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Abstract—Weak signal detection and localization are basic and
important problems in radar systems. Radar performance can be
improved by increasing the receiver output signal-to-noise ratio (SNR).
Localizing the received signal is an important task in the detection
of signal in noise. Distorting the localization of the received signal
can leads to incorrect target range measurements. In this paper an
algorithm is described for extracting and localizing an RF radar pulse
from a noisy background. The algorithm combines two powerful tools:
the wavelet packet analysis and higher-order-statistics (HOS). The
use of the proposed technique makes detection and localization of RF
radar pulses possible in very low signal-to-noise ratio conditions, which
leads to a reduction of the required microwave power or alternatively
extending the detection range of radar systems.

1. INTRODUCTION

Radar is an instrument that radiates electromagnetic waves is space
and detects the presence and location of objects from the reflected
waves. Pulse radar that uses pulses as the radar signal is being used
in aviation control, weather forecasting, and ships. Radar differs
from general communication systems in that the receiver margin of
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the received signal is not considered and the signal buried in noise
is used up to the level where its detection becomes impossible. The
strength of the received signal by the radar varies with the distance
from radar to the target and is also dependent on the target radar
cross-section. The detectable radar range is given as a function of
the SNR of the receiver output through the radar equation [8, 9]. In
radar systems, weak signal detection is a basic and important problem.
Solution of this problem increases the possibility of detecting smaller
objects from great distances. Improvement of receiver output SNR
is traditionally accomplished with pulse integration where the received
signal consists of a number of pulse repetition intervals (PRI) before or
after detection. However, pulse integration needs a number of pulses
to improve the received SNR. For radar with fast scanning feature
the required number of pulses for one object may not be adequate, to
perform pulse integration.

Wavelet analysis [1] and higher-order statistics [2] are two of the
most successful tools in the field of signal processing in the last twenty
years. We propose combining both techniques and show how such
a combination can improve the quality of RF-pulse detection and
localization in noisy environment.

The problem addressed here concerns the denoising and
localization of received RF radar pulse immersed in noise. In [3] the
noise was removed using a non-linear time-frequency filter, which is
based on the discrete windowed Fourier transform. It’s known that
the wavelet transform gives better localization in the time-frequency
domain than the discrete windowed Fourier transform, [1]. This means
localizing the detected pulse in time domain cannot be achieved by
using windowed Fourier transform, as we will realize in the following
sections. In the proposed work we will use the wavelet packet transform
for denoising the RF radar pulses. Wavelet denoising techniques was
previously used in electromagnetic waves radar [7, 10, 11]. The noise
is removed by thresholding the wavelet transform coefficients of the
received RF radar pulses. In the previous work the threshold was
selected based on the estimated value of the noise. Such a selection of
a threshold can lead to losing the received pulse in very low SNR radar
returns. In this paper the threshold level selection is based on the
higher-order-statistics (HOS) of the coefficients. Using a threshold,
that is based on higher-order-statistics, proved to be more efficient
than the usual way of wavelet thresholding [4], which is based on the
estimate of the amount of noise, especially at very low signal-to-noise
ratio conditions. By combining the wavelet packet and higher-order-
statistics correct detection and localization of the RF radar pulse with
a signal-to-noise ratio of down to −24 dB can be achieved, leading to
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a pronounced improvement in the performance of the radar.
The organization of the paper will be as follow. Section 2 will give

a short introduction to wavelet and wavelet packet transform, and will
show how to generate the wavelet packet coefficients of the received RF
pulse. Section 3 will give a short introduction to higher order statistics
and how to use the properties of HOS in threshold selection for signal
denoising. Section 4 will describe the proposed technique. Section 5
shows some simulation results for the proposed technique. Section 6
shows a performance comparison between the proposed technique and
the conventional windowed Fourier in localizing the received RF pulse
in time domain. Section 7 is a conclusion.

2. WAVELET AND WAVELET PACKET TRANSFORM

Time-frequency representations show the distribution of the energy
of a signal in the time-frequency plane; in such a way that relevant
information can be extracted to achieve good detection. The
results generally depend on the method used as a time-frequency
representation.

