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Abstract—The complete set of dyadic Green’s functions (DGFs)
for an electrically gyrotropic medium is obtained using a new
formulation technique, which consists of a matrix method with dyadic
decomposition in the k-domain. The analytic expressions for DGFs
are represented in a unique form in terms of characteristic field vectors
that exist in an electrically gyrotropic medium. It is shown that the
dyadic decomposition greatly facilitates the calculation of an inverse
operation, which is crucial in derivation of Green’s functions. The
DGFs found here can be used to solve electromagnetic problems
involving the ionosphere and new types of anisotropic materials such
as ceramics and advanced composites.

1. INTRODUCTION

In numerous electromagnetic applications such as remote sensing, wave
propagation and scattering, monolithic integrated circuits and optics,
it is necessary to compute the electromagnetic field inside the medium.
When the dyadic Green’s function (DGF) of the medium is known, it
is relatively easy to find the electromagnetic field in that environment.

The DGFs for isotropic media [1–3] and anisotropic media [4–7]
have been formulated by numerous researchers for over a few decades.
Because of the Hermitian structure of the permittivity or permeability
tensors, the calculation of the dyadic Green’s function for an
electrically gyrotropic medium, such as cold plasma or a magnetically
gyrotropic medium, such as ferrite in the presence of an external dc
magnetic field B0 is more involved than other media. W. S. Weiglhofer
[8, 9] represented DGF for an electrically and magnetically gyrotropic
media in terms of a single scalar Green’s function which is a solution of
a fourth order partial differential equation. Electromagnetic DGF for
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multilayered symmetric electrically gyrotropic media was derived by
S. Barkleshli [10] using the plane wave spectral, vector wave function
expansion which was first introduced by L. B. Felsen and N. Marcuvitz
[11]. L. W. Li et al., [12] obtained DGFs in gyrotropic media using
cylindrical vector wave functions.

In this paper, the complete set of DGFs for an electrically
gyrotropic medium is derived using a new formulation technique, which
consists of a matrix method with dyadic decomposition in the k-
domain. First, the vector wave equation for dyadic Green’s function is
Fourier transformed and the problem is transformed into the k-domain.
Since the equation in this domain becomes algebraic, representation of
the DGF is reduced to finding the inverse of an electric wave matrix.
Inverse operation is accomplished by decomposing the electric wave
matrix into its dyadics. Once the inverse operation is completed, the
DGF is constructed by expressing the adjoint of the wave matrix in
terms of its eigenvectors or the characteristic field vectors using the
matrix method. It is shown that the method that we introduce greatly
simplifies the derivation of the DGFs for an electrically gyrotropic
medium as compared to the existing methods.

2. FORMULATION AND SOLUTIONS

We would like to find the complete set of the DGFs for an unbounded
electrically gyrotropic or a gyroelectric medium, which can be used
to find the electromagnetic fields in the presence of current source
distributions J(r) and M(r) as illustrated in Figure 1.
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Figure 1. Imaginary S plane, parallel to xy plane, passing through
the source at z = z′ in an unbounded electrically gyrotropic medium.
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For an electrically gyrotropic medium such as cold plasma,
the relative permittivity and relative permeability tensors with the
presence of an external dc magnetic field B0 = b̂0B0 are defined in
dyadic form as

ε = ε1
(
I − b̂0b̂0

)
+ iε2

(
b̂0 × I

)
+ ε3b̂0b̂0 (1)

µ = µI (2)

Also note that µ = 1 for a cold plasma. When b̂0 = ẑ, the permittivity
tensor given in Eq. (1) can be represented in matrix form as

ε =




ε1 −iε2 0
iε2 ε1 0
0 0 ε3


 (3)

Maxwell’s equations for the problem illustrated in Figure 1 in the
presence of impressed magnetic current density M(r) and the electric
current density J(r) can be written as

∇× E = iωµ0µ ·H −M (4)
∇×H = −iωε0ε · E + J (5)

The linearity of Maxwell’s equations implies linear dependence of E
and H on the excitations J and M . Then in Figure 1 at any point, E
and H can be represented as

E(r) =
∫

V ′
G

e

ee

(
r, r′

)
· J

(
r′

)
d3r′ +

∫
V ′
G

e

em

(
r, r′

)
·M

(
r′

)
d3r′ (6)

