and HE(y) modes. Iterative procedure for this formulation
can be as follows:

(i) We assume the spectral amplitudeAEΓ∞(α) and the first approach
of AHΓ∞(α) (e.g., zero) in the visible part of spectrum. Now
we can solve Eq. (10) by moment method (in both: visible and
invisible spectra) so the transforms of the currents and the fields
(as well as the elements of dyadic Green function and forcing
amplitudes matrix) are found,

(ii) We solve Eq. (13) since we know all necessary coefficients pij . As
a result we can find second approach of AHΓ∞(α). We introduce
it to (10) and next we solve it and the second approach of the
transforms of the currents and the fields is found. In such a way
the iterative loop is closed.

In the case of {H → E} formulation the spectral amplitude AEΓ∞(α)
is treated as an unknown function but the iterative procedure rests
unchanged. In both formulations the unknown spectral amplitudes
(functions) are defined by their values in a number of discretization
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points (αi). Such representation is suitable for two reasons: (i)
the condition of the convergence can be easily formulated for each
point of discretization, (ii) the implementation of the moment method
(calculation of the integrals) can be easily performed.

Some remarks concerning proposed procedure should be formu-
lated. The first one concerns the choice of the formulations and spec-
tral amplitude which is assumed as the known one. It is evident that
the convergence should be the basic criterion and the solution should
lead to the finite power flux of the mode. Second remark concerns
the choice of the condition of the convergence. It can be formulated
for spectral amplitude or for the transforms of the currents. The last
remark concerns the method of the identification of the solutions as
EH(y) or HE(y) modes. We will show in Section 5 how these problems
are solved for exemplary case of microstrip line.

4. ITERATIVE APPROACH IN SPECTRAL DOMAIN
FOR HR MODES OF TWO-SIDES OPENED LINES

The approach for two-sides opened lines will be discussed for the case
of slot line (Fig. 3). We can formulate the problem in similar way to
in the case of discrete spectrum using the procedure proposed in the
previous section. However, we apply in the conditions for visible part
of spectrum (6) and (7) instead of the condition (5) in this case.

layered core
y

x
D

Figure 3. Two-sides opened line with a single slot in the core-
periphery interface.

We start as in Section 3 from boundary conditions inside the core
and in the core-periphery interface. It leads to the set of equations:

[G][ẽ] = [j̃] + [�][ã] (14)

where [G] is dyadic Green function and matrices [ẽ] and [j̃] are defined
in the Eq. (10). Now the matrix of forcing amplitudes [�] has the form
of column matrix:

[ã] = [BEΓl∞(α), BHΓl∞(α), AEΓu∞(α), AHΓu∞(α)]T (15)

where the symbol T means the transpose.
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Let us note that the matrix [�] in (15) contains four unknown
amplitudes. The purpose of the next steps of the analysis is to
transform Eq. (14) with conditions (6) and (7) to the form of (13)
which permits to apply the iterative procedure.

In the case of two-sides opened line the periphery of the line
consists of two parts so we can construct a solution as a superposition
of the two partial solutions corresponding to the illumination from
the lower and upper parts of periphery. Such solutions are called
by C. Vasallo [16] as “regular modes”. We propose, however, an
alternative formulation which permits form to transform the case of
two-sides opened line into two one-side opened line cases. Our two
partial solutions correspond to:

• symmetrical sources distribution:

AHΓl∞(α) = BHΓu∞(α) (16)

• unsymmetrical sources distribution:

AHΓl∞(α) = −BHΓu∞(α) (17)

The relation between the proposed solutions and regular modes of
C. Vasallo is shown in Fig. 4.

-R lTl +

R u1 -Tu+

-1

−Ψ      ΨI II
Ψ      Ψ

I II

RlTl +1

R u1 Tu +

Ψ
I

Ψ
II

Rl1 Tl

Tu R u1
a) b)

+ +

Figure 4. The relation between regular modes (a) and solutions for
symmetrical and unsymmetrical sources distributions (b).

