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Abstract—A novel computational method based on full-wave analysis
of stripline planar structures with vertical interconnects in multilayer
dielectric media is presented. The method is based on the electric-field
integral-equation solved with the Method of Moments (MoM). The
special characteristics of stripline structures facilitate the extensive
use of semi-analytical techniques to analyze the multilayer structures,
limiting significantly the use of purely numerical techniques. The
accuracy of the proposed modeling method is examined thoroughly
with extensive numerical tests and the results are compared with
results generated by commercial simulators for simple stripline
structures.

1. INTRODUCTION

The modeling of microstrip structures in multilayer dielectrics (or
dielectric media) has been thoroughly investigated in the past, and
several methods have already been introduced. The research has
been based on various methods such as Finite Elements (FE), Finite
Difference Time Domain (FDTD) and Method of Moments (MoM)
[1, 2]. The latter is the most widely employed for the modeling of
planar geometries, mainly due to the fact that it does not require
the meshing of the whole volume of the structure. Several methods
can be found in the literature for the analysis of multilayer microstrip
† Also with Helic S.A., Chiou 5, Argyroupolis 164 52, Athens, Greece
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topologies, either for shielded [3–8] or unshielded structures [9–13].
Moreover, some methodologies have been proposed to take into account
the vertical interconnects between planar structures. [11, 12]. However,
to the authors’ knowledge literature is very thin on topics regarding the
modeling of planar multilayer geometries with vertical interconnects
in a stripline structure. As this kind of technology profile is becoming
more and more popular with the development of Radio Frequency (RF)
modules implemented in materials such as Low Temperature Co-fired
Ceramic (LTCC), Bismaleimide-triazine (BT) resin and other organic
multilayer laminates, a robust and efficient method for the analysis of
such structures becomes imperative.

This paper presents an electromagnetic (EM) modeling approach
of stripline planar structures, with vertical interconnects, in multilayer
media (like LTCC), using the MoM method in the Galerkin form.
The formulation of the theoretical problem is based on the well-known
Electrical Field Integral Equation (EFIE) in the spatial domain. The
characteristics of stripline structures have been taken into account in
the theoretical analysis. As a result, extensive analytical solutions
become feasible and the need for complex and time-consuming
numerical solutions is minimized or avoided. The problem is solved
using the MoM method, and the network parameters of the structure
(Y or S parameters) are calculated.

In comparison with existing methods (2.5D MoM, Full-3D
FDTD/FE) the proposed methodology is inherently 3D and using a
MoM-Galerkin method based on piecewise basis and testing functions,
guarantees fine accuracy, stability and minimum computational
requirements (memory size, computational time).

Finally, in order to test the validity of our methodology, the
simulated results are compared to the theoretically expected ones
and to the simulation results generated by commercially available EM
solvers.

2. THEORETICAL ANALYSIS

It is a well-established fact that the first step in the Method of Moments
is the calculation of the dyadic Green’s function for the structure
under consideration. The generalized structure under study is shown
in Figure 1.

The structure consists of several dielectric layers with metallic
plates on the top and bottom sides of the structure, thus resulting
in a stripline profile. The circuit topology involves planar conductors
on each of the layers and vertical interconnects in the form of vias
providing connectivity between them. The planar conductors are
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Figure 1. The typical structure of interest.

considered to have zero thickness and infinite conductivity.
In structures like the one described above, it is reasonable to

assume that there is no radiation from the sidewalls, if the distance
between the top and bottom plates is less than λ/10. For frequencies in
the range of 0–20 GHz the value of λ/10 is higher than 1.5 mm. On the
other hand, most of the microwave structures constructed in multilayer
dielectric media rarely exceed the height of 1.5 mm. For example the
typical value for the height of one LTCC layer is 40–200 um, so it would
take at least 10 layers to reach a maximum structure height of 2 mm.
Therefore, the assumption that there is no radiation from the sidewalls
of the structure becomes valid for nearly all cases of practical interest.