H(r) =
∫

V ′
G

e

me

(
r, r′

)
· J

(
r′

)
d3r′+

∫
V ′
G

e

mm

(
r, r′

)
·M

(
r′

)
d3r′ (7)

J and M can be written as

J(r) =
∫

V ′
δ

(
r − r′

)
I · J

(
r′

)
d3r′ (8)

M(r) =
∫

V ′
δ

(
r − r′

)
I ·M

(
r′

)
d3r′ (9)

where I is a unit dyad.
The dyadic Green’s functions G

e

ee(r, r
′), G

e

mm(r, r′) are called
electric type and magnetic type, respectively, and G

e

me(r, r
′),

G
e

em(r, r′) are called magnetic-electric type and electric-magnetic type
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DGFs, respectively, for an electrically gyrotropic medium. The
superscript of the DGF refers to the type of the gyrotropic medium
and the first and the second subscripts show the type of the dyadic
Green’s function. The subscript ‘e’ refers to an electric type and
‘m’ refers to a magnetic type DGF. The superscript ‘e’ stands for
an electrically gyrotropic medium. When Eqs. (6)–(9) are substituted
into Eqs. (4)–(5), we obtain following vector wave equations for an
electrically gyrotropic medium.[

∇×∇× I − k2
0µε

]
·G

e

ee

(
r, r′

)
= iωµ0µIδ

(
r − r′

)
(10a)[

∇× ε
−1 · ∇ × I − k2

0µI
]
·G

e

mm

(
r, r′

)
= iωε0Iδ

(
r − r′

)
(10b)[

∇×∇× I − k2
0µε

]
·G

e

em

(
r, r′

)
= −∇× Iδ

(
r − r′

)
(10c)[

∇× ε
−1 · ∇ × I − k2

0µI
]
·G

e

me

(
r, r′

)
= ∇× ε

−1
δ

(
r − r′

)
(10d)

2.1. Electric Type DGF G
e

ee(r, r
′) for an Electrically

Gyrotropic Medium

The electric type DGF for an electrically gyrotropic medium with µ = 1
satisfies the second order dyadic differential equation given by (10a)[

∇×∇× I − k2
0ε

]
·G

e

ee(r, r
′) = iωµ0Iδ(r − r′) (11)

where k2
0 = ω2µ0ε0 and ω is the angular frequency. To facilitate the

construction of the DGF G
e

ee(r, r
′), which is a solution of the second

order differential equation given in Eq. (11), we transform the problem
to one in the k-domain. This is accomplished by introducing the
Fourier transform pair of DGF G

e

ee(r, r
′) as follows.

G
e

ee(r, r
′) =

1
(2π)3

∫ ∞

−∞
G

e

ee(k, r
′)eik·rd3k (12a)

G
e

ee(k, r
′) =

∫ ∞

−∞
G

e

ee(r, r
′)eik·rd3r (12b)

After substituting Eq. (12) into Eq. (11) and using the identity

δ(r − r′) =
1

(2π)3

∫ ∞

−∞
eik·(r−r′)d3k (13)

we obtain the Fourier-transformed DGF

G
e

ee(k, r
′) = −iωµ0

[
k k + k2

0ε
]−1

e−ik·r′ (14)
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where k and k are defined as

k = x̂kx + ŷky + ẑkz (15a)

k =




0 −kz ky

kz 0 −kx

−ky kx 0


 (15b)

The DGF G
e

ee(k, r
′) given in Eq. (14) can be expressed in terms

of the electric wave matrix WE as

G
e

ee(k, r
′) = −iωµ0W

−1

E e−ik·r′ (16)

where we introduce
WE =

[
k k + k2

0ε
]

(17)

as an electric wave matrix for an electrically gyrotropic medium. When
we substitute Eq. (16) into Eq. (12a), we obtain

G
e

ee(r, r
′) =

−iωµ0

(2π)3

∫ ∞

−∞
W

−1

E eik·(r−r′)d3k

or

G
e

ee(r, r
′) =

−iωµ0

(2π)3

∫ ∞

−∞

adj
(
WE

)
∣∣∣WE

∣∣∣ eik·(r−r′)d3k (18)

As a result, the problem of finding the DGF G
e

ee(r, r
′) is simplified to

finding the inverse of an electric wave matrix WE which is equal to

W
−1

E =
adj

(
WE

)
∣∣∣WE

∣∣∣ (19)

Using Maxwell’s Eqs. (4)–(5) in the source free region, i.e., J = 0
and M = 0, it can be shown that the dispersion equation for a
gyroelectric medium is given by∣∣∣k k + k2

0ε
∣∣∣ = 0 or

∣∣∣WE

∣∣∣ = 0.