For example, discrete windowed Fourier transform tile the time-
frequency plane in regular cells all of which have the same uncertainties.
Discrete wavelet bases tile the time-frequency plane more naturally.
A low frequency needs to be observed for a long time to be
correctly estimated whereas a high frequency can rapidly change
at any time. Hence, time-frequency localization naturally depends
on the ‘observation scale’. It is possible, using adapted wavelet
transform, to obtain adapted tiling in the time-frequency plane,
which is automatically generated based on the signal observation.
On the other hand, the time-frequency plane tiling, using wavelet
packet transform, corresponds to a complete set of admissible wavelets
constituting a Hilbert space. The signal is projected on each element
of this space producing decomposition coefficients. Figure 1 shows
the tiling of the time frequency plane for windowed Fourier transform
(a), wavelet transform (b), and wavelet packet transform (c). The
difference between wavelet transform and wavelet packet transform
will be indicated in the next subsections.

2.1. Wavelet Transform

Wavelet analysis is perhaps best viewed in the context of
multiresolution analysis as developed by Malat [12]. There are two
functions to be consider in such an analysis: the scaling function,
φj,k(t) = 2j/2φ(2jt− k), and the mother wavelet, ψj,k(t) = 2j/2ψ(2jt−
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Figure 1. Tiling the time-frequency plane (a) Windowed Fourier
transform (b) Wavelet transform (c) Wavelet packet transform.

k), where j and k are integers representing the scale factor and the
translation factor respectively. In the time-scale (or time-frequency)
joint representation the horizontal stripes of the wavelet transform
coefficients are the correlations between the signal and the wavelets
at given scale j. When the scale is small the wavelet is concentrated in
time, and the wavelet analysis has a detailed view of the signal. When
the scale increases the wavelet spreads out in time, and the wavelet
analysis takes into account the long-time behavior of the signal. We
define Vj to be the subspace spanned by φj,k(t), and require a nesting
of the spanned spaces, . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . ⊂ L2.
The space spanned by the mother wavelet at scale j is denoted Wj and
constitutes the orthogonal complement of φj−1,k in φj,k. If we choose
a coarsest scale j0 then we get that L2 = Vj0 ∪Wj0 ∪Wj0+1 ∪ . . .. A
function f(t) then can be represented as

f(t) =
∞∑

k=−∞
ajo(k)φjok(t) +

∞∑
j=jo

∞∑
k=−∞

d(j, k)ψj,k(t). (1)

The first summation in (1) provides us with a coarse approximation to
f(t), which is the projection of f(t) onto Vj0. The second summation
for each j provides finer details and is the projection of f(t) onto the
Wj spaces.

In practice, the wavelet approximation coefficients aj0(k) and the
detail coefficients d(j, k) are computed using Mallat’s fast algorithm
[12] which involves the following filtering operations:

aj(k) =
∑
m

h(m− 2k)aj+1(m) (2)

dj(k) =
∑
m

g(m− 2k)aj+1(m) (3)
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Figure 2. Filter bank implementation of discrete wavelet decompo-
sition.
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Figure 3. Filter bank implementation of discrete wavelet recon-
struction.

where h(n) and g(n) are referred to as the scaling filter and wavelet
filter, respectively. Equations (2) and (3) show how the discrete wavelet
transform (DWT) is performed: By convolving the coefficients at
scale j with the time reversed filter coefficients h(−n) and g(−n) and
then down sampling to get the coefficients at scale j − 1. Figures 2
and 3 show a filter bank implementation for the decomposition and
reconstruction of the wavelet transform. These filter structures are
known in terms of subband coding as 2-band perfect reconstruction
quadrature mirror filters (PR QMF). The PR QMF subband coding
scheme depicted in Figs. 2 and 3 adhere to a dyadic tree structure,
which splits only the lower half of the signal spectrum at each successive
level. When the subband coding tree has been fully traversed, the
approximation coefficients are produced at the final tree split, with
the detail coefficients being produced at each tree split. A thorough
treatment of wavelet decompositions as they relate to subband coding
can be found in [13].

2.2. Wavelet Packet Transform

The wavelet packet transform has a number of applications. One of
these involves the calculation of the best basis, which is a minimal
representation of the data relative to a particular cost function. The
best basis is used in applications that include noise reduction and in
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data compression. One step in the wavelet transform calculates a low
pass (scaling function) result and a high pass (wavelet function) result.
The low pass result is a smoother version of the original signal. The
low pass result recursively becomes the input to the next wavelet step,
which calculates another low and high pass result, until only a single
low pass (2◦) result is calculated. The wavelet transform applies the
wavelet transform step to the low pass result. The wavelet packet
transform applies the transform step to both the low pass and the
high pass result.

