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Abstract—The accurate analysis of scattering from objects with
dimensions large compared to the wavelength using rigorous methods
(finite element, FDTD, method of moments) with a personal computer
is almost impractical. In asymptotic methods, physical optics (PO),
geometrical theory of diffraction (GTD), the accurate modeling of the
object’s boundary is too cumbersome. The parabolic equation method
gives accurate results in calculation of scattering from objects with
dimensions ranging from one to tens of wavelengths. Solving parabolic
equation with the marching method needs limited computer storage
even for scattering calculations of large targets. In this paper, first the
calculation procedure of radar cross section using parabolic equation
is studied and the necessary equations are derived. The parabolic
equation and the model of reflecting facet is utilized for calculation of
the scattered fields in the forward and backward directions. In order
to model the lossy background, the impedance boundary condition is
utilized in lower boundary. Finally the scattered fields and RCS of a
ship and a tank are calculated as two examples of targets with lossy
background.

1. INTRODUCTION

Parabolic equation is an approximation of the wave equation which
models energy propagating in a cone centered on a preferred direction,
the paraxial direction. The parabolic equation was first introduced by
Leontovich and Fock in order to study the diffraction of radiowaves
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around the earth [1]. By the advent of advanced computers closed
form solution of the parabolic equation was replaced with numerical
solutions. Since then, the parabolic equation is being applied to radar,
sonar, acoustic and wave propagation. The parabolic equation has
been recently used in scattering and RCS calculations.

2. THE PARABOLIC EQUATION FRAMEWORK

In all equations of this paper, the time dependence of the fields is
assumed as exp(−jωt). For horizontal polarization, the electric field
�E only has non-zero component Ey, while for vertical polarization, the
magnetic field �H only has one non-zero component Hy. The reduced
function u is defined as

u(x, z) = ψ(x, z)e−ikx (1)

In which ψ(x, z) is the Ey component for horizontal polarization
and Hy component for vertical polarization. The paraxial direction
is assumed along the x axis. Assuming the refractive index of
the medium, n, the field component ψ satisfies the following two
dimensional wave equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2ψ = 0 (2)

Using equations (1) and (2), the wave equation in terms of u is

∂2u

∂x2
+
∂2u

∂z2
+ 2ik

∂u

∂x
+ k2(n2 − 1)u = 0 (3)

Considering Q =
√

1
k2

∂2

∂z2 + n2, (3) is reduced to

∂2u

∂x2
+ 2ik

∂u

∂x
+ k2(Q2 − 1)u = 0 (4)

which can be written as[
∂

∂x
+ ik(1 +Q)

] [
∂

∂x
+ ik(1 −Q)

]
u = 0 (5)

Decomposing equation (5), the following pair of equations is obtained.

∂u

∂x
= −ik(1 −Q)u (6a)

∂u

∂x
= −ik(1 +Q)u (6b)

The solution to (6a) corresponds to the forward propagating waves
while that of (6b) concerns the backward propagating waves.
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3. COMPUTATION OF SCATTERING WAVES

The simplest approximation of (6a) is obtained using the first order
expansion of Taylor series. Using this approximation, the standard
parabolic equation is obtained. We assume Q as

Q =
√
Z + 1 (7)

In which Z = 1
k2

∂2

∂z2 + n2. Using the first order Taylor series of (7) we
have

Q � 1 +
Z

2
(8)

Substituting (8) in (6a) yields

∂u

∂x
= ik

Z

2
u (9)

With regard to the definition of Q, and the relation (7), equation (9)
is reduced to the following form

∂2u

∂z2
+ 2ik

∂u

∂x
+ k2(n2 − 1)u = 0 (10)

This equation is the standard parabolic equation. The limitations of
the standard parabolic equation are due to its bad behavior at large
propagation angles. In order to solve the parabolic equation, the finite
difference method and Split-Step/Fourier is utilized [3, 4]. To model
the complex boundaries of the objects in scattering problems, the finite
difference method should be used. In order to solve the parabolic
equation we will use the Crank-Nicolson finite difference equations
which easily models arbitrary boundaries [4]. The computational
domain is constant in the vertical direction and the distance between
nodes along z is ∆z and along x is ∆x. The domain (xm = m∆x, z) is
defined as the range m. We shall use the marching technique to solve
the discrete equations. In this method the fields within the range m
are computed versus the fields within the range m− 1. To extract the
discrete form of equation (10), the point ξm is assumed exactly in the
middle of range m and range m− 1 as