The determinant of the electric wave matrix for a gyroelectric medium
can be written as∣∣∣WE

∣∣∣ = k2
oε3

(
k2

z − k2
zI

) (
k2

z − k2
zII

)
(20)
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Note that
∣∣∣WE

∣∣∣ = 0 when k2
z = k2

zI or k2
z = k2

zII . k
2
zI and k2

zII are the
wavenumbers squared and defined as

k2
zI

k2
0

=

[
2ε1ε3 − k2

ρ

k2
0

(
ε1 + ε3

)]
+

[
k4

ρ

k4
0

(
ε1 − ε3

)
2 + 4ε22ε3

(
ε3 − k2

ρ

k2
0

) ] 1
2

2ε3
(21a)

k2
zII

k2
0

=

[
2ε1ε3 − k2

ρ

k2
0

(
ε1 + ε3

)]
−

[
k4

ρ

k4
0

(
ε1 − ε3

)
2 + 4ε22ε3

(
ε3 − k2

ρ

k2
0

) ] 1
2

2ε3
(21b)

where
k2

ρ = k2
x + k2

y (22)

The adjoint of WE or adj
(
WE

)
can be written as

adjWE =
(
k4

0adjε− k2k2
0ε3I

)
+ k̂k̂

[
k2

(
k2 − k2

0ε1
)]

+ b̂0b̂0
[
k2k2

0

(
ε3 − ε1

)]
+

(
k̂ × b̂0

) (
k̂ × b̂0

) [
k2k2

0

(
ε3 − ε1

)]
+ iε2k

2k2
0

[
k̂

(
k̂ × b̂0

)
−

(
k̂ × b̂0

)
k̂
]

(23)

where

k2 = k2
ρ + k2

z = k2
x + k2

y + k2
z (24)

k̂ =
k∣∣∣k∣∣∣ (25)

We can now represent adj
(
WE

)
in matrix form as

adjWE =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 (26)
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where the elements of the matrix in Eq. (26) are given in Appendix A
by Eqs. (A1)–(A9).

We perform the integration over kz after substituting Eqs. (20),
(26) into (18). The poles of the integrand occur at the zeros of

∣∣∣WE

∣∣∣
denoted by kz = ±kzI and kz = ±kzII . Assuming the medium to be
slightly lossy, i.e., Imkz � Rekz, Imkz > 0 and performing the contour
integration over kz, we obtain the following result for z > z′:

G
e

ee(r, r
′) =

−ωµ0

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

{
1

k2
0ε3

(
k2

zI − k2
zII

)
[
adjWE (kzI)

kzI
eikI ·(r−r′) − adjWE (kzII)

kzII
eikII ·(r−r′)

]}
, z > z′

(27)

Similarly, when z < z′, G
e

ee(r, r
′) can be obtained by assuming

Im(−kzI) < 0 and Im(−kzII) < 0 as

G
e

ee(r, r
′) =

−ωµ0

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

{
1

k2
0ε3

(
k2

zI − k2
zII

)
[
adjWE (−kzI)

kzI
eiκI ·(r−r′) − adjWE (−kzII)

kzII
eiκII ·(r−r′)

]}
, z < z′

(28)

where

kI = kρ + ẑkzI (29a)

kII = kρ + ẑkzII (29b)

κI = kρ − ẑkzI (29c)

κII = kρ − ẑkzII (29d)

kI , kII represent the wave vectors for the upward (+z) traveling waves
of type I and type II. κI , κII represent those for the downward (−z)
traveling waves.

Since the matrix adj
(
WE

)
is a Hermitian matrix, accordingly it

satisfies the following relation

adj
(
WE

)
=

(
adj

(
WE

))†
(30)

It can be shown that adj
(
WE

)
can be written as a single dyad in terms

of its eigenvectors by solving the eigenvalue problem adjWE .û = λû.
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The details of the derivation to represent adj
(
WE

)
as a single dyad is

given in Appendix B.
We can then represent the DGF G

e

ee(r, r
′) given by Eq. (27) in

dyadic form when z > z′ as

G
e

ee(r, r
′) =

−ωµ0

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

{
1

k2
0ε3

(
k2

zI − k2
zII

)
[
αI

kzI
ênI

(
kzI

)
ê∗nI

(
kzI

)
eikI ·(r−r′)

