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Abstract—Due to the proximity of mobile phones to users’ heads
and resulting interrogations on potential health effects, as well as to
the development of promising medical applications of electromagnetic
waves such as non-invasive RF Hyperthermia treatments, near-field
interactions between antennas and lossy scatterers, such as human
beings, have been a topic of growing interest over the last decade.
More generally, for various kinds of radiating sources and targets,
much scientific effort has been done to answer the following question
in particular configurations: what is the minimal/maximal power
that can be absorbed in a lossy object located in the reactive field
region of an antenna? The aim of this paper is to propose a general
and analytical solution to this problem, applicable to any source-
scatterer system. To this purpose, a method, allowing to describe
power deposition mechanisms in near-field regions, is introduced. This
approach is based on an equivalent junction/circuit model which is
shown here to result from an appropriate modal expansion of the
radiated field. The dual interpretation of this model in terms of
localized circuit and lumped junction is used to demonstrate how
trends and bounds in power absorption phenomena can be derived.
Firstly, the analogy with the microwave circuit theory provides the
concepts of available power and load factor for electromagnetic fields,
which allow to highlight the parameters influencing power dissipation
and to analyze consequent trends. Secondly, the junction matrix
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formalism is used to obtain analytical lower and upper bounds of
the power absorbed in a lossy object, located in the near field region
of any radiating source. Those bounds give a clearer insight of the
relationship between the total radiated power due to the antenna and
the minimal or maximal power potentially dissipated in any scatterer
exposed to such a radiated field. An example of bounds in a simple
source-load configuration is finally provided, showing the link, to be
further investigated, between the near-zone electric-field pattern of the
antenna and the total dissipated power. This example also suggests
that the power dissipated in a given object can be rapidly increased or
reduced as the modal complexity of the source increases.

1. INTRODUCTION

Until now, numerical modeling has been almost exclusively used
in order to predict the power dissipation resulting from near-field
interactions between a source and a lossy object or scatterer [1–
4]. However, the numerical approach does not provide more
than the final calculated result for understanding power deposition
mechanisms. Assessing the impact of various parameters may require
an enormous quantity of calculation, without clear extrapolation
possibility. However, beside this powerful but ’blind’ approach, the
development of simple models (e.g., [5–9]) has brought a significant
support for a better understanding of loss mechanisms and related
effects. Nevertheless, if those models provide some meaningful trends
of power absorption phenomena, they only apply to particular sources,
and are based on several approximations. Moreover, such techniques
cannot be used to deduce general bounds of the minimal or maximal
power absorbed in a lossy object, except in very specific configurations.

Bounds in electromagnetism have been a topic of growing interest
for many years. In particular, many authors have pointed out the
limitations of antennas in terms of bandwidth, directivity and efficiency
[10–15]. Such limitations have shown to be really useful for designers,
by highlighting the critical points to deal with and to what extent
one can decrease their impact. Those very general limits have been
essentially derived from appropriate modal field expansions. The
objective of this paper is first to justify a general and analytical
method for characterizing power transfer mechanisms, based on this
modal field theory. According to this approach, the dissipation in any
lossy scatterer can be described with an equivalent junction/circuit
model, in terms of power transfer between a set of generators and a
linear junction (multipole load). In order to point out common points
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and differences between the classical microwave circuit theory and the
proposed approach, the first section briefly reviews some important
aspects of the power transfer between electrical generators and loads.

This section also provides some remarks concerning highly reactive
generators, which are rarely mentioned in circuit books, yet useful
to understand electromagnetic power dissipation in reactive near
field regions. The next part demonstrates how the junction/circuit
formalism can be transposed to electromagnetism by means of the
modal field expansion. The concepts of available power and load
factor for radiating sources and scatterers are introduced and discussed.
As already shown in [16–19], those concepts are relevant to derive
trends and bounds in power absorption mechanisms, when the problem
can be modeled with a set of decoupled circuits. The interest
of these quantities is here briefly highlighted and illustrated for
simple source-scatterer configurations. However, for more complicated
configurations, it may be necessary to use the junction formalism,
which is shown here to provide a general formula for calculating
the total dissipated power, as well as non-trivial lower and upper
bounds of this power, for any lossy scatterer, in the presence of a
given radiating source. Those bounds give a new point of view on
the influence of the parameters limiting near-field energy deposition.
Moreover, a simple example of these limits is given for a 2-D source-
scatterer configuration, showing an interesting relationship between
the total dissipated power and the shape of the near-zone electric field
pattern. Finally, numerical calculation of the bounds for a specific load
show that the lower (respectively upper) limit decreases (respectively
increases) very rapidly with the modal complexity of the source.