ξm =
xm−1 + xm

2
(11)

Now by using central difference, the discrete form of the equation (10)
is obtained as
u(ξm, zj+1) + u(ξm, zj−1) − 2u(ξm, zj)

∆z2
+ 2ik

u(xm, zj) − u(xm−1, zj)
∆x

+k2(n2 − 1)u(ξm, zj) = 0 (12)
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Approximating u in x = ξm as average of u within the domain xm−1

and xm, yields

um
j

(
−2 + b+ am

j

)
+ um

j+1 + um
j−1 = um−1

j

(
2 + b− am

j

)
− um−1

j+1 − um−1
j−1

(13)
In which

um
j = u(xm, zj), b = 4ik

∆z2

∆x
, am

j = k2(n(xm, zj)2 − 1)∆z2 (14)

In order to calculate the scattered field from the target with lossy
background we used the perfect transmitting boundary condition [5]
and impedance boundary conditions [6] in the upper and lower domain
of the computation region respectively. To obtain the field in the whole
points of computation region, the fields at x = 0 should be determined
first. The incident field is assumed as a plane wave with unit amplitude
as follows

u(x, z) = exp(ik(x(cos θ − 1) + z sin θ)) (15)

In which θ is the angle of incident plane wave. In order to compute
the scattering fields from the object, we discretize the object boundary
using a rectangular grid. It is assumed that the object is not penetrable
and we calculate the wave outside the object using appropriate
boundary condition. The parabolic equation in the forward direction,
computes the sum of the incident field ui and scattered field us.
For computing the backward scattered field the object is considered
as series of reflecting faces which act as sources for the backward
propagating energy [7, 8]. In this case, the analysis is started from some
range beyond the object, setting the initial field to zero. Boundary
conditions on each facet are given by the appropriate polarization
dependent reflection coefficients, which may vary along the scattering
object. The technique is illustrated schematically in Figure 1.

Figure 1. Modeling of the object boundaries within the parabolic
equation for scattering calculations a) forward and b) backward [7].



Progress In Electromagnetics Research, PIER 57, 2006 155

4. IMPEDANCE BOUNDARY CONDITION

In order to model the lossy background we used impedance boundary
condition in the parabolic equation. The impedance boundary
condition is as follows [6]

n̂× �E = Zs(n̂× n̂× �H) (16)

n̂ is a unit vector, perpendicular to the lossy background and Zs is
computed as follows

Zs =
√√√√ µ

ε+ i
σ

ω

(17)

In which ε and σ are the lossy background parameters. Considering
the horizontal polarization and extraction of (16) at z = 0 we have

∂Ey(x, z = 0)
∂z

− ikZ0

Zs
Ey(x, z = 0) = 0 (18)

Using (1), equation (18) is reduced to

∂u(x, z = 0)
∂z

− ikZ0

Zs
u(x, z = 0) = 0 (19)

In order to extract the finite difference form of (19) and write it as
the form of (13), first we obtain the finite difference expression for the
second order derivative of z at (x, 0), using one-way approximation as
follows

∂2u

∂z2
(x, 0) ∼ 2

∂u

∂z
(x,∆z/2) − ∂u

∂z
(x, 0)

∆z
(20)

In which α = −ikZ0
Zs

. Substituting equation (19) into the standard
parabolic equation, finally we have

um
0 (−1 + α∆z + b+ am

0 ) + um
1 = um−1

0 (1 − α∆z + b− am
0 ) − um−1

1
(21)

5. COMPUTATION OF RADAR CROSS SECTION

After the calculation of fields over the entire computational domain,
we can compute the fields within any arbitrary domain x as a function
of the fields in the domain x0 in free space i.e.,

u(x, z) =
ik

2
e−ik(x−x0)