− αII

kzII
ênII

(
kzII

)
ê∗nII

(
kzII

)
eikII ·(r−r′)

]}
, z > z′

(31a)

Similarly, the DGF G
e

ee(r, r
′) given by Eq. (28) is written in dyadic

form when z < z′ as

G
e

ee(r, r
′) =

−ωµ0

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky

{
1

k2
0ε3

(
k2

zI − k2
zII

)
[
αI

kzI
ênI

(
−kzI

)
ê∗nI

(
− kzI

)
eiκI ·(r−r′)

− αII

kzII
ênII

(
−kzII

)̂
e∗nII

(
−kzII

)
eiκII ·(r−r′)

]}
, z < z′

(31b)

In Eq. (31a)–(31b), αI and αII are the eigenvalues, ênI(±kzI)
and ênII(±kzI) are the orthonormal eigenvectors, which physically
represent two characteristic electric fields for the type I and type II
waves that exist in a gyroelectric medium and they are defined as

ênI(±kzI) =
eI(±kzI)

norm (eI(±kzI))
(32a)

ênII(±kzII) =
eII(±kzII)

norm (eII(±kzII))
(32b)

where

eI(±kzI) =




1
A13A21 +A23αI −A23A11

αIA13 −A22A13 +A23A12

−A12

A13

[
A13A21 +A23αI −A23A11

αIA13 −A22A13 +A13A12

]
+
αI −A11

A13




(33a)
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eII(±kzII) =




1
A13A21 +A23αII −A23A11

αIIA13 −A22A13 +A23A12

−A12

A13

[
A13A21 +A23αII −A23A11

αIIA13 −A22A13 +A13A12

]
+
αII −A11

A13




(33b)
where the elements of Aij , (i, j) = 1, 2, 3 are defined in Appendix A
by Eqs. (A1)–(A9). The forms of eI , eII given by Eq. (33a)–(33b) are
valid when the x component of the electric field is not zero. The forms
should be adjusted when the x component of the electric field is zero.
For each eigenvector, the corresponding eigenvalues are given by

αI = k4
I − k2

Ik
2
0

[
ε1

(
3 − cos2 θ

)
+ ε3

(
1 + cos2 θ

)]
+ k4

0

(
ε21 − ε22 + 2ε1ε3

)
(34a)

αII = k4
II − k2

IIk
2
0

[
ε1

(
3 − cos2 θ

)
+ ε3

(
1 + cos2 θ

)]
+ k4

0

(
ε21 − ε22 + 2ε1ε3

)
(34b)

where θ is an angle between the wave vector
(
kI , kII

)
and the direction

of applied dc magnetic field
(
b̂0

)
. kI , kII are the wavenumbers for the

type I and type II waves, and they are given by

k2
I = k2

ρ + k2
zI

k2
II = k2

ρ + k2
zII ,

2.2. Magnetic Type DGF G
e

mm (r, r′) for an Electrically
Gyrotropic Medium

The second order dyadic differential equation for the magnetic type
DGF is given by Eq. (10b) as[

∇× ε
−1 · ∇ × I − k2

0I
]
·G

e

mm

(
r, r′

)
= iωε0Iδ

(
r − r′

)
(35)

To find the DGF G
e

mm (r, r′), which is a solution of the dyadic
differential equation given by equation (35), we transform the problem
into k-domain. For this purpose, we introduce the Fourier transform
pair of the DGF G

e

mm (r, r′) as follows.

G
e

mm(r, r′) =
1

(2π)3

∫ ∞

−∞
G

e

mm(k, r′)eik·rd3k (36a)
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and
G

e

mm(k, r′) =
∫ ∞

−∞
G

e

mm(r, r′)e−ik·rd3r (36b)

Substituting Eq. (36a) into (35) and using the identity given by
Eq. (13), we obtain the Fourier-transformed DGF as

G
e

mm(k, r′) = −iωε0
[
k ε

−1
k + k2

0I
]−1

e−ik·r′ (37)

The DGF G
e

mm(k, r′) given in Eq. (37) can be expressed in terms of
the magnetic wave matrix WH as

G
e

mm(k, r′) = −iωε0W
−1

H e−ik·r′ (38)

where we introduce

WH =
[
k ε

−1
k + k2

0I
]