Let us note that by introducing the conditions (16) or (17) we
reduce the number of unknown functions and the problem can be
formulated in the same way as in the previous section. The scheme of
transforming the Eq. (14) with conditions (3) and (4) to the second
order equation of the form (12) will be shown for the examplary case
of {H → E} formulation and the symmetrical sources distribution.
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We determine the spectral amplitudes in the upper part of
periphery from (15) and (16):

AEΓu∞(α) = r00 + r01BEΓl∞(α) + r02AHΓu∞(α) (18)
BEΓu∞(α) = s00 + s01BEΓl∞(α) + s02AHΓu∞(α) (19)

Now we apply continuity conditions for tangential components of
electric field at the slot interface, transfer matrix for amplitudes in
the core of the line and the conditions (6) and (16). It yields the
relations:

AEΓu∞(α) = r11AEΓl∞(α) + r12BEΓl∞(α)
+r13AHΓl∞(α) + r14AHΓg(α) (20)

BEΓu∞(α) = s11AEΓl∞(α) + s12BEΓl∞(α)
+s13AHΓl∞(α) + s14AHΓg(α) (21)

We combine (18) ÷ (21) and we get the relations between the
amplitudes in the lower part of the periphery:

AEΓl∞(α) = r20 + r21BEΓl∞(α) + r22AHΓu∞(α) (22)
AHΓl∞(α) = s20 + s21BEΓl∞(α) + s22AHΓu∞(α) (23)

We introduce (22) and (23) into (7), next we apply (16) and it leads
to the second order equation:

pH2[BEΓl∞(α)]2 + pH1BEΓl∞(α) + pH0 = 0 (24)

where:

pH2 = s21
pH1 = s20 +AHΓu∞(α) (r21 + s22)
pH0 = r22 [AHΓu∞(α)]2 + r20AHΓu∞(α)]

The coefficients rij and sij contain the current transforms j̃x(α,D) and
j̃z(α,D) which depend on the amplitudes BEΓl∞ and AHΓu∞ so we can
formulate Eq. (24) in the product form:

[BEΓl∞(α) − f1H(BEΓl∞(α) , AHΓu∞(α))]·
[BEΓl∞(α) − f2H(BEΓl∞(α) , AHΓu∞(α))] = 0 (25)

It is worth mentioning that the case of unsymmetrical sources
distribution does not introduce any difficulties in formulation - only
the forms of coefficients rij and sij are changed. Applying the iterative
procedure proposed in Section 3 we obtain the solutions corresponding
to perturbed EH(y) and HE(y) modes. We underline that the remarks
formulated in the previous section concerning the proposed iterative
procedure are valid in the case of the analysis of two-sides opened line.
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5. NUMERICAL RESULTS – HYBRID RADIATION
MODES OF MICROSTRIP LINE

The case of one-side opened line has been analysed in order to verify
the approach and a computer program was prepared. The simple
structure of the microstrip line on dielectric substrate was chosen
for this purpose. We should note that implementation of SDA for
the discrete spectrum of this line is well known so the numerical
aspects of solving of Eq. (10) will not be discussed here. Before
the numerical implementation of the iterative procedure we should
make some assumptions and additional considerations according to
the remarks formulated at the end of Section 3.

Let us remind that in order to solve Eq. (13) we should assume
the spectral amplitudes: AEΓ∞(α) or AHΓ∞(α), depending on the
formulation that we have chosen ({E → H} or {H → E}). As
a criterion we choose the finite value of the power flux. In the
discussed case of single strip according to the symmetry two solutions
are possible: even (j̃z(α,D) – even function of variable α) and odd
(j̃z(α,D) – odd function of variable α). To be sure that all space
harmonics are present in the visible part of spectrum of hr mode we
assumed:

• for even electric source:

AEΓ∞(α) ∼ γΓ (26)

• for even magnetic source:

AHΓ∞(α) ∼ const. (27)

Asymptotic analysis was next performed for assumed distributions (26)
and (27) at the limit points α = 0 and α = ρΓ. Spectral amplitudes
can be singular there and the power flux may tend to infinity according
to (8). The results of analysis for different schemes and symmetries
are presented in Table 1. We note that only for HE(y) odd mode any
of the schemes leads to physical solution. In all other cases the proper
choice leading to acceptable solution is unique.

In order to identify the solutions of Eq. (13) as EH(y) or HE(y)

modes we used their behaviour for asymptotic values j̃ → 0. In
this case the solutions are “pure” LSE and LSM modes for which the
analytic solutions are known [14].

The last remark in Section 3 concerned the choice of the criterion
of convergence. We examined this problem numerically by comparing
the convergence of the coefficients of the expansion for the currents on
the strip and spectral amplitudes. As a criterion of the convergence
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Table 1. Asymptotic values of spectral amplitudes for α → 0 i α → ρΓ

for even and odd solutions in microstrip line on single layered dielectric
substrate.