Based on the above assumption the typical structure of Figure 1
can be considered as a “shielded cavity” with two electric (top and
bottom) and four magnetic (sidewalls) walls. As a result, the boundary
conditions for the structure of Figure 1 are the following:

n̂× �E = 0, for z = 0, c (1)

n̂× �H = 0, for x = 0, a (2)

n̂× �H = 0, for y = 0, b (3)

The above boundary conditions have a major role in the
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calculation of Green’s function (4):

G(�r, �r ′) =


 Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz


 (4)

For this calculation a unitary excitation is imposed along each of
the x, y, z axes, and the respective electrical field is calculated. Each
excitation yields one column of (4). Due to the boundary conditions
(1)–(3) each of the elements of (4) can be expressed as a series
eigenmode expansion, including both propagating and evanescent TE
and TM modes [14]. For example, in the case of two segments parallel
to x axis the respective element of Green’s function is calculated by:

Exx =
∞∑

n=1

∞∑
m=0

XX(n,m) · sin
(
nπx

a

)
cos

(
mπy

b

)

· sin
(
nπx′

a

)
cos

(
mπy′

b

)



sinh(γ1z) sinh(γ1(z′ − c))
sinh(γ1c)

, z < z′

sinh(γ1(z − c)) sinh(γ1z
′)

sinh(γ1c)
, z > z′

(5)

where: XX(n,m) = 4
ab(1+δm0) ·

ω2εµ−(nπ
a )2

γ1·jωε , γ2
1 =

(
nπ
a

)2+
(

mπ
b

)2−ω2εµ.
In the above equations ω is the radial velocity, ε, µ are the

properties of the dielectric material, a, b, c are the structure’s
dimensions and δnm is the well-known Krönecker delta: δnm ={

1, if n = m
0, if n �= m

.

A detailed description of Green’s function calculation can be found
in [15].

After the calculation of Green’s function the electrical field
equation of the problem is derived from the boundary conditions on
the surface of the circuit conductors, symbolized by S, assuming the
presence of an incident field �Einc

�Einc(�r ) =
∫
S

G(�r, �r ′) · �J(�r ′)dS′ (6)

where G(�r, �r ′) is the structure’s dyadic Green’s function and �J(�r ′) the
surface current density of the metallization layers.
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3. NUMERICAL ANALYSIS

The next step in the Method of Moments procedure is to approximate
the surface current density of the metallization using a set of expansion
functions (also known as basis functions) with unknown coefficients:

�J(�r ) =
N∑

i=1

ai · �ui(�r ) (7)

The type of the selected expansion functions is crucial for the
accuracy and speed of the method. In the proposed methodology
the metallization layers are discretized into N rectangular segments,
and the representation of the surface currents is done by overlapping
sinusoidal expansion functions, as shown in Figure 2.

Figure 2. Overlapping sinusoidal expansion functions.

The expansion function that corresponds to the highlighted
segment of Figure 2 is given by:

�uk(�r ) = x̂ · cos
(
n(x− xk)

hk

)
, for |x− xk| <

hk

2
, |y − yk| <

wk

2
(8)

where (xk, yk, zk) is the geometrical center of the segment, hk its length
and wk its width. The current flow of this segment is considered to be
parallel to the x-axis. In order to achieve a better approximation of
the continuity of currents, half segments are used at the corners of the
metallization, as well as at the source terminals.
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The expansion functions have been chosen as the testing functions
of the MoM method thus resulting to a Galerkin Method [2]. After the
application of the selected expansion and testing functions, the integral
equation (6) is transformed into the following matrix equation:


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N
...

...
. . .

...
ZN1 ZN2 · · · ZNN


 ·




a1

a2
...
aN


 =




V1

V2
...
VN


 (9)

The elements of the [a] vector are the unknown coefficients of (7)
and their computation practically leads to the solution of the integral
equation (6).

The elements of the [Z] matrix are calculated through the
implementation of the expansion functions in (6). For example consider
two segments with x-directed current flows, centered at xi, yi, zi and
xj , yj , zj , with dimensions hi, wi and hj , wj respectively. If zi < zj

then the mutual coupling Zij between these two segments is given by:

Zij =
∫ xi+hh/2

xi−hh/2

∫ yi+wh/2

yi−wh/2

∫ xj+hj/2

xj−hj/2

∫ yj+wj/2

yj−wj/2
Exx·�ui(�r )·�uj(�r ′)dxdydx′dy′

(10)
In the above equation �ui(�r ), �uj(�r ′) are the expansion and

testing functions defined on each segment, as shown in Figure 2 and
equation (8). Substituting in (10) the expressions from (5) and (8)
yields:

Zij =
∞∑

m=1

∞∑
n=0

XX(n,m) ·
xi+hi/2∫

xi−hi/2

sin
(
nπx

a

)
· cos

(
n(x− xi)

hi

)
dx

·
yi+wi/2∫

yi−wi/2

cos
(
mπy

b

)
dy ·

xj+hj/2∫
xj−hj/2

sin
(
nπx′

a

)
· cos

(
π(x′−xj)

hj

)
dx′

·
yj+wj/2∫

yj−wj/2

cos
(
mπy′

b

)
dy′ · sin(γ1zi) · sinh(γ1(zj − c))

sinh(γ1c)
(11)

The computation of all the integrals in the Z matrix calculation
can be performed analytically, without employing time- and memory-
consuming numerical techniques. For electrically small geometries the
time to calculate the Z matrix, also known as “matrix filling time”, is
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the dominant part of the overall calculation time. In nearly all cases of
practical interest the structures we analyze with this methodology can
be considered electrically small. For example, most of the structures
in LTCC rarely exceed the dimensions a = b = 20 mm and c = 2 mm.
Therefore the analytical calculation is expected to be faster and more
efficient than other methods employing complex numerical techniques.