(39)

as a magnetic wave matrix for an electrically gyrotropic medium. When
we substitute Eq. (38) into Eq. (36a), we obtain

G
e

mm(r, r′) =
−iωε0
(2π)3

∫ ∞

−∞
W

−1

H eik·(r−r′)d3k

or

G
e

mm(r, r′) =
−iωε0
(2π)3

∫ ∞

−∞

adj
(
WH

)
∣∣∣WH

∣∣∣ eik·(r−r′)d3k (40)

So, the problem of finding the DGF G
e

mm(r, r′) again reduces to finding
the inverse of the magnetic wave matrix WH which is equal to

W
−1

H =
adj

(
WH

)
∣∣∣WH

∣∣∣ (41)

Instead of taking the inverse of the magnetic wave matrix with the
method described in Section 2.1, we can utilize the following relation
between WE and WH to find the inverse of WH .

k2
0W

−1

H = I − kW
−1

E k (42)

This relationship is derived in Appendix C. From Eq. (42),

W
−1

H =
1
k2

0

[∣∣∣WE

∣∣∣ I − kadjWEk
]

∣∣∣WE

∣∣∣ (43)
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We can now rewrite W
−1

H in matrix form as

W
−1

H =
B∣∣∣WE

∣∣∣ (44)

where

B =

[∣∣∣WE

∣∣∣ I − kadjWEk
]

k2
0

or

B =



B11 B12 B13

B21 B22 B23

B31 B32 B33


 (45)

The elements of Bij , (i, j) = 1, 2, 3 in Eq. (45) are given in Appendix
A by Eqs. (A10)–(A18).

We perform the integration over kz after substituting Eqs. (20),
(45) into Eq. (40). The poles of the integrand occur at the zeros of∣∣∣WE

∣∣∣ denoted by kz = ±kzI and kz = ±kzII where kzI and kzII are
defined by Eqs. (21a)–(21b). Assuming the medium to be slightly lossy,
i.e., Imkz � Rekz, Imkz > 0 and performing the contour integration
over kz, we obtain the following result for z > z′:

G
e

mm(r, r′) =
−iωε0
8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky{

1
k2

0ε3
(
k2

zI − k2
zII

)
[
B(kzI)
kzI

eikI ·(r−r′) −B(kzII)
kzII

eikII ·(r−r′)

]}
,

z > z′ (46)

Similarly, when z < z′, G
e

mm(r, r′) can be obtained by assuming
Im(−kzI) < 0 and Im(−kzII) < 0 as

G
e

mm(r, r′) =
−iωε0
8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky{

1
k2

0ε3
(
k2

zI − k2
zII

)
[
B(−kzI)

kzI
eiκI ·(r−r′) −B(−kzII)

kzII
eiκII ·(r−r′)

]}
,

z < z′ (47)

where kI , kII , κI , and κII are defined by Eqs. (29a)–(29d).
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Because the matrix B has the same matrix properties as adjWE ,
it is Hermitian. Hence B satisfies the following relation

B = B
†

(48)

We can then represent the DGF G
e

mm(r, r′) given by Eq. (46) in dyadic
form when z > z′ as

G
e

mm(r, r′) =
−ωε0
8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky{

1
k2

0ε3(k
2
zI − k2

zII)

[
βI

kzI
ĥnI(kzI)ĥ∗nI(kzI)eikI ·(r−r′)

− βII

kzII
ĥnII(kzII)ĥ∗nII(kzII)eikII ·(r−r′)

]}
(49a)

Similarly, the DGF G
e

mm(r, r′) given by Eq. (47) in dyadic form when
z < z′ as

G
e

mm(r, r′) =
−ωε0
8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdky{

1
k2

0ε3(k
2
zI − k2

zII)

[
βI

kzI
ĥnI(−kzI)ĥ∗nI(−kzI)eiκI ·(r−r′)

− βII

kzII
ĥnII(−kzII)ĥ∗nII(−kzII)eiκII ·(r−r′)

]}
(49b)

where βI and βII are the eigenvalues and ĥnI(±kzI) and ĥnII(±kzI)
are the orthonormal eigenvectors, which physically represent two
characteristic magnetic fields for the type I and type II waves that
exist in a gyroelectric medium and defined as

ĥnI(±kzI) =
hI(±kzI)

norm
(
hI

(
± kzI

)) (50a)