Scheme {E → H} Scheme {H → E}
even odd even odd

AEΓ∞(α) ∼ γΓ AEΓ∞(α) ∼ αγΓ AHΓ∞(α) ∼ α AHΓ∞(α) ∼ const.
solutions EH(y) HE(y) EH(y) HE(y) HE(y) EH(y) HE(y) EH(y)

α → 0 α 1/α const. const. const. const. α 1/α
α → ρΓ const. const. const. const. γΓ 1/γΓ γΓ 1/γΓ

Table 2. Normalised coefficients for the first basis functions of the
currents j̃x(α,D) (a1) and j̃z(α,D) (b1) and the number of the points
(N+) in which the convergence criterion (28) is fulfilled. Calculations
were performed for odd hr mode EH(y) with β/k0 = 0.5 at the
frequency f = 15 GHz for 495 points of discretization of the unknown
spectral function and K = 0.001. Parameters of the line: the thickness
of the substrate D = 0.5 mm, the strip width 2w = 3.0 mm, the electric
permittivity εr = 2.3.

Number
a1/a5 b1/b5

Number of points
of iteration N+

1 0.96441 − j0.71504 · 10−2 0.99367 − j0.69374 · 10−3 0
2 0.99874 − j0.18283 · 10−3 0.99979 − j0.95069 · 10−5 0
3 0.99998 − j0.24361 · 10−5 1.0 + j0.0 336
4 1.0 + j0.0 1.0 + j0.0 460
5 1.0 + j0.0 1.0 + j0.0 495

we proposed a condition which should be fulfilled at each discretization
point αi:

| A(j+1)
XΓ∞(αi) −A

(j)
XΓ∞(αi) |

| A(j)
XΓ∞(αi) |

< K, (28)

where X denotes E or H depending on the scheme of the iteration and
indices j + 1 and j concern two successive iterations. The results of
calculations are presented in Table 2 and they show that the criterion
of convergence should be chosen for spectral amplitudes.

In fact after three iterations the coefficients of the expansion
converged to their asymptotic values but criterion for spectral
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Figure 5. Module of spectral amplitudes AHΓ∞(α) for HE(y) modes
(β/k0 = 0.5) of microstrip line (strip width 2w = 3.0 mm, substrate
thickness d = 1.0 mm, εr = 2.3) at the frequency f = 3 GHz. Solid and
dashed lines concern even and odd sources, respectively.

amplitudes was fulfilled only in 336 points from 495 points of
discretization.

After these preliminary calculation the efficiency of iterative
procedure has been tested. We examined the influence of different
parameters on the convergence of the proposed procedure. We found
that convergence is nearly independent of: (i) frequency, (ii) character
of the mode (propagating or cut off), (iii) parameters of microstrip
line (strip width, electric permittivity). Typically 2÷6 iterations are
necessary to finish the iterative procedure for K = 0.001 in all the
points of discretization αi. The time of processor is about 1.5 s for
Celeron 466 MHz (for 5 basis functions for both j̃x(α,D) and j̃z(α,D)
current expansions and about 500 points of the discretization). In the
Fig. 5 and Fig. 6 the module of spectral amplitudes of AHΓ∞(α) and
AEΓ∞(α) found from iterative procedure for HE(y) and EH(y) modes
were shown, respectively.

It is seen that behaviour at the limit points α = 0 and α = ρΓ

agrees with this presented in Table 1 (exact calculation shows that
for even solution AHΓ∞(α) does not tend to zero for α → 0. We
also note that the spectral amplitudes in all visible region have not
discontinuities. The phases of the spectral amplitudes are shown in
Fig. 7 and Fig. 8.

Let us remind that the assumed phases of excitation (see Table 1)
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Figure 6. Module of spectral amplitudes AEΓ∞(α) for EH(y) mode
(β/k0 = 0.5) of the microstrip line (parameters of microstrip as in
Fig. 5) at the frequency f = 3 GHz. Solid and dashed lines concern
even and odd sources, respectively.
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Figure 7. Phases of spectral amplitudes AHΓ(α) for hr modes HE(y)

from Fig. 5. Solid and dashed lines concern even and odd sources,
respectively.
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Figure 8. Phases of spectral amplitudes AEΓ(α) for hr modes EH(y)

from Fig. 6. Solid and dashed lines concern even and odd sources,
respectively.

were equal zero. We observe that the phases of spectral amplitudes
AHΓ∞(α) (Fig. 7) are near zero in almost whole visible region.
Important changes are observed on the beginning of the region for
odd source case and at the end of the region for even source case. For
spectral amplitudes AEΓ∞(α) (Fig. 8) we note that the phase is near
zero in all visible region for odd source case and it changes importantly
only near α/ρΓ ≈ 0.4 for even source case.