For the definition of the elements of vector [V ], which correspond
to the excitation of the circuit, the delta-gap excitation scheme is used
[11]. All the points of excitation are considered to be located either at
the top or the bottom plate of the structure. This assumption is valid
since all structures under consideration are passive topologies and the
only connections of the structures are located at the top or bottom
of the structure. (i.e., interconnects to chip or PCB). According to
the delta-gap excitation scheme, at the location of port Pn, a voltage
is applied over an infinitesimal gap of length δ → 0 between the top
or bottom plate and the nth tip of the metallization that approaches
the ground plate at the location of the considered port. The applied
voltage is given by:

Vn = ẑ · δ(�r − �r ′) (12)

After the application of the testing functions on the integral
equation the V matrix elements are calculated by:

Vn =

yj+wj/2∫
yj−wj/2

ẑ · δ(�r − �r ′)dz ⇒ Vn

=
{
w, at the segments where ports are defined
0, at the rest of the circuit segments (13)

With the elements of Z matrix calculated and those of the V
matrix defined, the matrix equation (9) can be solved for the unknown
current expansion coefficients:




a1

a2
...
aN


 =



Z−1

11 Z−1
12 · · · Z−1

1N

Z−1
21 Z−1

22 · · · Z−1
2N

...
...

. . .
...

Z−1
N1 Z−1

N2 · · · Z−1
NN


 ·




V1

V2
...
VN


 (14)

The calculation of the unknown current expansion functions leads
to a good approximation of the current distribution at any point of the
circuit. However in most cases it is desired to have some sort of network
parameters (i.e., scattering or admittance matrices) to describe the
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circuit’s performance. This kind of information can be easily acquired
from the solution of (14). The procedure is analytically described in
[6] and [15].

4. EXPERIMENTAL RESULTS

In order to verify the validity of the proposed method, some basic
stripline structures are being examined. The vertical cross-section of
the structure appears in Figure 3.

Figure 3. Structure cross-section.

It consists of two dielectric layers, each with 0.5 mm thickness. The
dielectric constant of both layers is εr = 3.38. The circuit metallization
is located in the middle of the layers. Metallic plates are located at
the top and bottom of the structure, resulting in a stripline structure.
The results of our method are compared to the results of the widely
used commercial EM solver, Agilent’s Momentum�.

The first circuit that will be examined is the simple transmission
line with 10mm length and 0.2 mm width. Figure 4 shows
the comparison of simulated results for the S parameters of the
transmission line, both for Momentum and the proposed method.

There is a very good agreement between the two approaches as the
resonance frequencies are predicted quite correctly with a discrepancy
less than 0.2 GHz. Also the maximum magnitude of the discrepancy
observed is around 5–6% at the frequency of 14 GHz.

The second test circuit is a band pass-filter that appears in
Figure 5.

The filter was designed to have a passband at 6–7 GHz and at least
20 dB rejection at 6 and 10 GHz, following the procedure described in
[16]. In Figure 6 the results of the proposed method are compared to
those of Momentum’s.

Again the results of the new method are considered to correlate
quite well. The passband of the filter is correctly predicted and the
error in the passband gain is less than 2%. Also, the slope of the
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Figure 4. Short stub simulation results.

Figure 5. Band-pass filter top view.

filter stopband is again predicted well. The results exhibit larger
discrepancies in the stopband, both for magnitude and phase. However
these discrepancies are observed at levels lower than −30 dB where the
same level of accuracy is extremely difficult to be obtained and the
effects on the performance of our circuit are limited.
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Figure 6. Filter simulation results.

5. CONCLUSION

A novel methodology for the electromagnetic simulation of stripline
structures with vertical interconnects has been presented. It is
based on the MoM method in its Galerkin form and takes advantage
of the special characteristics of stripline structure, to allow the
analytical computation of the impedance matrix. The need for complex
time and memory consuming numerical calculations is minimized.
The comparison of the simulated results versus the theoretical and
experimental ones shows that this methodology can lead to a very
accurate and efficient tool for the modeling of stripline structures with
vertical interconnects.
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