ĥnII(±kzII) =
hII(±kzII)

norm
(
hII

(
± kzII

)) (50b)

where

hI(±kzI) =




1
B13B21 +B23βI −B23B11

βIB13 −B22B13 +B23B12

−B12

B13

[
B13B21 +B23βI −B23B11

βIB13 −B22B13 +B13B12

]
+
βI−B11

B13


(51a)
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hII(±kzII) =




1
B13B21 +B23βII −B23B11

βIIB13 −B22B13 +B23B12

−B12

B13

[
B13B21 +B23βII −B23B11

βIIB13 −B22B13 +B13B12

]
+
βII −B11

B13




(51b)

The elements of Bij , (i, j) = 1, 2, 3 are defined in Appendix A by
Eqs. (A10)–(A18). The forms of hI , hII given by Eq. (51a)–(51b) are
valid when the x component of the magnetic field is not zero. For each
eigenvector, the corresponding eigenvalues are given by

βI = k4
I

[
ε3 cos2 θ + ε1 sin2 θ

]
− 2k2

Ik
2
0

[
ε1ε3

(
1 + cos2 θ

)
+

(
ε21 − ε22

)
sin2 θ

]
+ 3k4

0ε3
(
ε21 − ε22

)
(52a)

βII = k4
II

[
ε3 cos2 θ + ε1 sin2 θ

]
− 2k2

IIk
2
0

[
ε1ε3

(
1 + cos2 θ

)
+

(
ε21 − ε22

)
sin2 θ

]
+ 3k4

0ε3
(
ε21 − ε22

)
(52b)

2.3. Electric-Magnetic Type DGF G
e

em(r, r′) and
Magnetic-Electric Type DGF G

e

me(r, r
′) for an Electrically

Gyrotropic Medium

Since we derived the explicit expressions for the magnetic type DGF
G

e

mm(r, r′) and the electric type DGF G
e

ee(r, r
′), we can use them

to find the electric-magnetic type DGF G
e

em(r, r′) and the magnetic-
electric type DGF G

e

me(r, r
′), respectively.

To relate the electric-magnetic type DGF G
e

em(r, r′) to the
magnetic type DGF G

e

mm(r, r′), substitute Eqs. (6)–(7) with J = 0
into Eq. (5). We obtain,

∇×
[∫

V ′
G

e

mm(r, r′) ·M(r′)d3r′
]

= −iωε0ε ·
∫

V ′
G

e

em(r, r′) ·M(r′)d3r′

or
∇×G

e

mm(r, r′) = −iωε0ε ·G
e

em(r, r′) (53)

Using Eq. (53), the electric-magnetic type DGF G
e

em(r, r′) can be
expressed as

G
e

em(r, r′) =
i

ωε0
ε
−1 · ∇ ×G

e

mm(r, r′) (54)



236 Eroglu and Lee

We relate the magnetic-electric type DGF G
e

me(r, r
′) to the

electric type DGF G
e

ee(r, r
′) by substituting Eqs. (6)–(7) with M = 0

into Eq. (4). We obtain,

∇×
[∫

V ′
G

e

ee(r, r
′) · J(r′)d3r′

]
= iωµ0µ ·

∫
V ′
G

e

me(r, r
′) · J(r′)d3r′

or
∇×G

e

ee(r, r
′) = iωµ0µ ·G

e

me(r, r
′) (55)

Similarly, using Eq. (55) the magnetic-electric type DGF G
e

me(r, r
′)

can be expressed as

G
e

me(r, r
′) =

−i
ωµ0µ

∇×G
e

ee(r, r
′) (56)

3. CONCLUSION

In this paper, the complete set of dyadic Green’s functions for an
unbounded electrically gyrotropic or a gyroelectric medium is derived
using a new formulation technique. The analytic expressions for the
electric-type and the magnetic-type DGFs are presented in a unique
form in terms of characteristic field vectors for the type I and type
II waves that exist in a gyroelectric medium. In the forms that are
used to express G

e

ee(r, r
′) and G

e

mm(r, r′), ên(±kz) and ĥn(±kz) are
the eigenvectors representing the characteristic electric and magnetic
field vectors, respectively. The electric-magnetic type and magnetic-
electric type DGFs, G

e

em(r, r′) and G
e

me(r, r
′), are expressed in terms

of G
e

mm(r, r′) and G
e

ee(r, r
′), respectively. It is shown that the

dyadic decomposition greatly facilitates the calculation of an inverse
operation, which is crucial in derivation of Green’s function. The
method introduced here can be used in solving the problems of
ionospheric propagation, radiation and scattering involving new types
of anisotropic materials such as ceramics and advanced composites,
which are widely used in high frequency electromagnetic and optical
applications.