+∞∫
−∞

u(x0, z
′)
x− x0

ρ(z′)
H

(1)
1 (kρ(z′))dz′ (22)
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In which
ρ(z′) =

√
(x− x0)2 + (z − z′)2 (23)

The radar cross section is defined as

σ(θ) = lim
ρ→∞ 2πρ

∣∣∣∣us

ui

∣∣∣∣
2

(24)

Tending (x, z) to infinity along a given direction in (22), and assuming
a unit amplitude for the incident wave, (24) yields

σ(θ) = k2 cos2 θ

∣∣∣∣∣∣
+∞∫

−∞
us(x0, z

′)e−ikz′ sin θdz′

∣∣∣∣∣∣
2

(25)

In which us(x, z) is the scattered field.

6. RESULTS FOR THE SCATTERED FIELDS

In order to show the validity of the parabolic equation, the RCS of
a conducting cylinder with radius 3λ is calculated in forward and
backward directions. The incident wave is a plane wave with horizontal
polarization and a wavelength equal to 1 meter (corresponding to
300 MHz). The results are given in Figures 2 and 3. The dotted lines
represent the analytical results obtained from the extraction of Hankel
functions [10]. As it can be seen, there is a good agreement between
the analytical results and the parabolic equation results up to angles
about 15 degrees.

Next the scattered fields and RCS of a ship and a tank with a
lossy background are considered. In order to calculate the scattered
fields from the ship and tank, their staircase model is utilized. The
staircase model of the ship and the tank are shown in Figures 4 and 5
respectively. The dimensions of the computational domain are 50 by
50 meters for the ship and 10 by 20 meters for the tank in the x and
z directions respectively. For calculating the surface impedance of the
sea and the earth, εr is assumed as 74 and 5 and σ is assumed as 4
and 0.01 respectively. The grid spacing in the x and z directions are
assumed λ/10 and λ/5 respectively. The incident wave illuminates the
ship and the tank from left with horizontal polarization and frequencies
300 and 1200 MHz respectively. The scattered fields from the ship and
the tank in the forward and backward and their RCS results are shown
in Figures 6 through 13.
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Figure 2. RCS of the conducting cylinder in the forward direction
with radius 3λ.
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Figure 3. RCS of the conducting cylinder in the backward direction
with radius 3λ.
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Figure 4. Ship staircase model (dimensions are in meters).

Figure 5. Tank staircase model (dimensions are in meters).

Figure 6. Amplitude of the scattered field us(m, j) from the ship in
the forward direction in 300 MHz.
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Figure 7. Amplitude of the scattered field us(m, j) from the ship in
the backward direction in 300 MHz.
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Figure 8. RCS results for the ship in the forward direction in
300 MHz.
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Figure 9. RCS results for the ship in the backward direction in
300 MHz.

Figure 10. Amplitude of the scattered field us(m, j) from the tank in
the forward direction in 300 MHz.
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Figure 11. Amplitude of the scattered field us(m, j) from the tank in
the backward direction in 300 MHz.
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Figure 12. RCS results for the tank in the forward direction in
1200 MHz.
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Figure 13. RCS results for the tank in the backward direction in
1200 MHz.

7. CONLCUSION

In this paper the scattered fields and RCS of a target with a lossy
background has been calculated using parabolic equation method. In
order to show validity of the method the RCS of a conducting cylinder
has been computed using the parabolic equation method and the
results has been compared with the analytic results. There has been
a good agreement between the two results over a 15 degrees range.
Next, considering the sea and the earth as impedance boundaries and
discretization of the ship’s and tank’s boundaries on the rectangular
grid, and implementation of a PEC boundary condition, their scattered
fields as well as their RCS have been calculated. Note that the analysis
of structures which are comparable in size to a wavelength is very time
consuming on desktop computers with rigorous methods. The ship
dimensions are about 14λ by 40λ for 300 MHz and the tank dimensions
are about 10λ by 32λ for 1200 MHz, which are both very large in
dimensions but could be analyzed by a desktop computer employing
the PE method.
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