6. APPLICATION – SINGLE HR MODE
APPROXIMATION OF RADIATION FROM
RECTANGULAR MICROSTRIP PATCH ANTENNA

Rectangular microstrip patch antenna is currently fundamental
radiating element widely used in antenna technique. At present a
number of full-wave models and commercial simulators are available
which permit to analyse and design the antennas. However, the models
which offer sufficiently good approximation of radiation and acceptable
time of simulation are still interesting for researchers’ and engineers’
community. The proposed model is a transitory step between cavity
and full-wave model and it seems to fulfill these needs.

Let us consider hr mode with phase constant β ≈ 0 (ρΓ ≈ k0) in
microstrip line.
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Figure 9. Cross section of microstrip line.

It is seen on Fig. 9 that such hr mode describes partial radiation
from line in almost all directions of positive hemisphere y > 0. In fact
for the lower limit of visible region α ≈ 0 wave is radiating along y
axis whereas for the upper limit α ≈ k0 it is radiating along x axis.
Thus we conclude that odd EH(y) mode with β ≈ 0 could be good
approximation of TM(y)

10 mode which does play fundamental role in
cavity model of microstrip antenna. For this mode we can observe the
current on the strip as a function of frequency. The maximum value of
the current occurs for “resonant” frequency where maximum of the e-
m energy is radiated from line. It is necessary to emphasize that in the
case of patch antenna we should take into account its finite transversal
dimension (in Fig. 9 – z direction dimension). In order to avoid this
problem simple correction coefficient was proposed [17].

In Table 3 the resonant frequencies of rectangular patch antennas
on thin substrate calculated by hr mode approximation are compared
with results of calculation from professional simulators: MOMENTUM
from ADS 2003B and QuickWave 3D v.2.2. Since the simulators were
installed on different computers we used normalised times. In the case
of MOMENTUM we compared the times of calculation of a single
frequency point. QuickWave uses FDTD method so such comparison
cannot be used. We assumed that in order to find resonant curve from
hr mode approximation we need 50 frequency points so we used this
value for comparison.

It is seen from Table 3 that professional simulators calculate
resonant frequencies more exactly (about 1%) but at the expense
of time of simulation (ten times for MOMENTUM and thirty times
for QuickWave). We should note that QuickWave is time-domain
simulator and antenna is narrowband so the time of the simulation can
be important (for discussed case of single patch the time of processor
was about 9 min. for INTEL Xeon 3 GHz). The accuracy of the
approach seems to be satisfactory if we take into account the fact that
electric permittivity of the substrate is often given with precision of



Progress In Electromagnetics Research, PIER 56, 2006 317

Table 3. Resonant frequencies and normalised times of simulations
tnorm. for rectangular patch antenna (resonant length L = 25 mm,
antenna width W = 40 mm). Experimental values of resonant
frequencies are taken from [18].

Momentum QuickWave Hr mode approx.
h/λ

f0 [GHz] tnorm. f0 [GHz] tnorm. f0 [GHz] tnorm.
Exp.

0.01 3.91 10 3.90 33 3.88 1 3.92

0.02 3.86 12 3.83 44 3.77 1 3.84

Table 4. Resonant frequencies (in GHz) of patch antennas on thick
substrates calculated from MPM, QuickWave, hr mode approximation
compared to experimental values (Exp.). Parameters of antenna
substrate: thickness h = 3.18 mm, electric permittivity εr = 2.33.

h/λ L W Hr mode approx. MPM [19] QuickWave Exp. [20]
0.045 19.5 29.5 4.39 4.42 4.5 4.24
0.062 13 19.5 6.3 6.31 6.34 5.84
0.088 9 14 8.7 8.3 8.38 7.7

single percents.
For antennas on thick substrates (Table 4) the differences between

hr mode approximation, mixed potentials method (MPM) [19], and
QuickWave results are also not important.

We observe the important differences for h/λ = 0.088. This value
agrees with limit value h/λ ≈ 0.07 proposed by Wood [21] (power
transferred to surface waves should be less than 25% of radiated power).
However other approaches differ importantly from experiment in this
case. On the other hand the antennas with so thick substrates are not
commonly used.