Assume that the received signal y(n) is given by:

y(n) = x(n) + z(n) (4)

where x(n) is the received RF radar pulse, z(n) is a white Gaussian
noise and n = 1, 2, . . . , N . Using the wavelet packet transform one
can have a two dimension time-frequency wavelet packet coefficients
as follow:

WP y
j,s(i) = WP x

j,s(i) +WP z
j,s(i) (5)

where WP y
j,s(i), WP

x
j,s(i), WP

z
j,s(i) are the wavelet packet coefficients

of y, x and z respectively, j = 1, 2, . . . , J while J is the number of
decomposition levels and s = 1, 2, . . . , 2j , is the number of scales and
i = 1, 2, . . . ,M , with M = N/2j and N is the length of the signal.
As an example, Fig. 4(a) shows the received signal y(n) in the time
domain with N = 4096 sample, SNR = −3 dB. Figure 4(b) shows the
wavelet packet coefficients of y(n), WP y

J,s(i), using Daubechies wavelet
[15] of order 4 and number of levels J = 4.

The order of the Daubechies wavelet controls the number of
vanishing moments, which is related to the regularity of the wavelet.
Increasing the order of the Daubechies wavelet increases its regularity.
On the other hand this will reduce the localization of the wavelet.
Consequently, a tradeoff between the regularity and the localization of
the wavelet should take place. Daubechies wavelets of order 4, 8 and
16 have been tested in different situations and the order which results
in the best results has been chosen.

2.3. Wavelet and Wavelet Packet Denoising

The concept of denoising in wavelet and wavelet packet transform is the
same. Donoho [14] used the same approach to wavelet-based denoising.
The idea is that only large wavelet coefficients contribute to the signal,
and hence to obtain the estimated value of x one needs to keep only
those coefficients whose magnitudes are greater than a certain hard
threshold with value λ. In recognizing that each wavelet coefficient
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Figure 4. (a) The received noisy radar pulse y(n), SNR = −3 dB. (b)
The wavelet packet coefficients of y(n), J = 4.

contains a signal and noise portion, it is desirable to try removing the
noisy portion. Soft thresholding like hard thresholding, aim to meet
this objective by keeping only those coefficients whose magnitudes are
greater than a certain level λ. However, the remaining coefficients are
shrunk towards zero by an amount λ hence, soft thresholding is often
referred to in wavelet literature as wavelet shrinkage.

In applying wavelet thresholding the choice of λ is critical.
Choosing too large threshold results in oversmoothing, whereas
choosing too small threshold results in noisy estimates. In previous
works of wavelet denoising the selection of the threshold λ is based
on an estimate for the amount of noise in the wavelet coefficients.
Applying such a technique in very low SNR situation can lead to
completely losing the signal, which is hidden in noise. In this paper
a new technique for denoising based on wavelet packet transform is
presented. To extract the RF radar pulse, a denoising procedure,
which is based on setting Gaussian coefficients (of the wavelet packet
transform of the received signal) to zero, is performed. A denoised
signal is then reconstructed from the retained coefficients. The problem
becomes now how to get a Gaussianity measure. Higher-order-statistics
are traditionally used to accomplish this task.
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3. HIGHER ORDER STATISTICS

One of the key motivations behind the use of cumulants in signal
processing problems is their ability to suppress additive Gaussian noise
[1]. This ability of noise suppression is based on the fact that the nth
order cumulants of a Gaussian signal, Cumn[z], are equal to zero for
n > 2.

In the case under study the noise samples are Gaussian distributed
when observed for a sufficiently long time. On the other hand the
signal samples are not Gaussian. We will apply the Gaussianity
measure for the wavelet packet coefficients of the received signal,
WP y

J,s(i). The presence of the signal will give non-Gaussian coefficients
at some frequency bands where the radar pulse exists. On the other
hand, Gaussian coefficients will represents noise only. The wavelet
coefficients of Gaussian noise clearly remain Gaussian when applying
the linear wavelet transform [5]. A good candidate from the higher
order cumulants is the kurtosis, which is the normalized version of
the fourth-order cumulant [1], The Gaussian process has a kurtosis
value that theoretically equal to zero. The fourth-order cumulant is
computed by a statistical expectation as (assuming zero mean of the
wavelet packet coefficients):