APPENDIX A. MATRIX ELEMENTS OF adj
(
WE

)
AND B

The elements of the matrices adj
(
WE

)
and B are given by Eqs. (A1)–

(A9) and Eqs. (A10)–(A18), respectively.

A11 =
(
k2

ρ + k2
z

)
k2

x − k2
0

[
ε1k

2
ρ + ε3

(
k2

x + k2
z

)]
+ k4

0ε1ε3 (A1)
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A12 =
(
k2

ρ + k2
z

)
kxky − k2

0

[
iε2k

2
ρ + ε3kxky

]
+ ik4

0ε2ε3 (A2)

A13 =
(
k2

ρ + k2
z

)
kxkz − k2

0

[
ε1kxkz + iε2kykz

]
(A3)

A21 =
(
k2

ρ + k2
z

)
kxky − k2

0

[
−iε2k2

ρ + ε3kxky

]
− ik4

0ε2ε3 (A4)

A22 =
(
k2

ρ + k2
z

)
k2

y − k2
0

[
ε1k

2
ρ + ε3

(
k2

y + k2
z

)]
+ k4

0ε1ε3 (A5)

A23 =
(
k2

ρ + k2
z

)
kykz − k2

0

[
ε1kykz − iε2kxkz

]
(A6)

A31 =
(
k2

ρ + k2
z

)
kxkz − k2

0

[
ε1kxkz + iε2kykz

]
(A7)

A32 =
(
k2

ρ + k2
z

)
kykz − k2

0

[
ε1kykz − iε2kxkz

]
(A8)

A33 =
(
k2

ρ + k2
z

)
k2

z − k2
0

[
ε1

(
k2

ρ + 2k2
z

)]
+ k4

0

[
ε21 − ε22

]
(A9)

B11 = k2
zk

2
xε3 + k4

0ε3
(
ε21 − ε23

)
− k2

0

[
k2

x

(
ε21 − ε22

)
+

(
k2

ρ + k2
z

)
ε1ε3

]
+ k2

ρk
2
xε1 (A10)

B12 = kxky

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kxky

(
ε21 − ε22

)
− iε2ε3k

2
z

]
(A11)

B13 = kxkz

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kxkzε1ε3 + ikzkyε2ε3

]
(A12)

B21 = kxky

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kxky

(
ε21 − ε23

)
+ iε2ε3k

2
z

]
(A13)

B22 = k2
zk

2
yε3 + k4

0ε3
(
ε21 − ε23

)
− k2

0

[
k2

y

(
ε21 − ε22

)
+

(
k2

ρ + k2
z

)
ε1ε3

]
+ k2

ρk
2
yε1 (A14)

B23 = kzky

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kzkyε1ε3 + ikxkzε2ε3

]
(A15)

B31 = kxkz

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kxkzε1ε3 + ikzkyε2ε3

]
(A16)

B32 = kzky

[
ε1k

2
ρ + ε3k

2
z

]
− k2

0

[
kzkyε1ε3 + ikxkzε2ε3

]
(A17)

B33 = k4
zε3 + k4

0ε3
(
ε21 − ε23

)
− k2

0

[
k2

ρ

(
ε21 − ε22

)
+ 2k2

zε1ε3
]

+ k2
ρk

2
zε1 (A18)
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APPENDIX B. DYADIC REPRESENTATION OF adj
(
WE

)

When the elements of the matrix adj
(
WE

)
is reviewed, it is seen that

it satisfies the following relation

adj
(
WE

)
=

(
adj

(
WE

))†
(B1)

where † denotes the conjugate transpose of the matrix.
This requires adj

(
WE

)
to be a Hermitian matrix. The eigenvalues

of a Hermitian matrix are real and the eigenvectors corresponding to
distinct eigenvalues are orthogonal in the sense that the Hermitian dot
product vanishes. In other words every Hermitian matrix possesses
a complete set of orthonormal eigenvectors. In this case, the
completeness relation [13] becomes

I = û1û
∗
1 + û2û

∗
2 + û3û

∗
3 (B2)

where
û∗i · ûj = δij (B3)

and û1, û2, and û3 are the orthonormal eigenvectors of the Hermitian
matrix. Then the dyadic decomposition of the matrix adj