It is worth reminding that in order to find resonant frequency we
calculate the resonant curve of antenna. Thus we know the quality
factor of antenna so to determine the resonant resistance we need only
equivalent capacitance. We propose finding it from classical dielectric
filled rectangular capacitor. Effective electric permittivity which takes
into account radiation effect can be defined as:

εer =

[
fdielres

fairres

]−2

(29)
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where fdielres and fairres correspond to the resonant frequencies of the
antennas filled with dielectric and air, respectively. In Table 5 we
compare resonant resistances calculated from our approach with the
ones found from other full-wave approaches and experiment.

Table 5. Resonant resistances (in Ohm) for rectangular patch
antennas calculated from proposed hr mode approach (Rhrm), from
moment method (RMoM ) compared to the results from QuickWave
(RQwave) and experiment (RExp.). Parameter xf is a distance of the
feeding point to radiation edge of the antenna.

Lp L W h εr xf Rhrm RMoM [18] RQwave RExp. [18]
1 25 40 0.79 2.22 0 111 130 151 136
2 25 40 0.79 2.22 4 86 101 88 89
3 25 40 1.52 2.22 0 122 143 136 119
4 25 40 1.52 2.22 4 94 127 60 87
5 20 30 1.27 10.2 0 196 350 445 335
6 20 30 1.27 10.2 6.5 49 100 200 85

It is seen that for lower electric permittivities the differences
between our approach and experimental values differs less than 20%
but they are about the same order as differences from other methods.
For antennas with high electric permittivity substrates the differences
are greater and proposed model cannot be accepted for practical
use. However such substrates are not commonly used in antenna
technique. We also note that other methods give important error for
such structures.

In order to find the radiation pattern we apply the angular
spectrum concept. In the case of single hr mode approximation
(∂/∂z ≈ 0) we assume the transforms of the currents on the strip
in the form: {

j̃x(α, kz)
j̃z(α, kz)

}
∼ sin kzW

2
kzW

2

{
j̃x(α, h)
j̃z(α, h)

}
(30)

where current transforms j̃x(α, h) and j̃z(α, h) are solutions of Eq. (10),
kz is variable transform in z direction. Now we introduce (30) into (10)
and we calculate electric field transforms in aperture plane y = h:

[ẽ(α, kz)] = [G]
[
j̃(α, kz)

]
− [�] [ã] (31)

The knowledge of the electric field transforms at the aperture interface
y = h permits to determine radiation field. In Fig. (10) we show
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Figure 10. E-plane pattern of rectangular patch antenna calculated
at the frequency f = 3.84 GHz. Antenna structure parameters:
L = 25 mm, W = 40 mm, h = 0.7 mm, εr = 2.2. Solid line concerns
[22], dashed line hr mode approach, dotted line [23].

E-plane antenna pattern calculated for examplary rectangular patch
antenna compared with patterns found from other approaches. It
is seen that the differences are generally small. More important
differences are observed for the directions far from main lobe direction.
In the case of H-plane pattern the differences were very small so we do
not show the pattern here.

It is worth mentioning that proposed cavity model can be easily
extended to the case of the coupled rectangular patch antennas. In
this case the effect of mutual coupling can be examined as was shown
in [17].

7. CONCLUDING REMARKS

In the paper we present a new approach for radiation modes of two
classes of multilayered open MIC lines: one-side opened and two-sides
opened lines. In the proposed approach a single radiation mode has a
hybrid character and is treated as a volume mode of a shielded line in
which the shieldings are moved to infinity. The method of evaluation
of dyadic Green functions for both classes was proposed as well as
the iterative procedure of solving associated boundary value problem.
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The convergence of the procedure was tested and the examplary results
of calculation of the complex spectral amplitudes of perturbed HE(y)

and EH(y) hr modes were shown. As an application the advanced
cavity model of rectangular patch antenna was presented based on
approximation of radiation field of antenna by single hr mode. The
model permits to determine in reasonable time the resonant frequency,
radiation resistance and radiation pattern of rectangular patch with
reasonable accuracy.

It is worth mentioning that proposed approach gives the full
representation of CS of radiating waves for open MIC lines. Combining
CS with discrete spectrum we can perform the complete modal analysis
of the radiating discontinuities. Other possible application is an
extension antenna 2D approach to 2D+ approach by formulating 2D
condition in infinity for hr mode. These problems are the subject of
current interest of the author.
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