Cum4(WPJ,s) = E[WP 4
J,s] − 3

(
E[WP 2

J,s]
)2
. (6)

One should consider a normalized measure because the Gaus-
sianity measure must not depend on the signal energy at each
frequency band. The kurtosis is defined as K4(WPJ,s) =
Cum4(WPJ,s)/(E[WP 2

J,s])
2. In practice we have a limited number of

data samples. So we are not able to have an exact value of the kurtosis.
Instead we have an estimate value using time average. The estimation
of the kurtosis can be calculated as:

K̂4(WPJ,s) = M

M∑
i=1

WP 4
J,s(i)

(
M∑
i=1

WP 2
J,s(i)

)2 − 3. (7)

The estimated value is allowed to exist in a predetermined interval,
which is conditioned by the probability properties of the estimator.
Thus one needs to frame the estimator. By using the Bienayme-
Tchebychev inequality, given a desired predetermined percentage, the
estimator can be framed between two values depending on the first
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statistics of the estimator. In the case where the M coefficients WPJ,s

are white and Gaussian, bias and variance of the kurtosis estimator
when computed using (7) are given by [6]:

B(K̂4) = −6/M, V ar(K̂4) = 24/M. (8)

The Bienyme-Tchebychev inequality allows a Gaussian estimator to
move between

±
√

24/M/
√

1 − α+ 6/M (9)

with an α authorized confidence percentage value. The simple test for
Gaussianity measure is that:∣∣∣K̂4

∣∣∣ < √
24/M/

√
1 − α. (10)

Figure 5 shows the Gaussianity measure for the example of Fig. 4.
Figure 5(a) is the wavelet packet coefficients and Fig. 5(b) shows the
estimated kurtosis of the coefficients for each scale. The threshold
is calculated using α = 90%, which was numerically found to be
optimum). From Fig. 5 we notice that the coefficients at scale 2,4
belong to the signal. Whereas the coefficients of the other scales belong
to the noise.
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Figure 5. (a) The wavelet packet of y(n). (b) The kurtosis of the
wavelet packet.
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4. THE ALGORITHM

This algorithm is applied to denoising a received RF radar pulses.
The algorithm is divided into two stages to decrease the computation
complexity and hence increases the processing speed. The first stage
is fundamental. The second stage is used for further improvement in
SNR if necessary. The steps of the first stage of the algorithm are as
listed below:

1. Compute the wavelet packet coefficients of the received signal
WP y

J,s(i) at level J , scale s = 1, 2, . . . , 2J .
2. Estimate the kurtosis for the wavelet packet coefficients of each

scale using (7), (force the mean value of the coefficients at each
scale to be zero).

3. Apply the Gaussianity test of (10).
4. Set the Gaussian coefficients to zero.
5. Count the number of the remaining non-Gaussian scales. If the

number of the non-Gaussian scales is greeter than one go to the
next stage. Otherwise go to the next step.

6. Reconstruct the signal from the retained coefficients.

The purpose of the next stage is to further improve the SNR. The steps
of this stage of the algorithm are:

1. Apply a hard threshold to the remaining non-Gaussian coefficients
scales. The threshold value is calculated using the following
relation:

λs = σs

√
2 log(N) (11)

where σs = Median[|WP y
J,s|]/0.6745, is the estimate of the noise

at scale s [1].
2. Reconstruct the signal from the retained coefficients.

The number of decomposition levels J defines the finest bandwidth
available for decomposition in the same time it also determines the
number of coefficients within each band. Increasing the value of this
parameter allows selecting and/or discriminating the frequency bands
more precisely. A high value of J means however less number of
coefficients within each band. This leads to insufficient estimation
reliability of the kurtosis, which can lead to incorrect decision. The
values of J of 4, 5, 6 and 7 have been tested in different situations and
a tradeoff between the bandwidth precision and estimation reliability
has been made.

Figure 6 shows the result of the first and second stage of the
algorithm for the example in Fig. 4.
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Figure 6. (a) The clean RF radar pulse x(n) (b) The received noisy
RF radar pulse y(n), SNR = −3 dB (c) The result of the first stage (d)
The result of the second stage.