(
WE

)
takes

the form as

adj
(
WE

)
= λ1û1û

∗
1 + λ2û2û

∗
2 + λ3û3û

∗
3 (B4)

The characteristic equation of adj
(
WE

)
, i.e., f(λ) can be

expressed as

f(λ) =
∣∣∣λI − adjWE

∣∣∣
= λ3 − tr

(
adjWE

)
λ2 + tr

(
adj

(
adjWE

)
λ−

∣∣∣adjWE

∣∣∣
= 0 (B5)

where tr stands for the trace of the matrix. Using the following
identities [14],

∣∣∣adjWE

∣∣∣ =
∣∣∣WE

∣∣∣2 (B6)

adj
(
adjWE

)
=

∣∣∣WE

∣∣∣WE (B7)
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f(λ) can be written as

f(λ) = λ3 − tr
(
adjWE

)
λ2 + tr

(∣∣∣WE

∣∣∣WE

)
λ−

∣∣∣WE

∣∣∣2 = 0 (B8)

Since
∣∣∣WE

(
kz

)∣∣∣ is zero when kz = ±kzI or kz = ±kzII , then

characteristic equation for adj
(
WE

)
reduces to

f(λ) = λ3 − tr
(
adjWE

)
λ2 (B9)

Hence, the eigenvalues for adj
(
WE

)
are

λ1 = tr
(
adjWE

)
, λ2 = λ3 = 0 (B10)

As a result, using Eq. (B4) we can express adjWE as a single dyad
in the following form for the adjoint matrices of the type I and the type
II waves as follows.

adjWE(±kzI) = αI [ênI (±kzI) ê∗nI (±kzI)] (B11a)

adjWE(±kzII) = αII [ênII (±kzII) ê∗nII (±kzII)] (B11b)

λI = αI , λII = αII are the eigenvalues and are defined in Eqs. (34a)–
(34b). ênI (±kzI) and ênII (±kzI) are the orthonormal eigenvectors
representing two characteristic electric fields for the type I and type II
waves that exist in a gyroelectric medium and are defined in Eqs. (32a)–
(32b).

APPENDIX C. RELATIONS BETWEEN W
−1

E AND W
−1

H

The electric wave matrix WE and magnetic wave matrix WH for a
general anisotropic medium can be expressed as

WE =
[
kµ

−1
k + k2

0ε
]

(C1)

WH =
[
kε

−1
k + k2

0µ
]

(C2)

We can relate the magnetic wave matrix and the electric wave
matrix WH as follows. When we perform the matrix multiplication of
Eq. (C2) from the left hand side (LHS) with kµ

−1, we obtain

kµ
−1
WH = kµ

−1
[
kε

−1
k + k2

0µ
]

= kµ
−1
kε

−1
k + k2

0k (C3)
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Now we perform the matrix multiplication of Eq. (C1) from right hand
side (RHS) with ε

−1
k as

WEε
−1
k =

[
kµ

−1
k + k2

0ε
]
ε
−1
k

or
WEε

−1
k = kµ

−1
kε

−1
k + k2

0k (C4)

When Eq. (C3–C4) are compared, it is seen that

kµ
−1
WH = WEε

−1
k

or
W

−1

E kµ
−1 = ε

−1
kW

−1

H (C5)

Another useful relation can be obtained as follows. When we
perform the matrix multiplication of Eq. (C2) from the LHS with µ

−1,
we obtain

µ
−1
WH = µ

−1
kε

−1
k + k2

0I (C6)

Now we perform the matrix multiplication of Eq. (C6) from the RHS

by W
−1

H as

µ
−1 = µ

−1
kε

−1
kW

−1

H + k2
0W

−1

H

or
k2

0W
−1

H = µ
−1 − µ

−1
kε

−1
kW

−1

H (C7)

Now we substitute Eq. (C5) into Eq. (C7) and we obtain

k2
0W

−1

H = µ
−1 − µ

−1
kW

−1

E kµ
−1 (C8)

Since for a gyroelectric case, µ = I, then Eq. (C8) reduces to

k2
0W

−1

H = I − kW
−1

E k for gyroelectric medium (C9)

Eq. (C9) relates the magnetic wave matrix WH and the electric wave
matrix WE through their inverses in the most practical manner such
that we can utilize the existing results that we already have derived.
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