5. SIMULATION AND RESULTS

The denoising of the received RF radar pulse is simulated in the
presence of white Gaussian noise. The effect of signal parameter
changes on the algorithm has been investigated. These parameters
include the SNR and pulse repetition period (PRP) of the signal. The
SNR is defined as the ratio of the signal power to the noise power in
the entire period. Figure 7 shows another example for denoising the
RF radar pulse at SNR = −18 dB, N = 131072, which is equivalent to
increasing the PRP. Using Daubechies wavelet of order 16 and number
of levels J = 7. The threshold is calculated using α = 90%. From
Fig. 7 it is clear that our proposed technique is still able to detect the
radar pulse at SNR = −18 dB.

As a measure for the quality of the algorithm we calculated
the RMSE (Root Mean Square Error) between the clean and the
denoised signal. We made a comparison between our algorithm and
the wavelet denoising technique available in MATLAB software using
soft threshold with ‘heursure’ threshold selection. Figure 8 shows a
comparison for the RMSE between our proposed techniques (solid
line) and that of the MATLAB (dashed line) with the same number of
decomposition levels and the same mother wavelet (Daubechies order
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Figure 7. (a) Clean signal (b) Noisy signal SNR = −18 dB (c)
denoised signal after the first stage (d) denoised signal after the second
stage.

16) for both techniques. It is clear from Fig. 8 that our proposed
technique gives better results. The proposed technique gives very low
RMSE value (maximum 0.02 at SNR = −18 dB). Where the wavelet
denoising technique using ‘heursure’ threshold selection gives RMSE
= 1.6 at the same SNR.

6. PULSE LOCALIZATION

In denoising the RF radar pulse, one of the important tasks is the
localization of the received pulse in time domain. This means that our
job is not only to see a clean signal in time domain but also undistorted
information of the pulse (pulse width and position). Distorting the
localization of the pulse in time domain will leads to an error in
the radar ranging. As we mentioned in the previous sections that
the wavelet transform gives better localization in the time-frequency
domain than the discrete windowed Fourier transform. To confirm the
ability of the proposed technique in localizing the received RF pulse
in time domain we will present a comparison between the proposed
denoising technique and denoising using windowed Fourier transform.

Figures 9 and 10 show a comparison between the wavelet packet
transform and windowed Fourier transform for the received RF pulse
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Figure 8. RMSE as a function in SNR for the proposed technique
and the wavelet denoising in MATLAB.

Figure 9. Wavelet packet transform for noisy signal.
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Figure 10. Windowed Fourier transform for noisy signal.

Figure 11. Wavelet packet transform for signal after denoising.

(in the upper panel of the figures) with a SNR = −24 dB. Figure 9
is the wavelet packet transform and Fig. 10 is the windowed Fourier
transform for the noisy signal. Figure 11 and 12 shows comparison
between the wavelet packet transform and windowed Fourier transform
for the same signal after denoising. Again Fig. 11 is wavelet packet
transform of the signal after denoising and Fig. 12 is the windowed
Fourier transform of the signal after denoising. From Figs. 9 to 12
its clear that the windowed Fourier transform for the RF pulse is
able to well localize the signal in the frequency domain in comparison
with the wavelet packet transform. The reason for this is that the
sinusoidal kernel of the Fourier transform is highly correlated with the
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Figure 12. Windowed Fourier transform for signal after denoising.

Figure 13. Result for signal denoising using wavelet packet
Transform.

carrier frequency of the received RF pulse. Figures 13 and 14 show
a comparison between the denoised signals using the two techniques.
Figure 13 shows the result using the proposed technique and Fig. 14
shows the result using windowed Fourier transform. In each figure
the clean signal (upper panel), noisy signal (middle panel), and the
denoised signal (lower panel) was presented. It is clear from Fig. 14
that the windowed Fourier transform is not able to localize the signal
in time domain. In the other hand as shown in Fig. 13 the wavelet
packet transform is able to will localize the signal in time domain.
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Figure 14. Result for signal denoising using windowed Fourier
transform.

7. CONCLUSION

An algorithm for denoising RF radar pulses has been described. The
proposed algorithm combines two powerful tools; the wavelet packet
transform and higher-order-statistics. The proposed algorithm is able
to detect and well localize RF radar pulses without a prior knowledge of
the pulse parameters (e.g., its frequency and duration). The proposed
algorithm has been tested for SNR down to −24 dB and proved to work
successfully. Using such a technique in electromagnetic wave radar will
lead to a reduction on the required microwave power supplied to the
radar or extending the detection range of the radar.
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