2. POWER TRANSFER IN MICROWAVE CIRCUITS

2.1. Power Transfer between a Generator and a Load

All the complex voltages, currents and fields appearing in the text are
peak values. Let Eg and Zg = Rg + jXg be the ElectroMotive Force
(EMF) and the internal impedance of a given generator. A complex
load ZL = RL + jXL is connected to the generator; V and I are
respectively the voltage across- and the current passing through- this
load (Figure 1a). As well known, the active power Pd delivered to- or
dissipated in- the load can be written as:

Pd = Pa · γL (1)

where Pa is the available power and γL is the load factor defined as
follows:

Pa = |Eg|2/(8Rg) (2)
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Figure 1. (a) Power transfer between a generator and a load. (b)
Power transfer from a set of equivalent generators to a junction of
scattering matrix [S]. (c) Power transfer from a set of equivalent
generators to a junction of diagonal scattering matrix [S], defining
the equivalent circuit model.

γL = 1 −
∣∣∣(ZL − Z∗

g

)
/(ZL + Zg)

∣∣∣2 (3)

The available power is the maximum active power that the generator
can deliver to a load connected to its ports. Note that, as shown
by (2), the available power only depends on the generator. The load
factor is such that 0 ≤ γL ≤ 1 and represents the efficiency of the
power transfer from the generator to the load. The maximum power
dissipation is obtained when the load factor is equal to 1, that is to
say, when the impedance matching condition ZL = Z∗

g is satisfied.
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The difference between the available power Pa and the actual
dissipated power Pd may be considered as a “reflected” power Pr which
is absorbed by the generator:

Pr = Pa − Pd (4)

The standard voltage reflection coefficient ρ of the load is such
that:

ρ = b/a = (ZL − Zg)/(ZL + Zg) (5)

where a and b respectively represent the complex amplitudes of the
incident and reflected voltage waves (Figure 1a). When Zg is real, γL

is simply related to ρ:
γL = 1 − |ρ|2 (6)

However, it is worth noting that when Zg is complex (case
of a reactive generator), the expression of the load factor is more
complicated (see Appendix A):

γL =
{
1 − |ρ|2 − 2χIm(ρ)

}
/{1 + χ2} (7)

where χ = Xg/Rg. If χ = 0, (7) reduces to (6). On the contrary, if the
generator becomes purely reactive so that |χ| → +∞ (Rg → 0, Eg and
Xg being assumed constant and non null), then the load factor goes
to zero, whatever the load impedance (supposing the load is lossy).
In any case, the load factor compensates the increase of Pa, which
is proportional to χ and thus becomes infinitely large [19]. In that
way, the power dissipated in the load remains always finite even if
the available power tends to infinity. Note that, when the generator
becomes purely reactive, it is more exact to say that the available power
becomes “indefinite”, since the maximal power that can be transferred
to the load only depends on the resistance of the load itself. As it will
be noted in the following, these remarks are of crucial importance in
the case of electromagnetic power transfer.

2.2. Power Transfer between a Set of Generators and a
Multipole Load/Junction

The single circuit approach presented in Section 2.1 can be naturally
extended to the case of a set of N generators directly connected to a
linear junction J or multipole load (Figure 1b), uniquely determined
by its normalized scattering matrix [S]. Such a matrix relates the
complex amplitudes of the power normalized incident waves an to the
power normalized reflected waves bn, at each of the n = 1, 2, . . . , N
guiding structures, in the z = 0 reference plane of the junction
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terminals (Figure 1b, the z-axis is oriented toward the junction and
the exp(+jωt) convention is chosen), as follows:

(b) = [S](a) (8)

Note that it is equivalent to consider that the incident waves
of amplitudes an are due to N generators of EMF Eg,n = 2

√
Rnan

and impedances Zg, n = Rn + jXn directly connected to J , or
to N generators delivering incident waves of amplitudes a′n =
an exp(+jknZ) at the z = Z reference plane, connected to J through
transmission lines of propagation constants kn and impedances Zg, n.
The n-th reflected wave amplitude b′n at the z = Z reference plane is
then such as b′n = bn exp(−jknZ). Hence we consider here, without
loss of generality, that the generators are directly connected to J . In
such a case, the voltage Vn and current In at the n-th port of the load,
can be related, as well known, to an and bn as follows:

Vn =
√
Rn · [an + bn] (9)

In =
√
Rn · [an − bn]/Zg, n (10)

By using equations (9) and (10), the total power Pd dissipated in
J can be expressed such as:

Pd = Re

(
1
2
·

N∑
n=1

VnI
∗
n

)
=

N∑
n=1

Pa,n · γL,n (11)

where Pa,n = |Eg,n|2/(8Rn) = 1
2 |an|2 and γL,n = {1 − |ρn|2 −

2χnIm(ρn)}/{1 + χ2
n} are the available power and load factor of the

n-th circuit, with ρn = bn/an and χn = Xn/Rn. If [S] is diagonal, then
Smn = ρnδmn (Smn is the coefficient of line m and column n of [S]; δmn

is the Kronecker symbol) and ρn is the reflection coefficient at the n-th
port of J . The problem in this case reduces to that of N independent
generators delivering power to N distinct loads of impedance ZL,n

(Figure 1c). ZL,n and ρn are related by means of (5).

3. APPLICATION OF THE MODAL EXPANSION TO
THE CHARACTERIZATION OF POWER ABSORPTION
IN NEAR FIELD REGIONS

3.1. Equivalent Junction Model Deduced from Modal
Expansion

Power transfer from a radiating source to a lossy scatterer or load can
be similarly described in terms of impedances, voltages and currents
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Figure 2. Source radiating in the presence of a lossy load,
both surrounded by an homogeneous medium (wavenumber k and
impedance η).

at the load terminals. The definition of those quantities and terminals
is provided by the field modal expansion. Indeed, for any source
contained in a cylindrical or spherical surface Ss centered on O′

(Figure 2), the electric and magnetic fields on Ss can be expanded
in a sum of elementary wave functions called “modes” [10, 13, 20, 21].
In a referential centered on O′ said “attached” to the source, this
modal expansion for a source in free space would only involve outgoing
modes [10, 13, 20, 21]. Thanks to the addition theorem for radial
wave functions (see e.g., [20, 22]), such a modal expansion can also
be performed in any other coordinate system centered on O, distinct
of O′ (OO′ = rs) (Figure 2), on any cylindrical or spherical surface
SL centered on O. In such a coordinate system, the field expansion
would involve incoming and outgoing modes, whatever the content of
SL (nothing or any scatterer).

It is then possible to consider that the incoming modes at the SL

surface carry an incident power from which the energy can be extracted
by the scatterer or load (if any) in the r < R region (Figure 2). The
outgoing modes hence carry the power that has not been absorbed
in the r < R region and which can be viewed as “reflected”. As
it is shown in the following, the incident power can be considered
as provided, mode by mode, by an equivalent generator connected
to a multipole load or microwave junction modeling the scatterer.
Such a junction is fully characterized by its scattering matrix [S],
so that the scheme of Figure 1b can also be applied to the problem
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of electromagnetic power transfer. Moreover, it is possible to define
the concepts of modal available power and load factor for radiating
sources and scatterers, by considering those quantities at each port of
the equivalent junction, similarly to the circuit case (see Section 2.2).
The total power dissipated in the scatterer is then obtained in the same
way as (11). Note that if SL is empty (free space) or contains a lossless
scatterer, the total reflected power equals the total available power.

3.2. Power Transfer from an Electromagnetic Source to a
Lossy Scatterer

Without loss of generality, the case of a Transverse Magnetic (TM) field
to z in a cylindrical coordinate system centered on O or Transverse
Electric field (TE) to r in a spherical coordinate system is now
considered. In any coordinate system, the Transverse Electric (TE)
field case is dual to the TM case and would be similarly treated.

It is assumed that the Ss and SL surfaces (Figure 2) do not
intersect each other and are surrounded by an homogeneous medium
of wavenumber k and wave impedance η. In such a medium, the
components Etg and Htg of the electromagnetic field, tangential to
an appropriate coordinate surface of radius r centered on O, can be
written as a combination of incoming and outgoing waves (the field
is here assumed to be independent of z in the cylindrical problem)
[20, 21]:

Etg(r,u) =
k√
K

·
∑
n

{
α′

nFn(kr) + β′
nGn(kr)

}
fn(u)en(u) (12)

Htg(r,u) =
−k

jη
√
K

·
∑
n

{
α′

nF
′
n(kr) + β′

nG
′
n(kr)

}
fn(u)[u × en(u)]

(13)

where u denotes the unit radial vector pointing in the angular direction
of the observation point (Figure 2). K is a normalization factor
such that: K = k2Rp in the cylindrical case (p is the length of
the cylinder portion considered), or K = k2R2 in the spherical
case. Fn and Gn are the radial harmonic functions of order n
(dimensionless). F ′

n = d[Fn(kr)]/d(kr) in cylindrical coordinates
and F ′

n = 1/(kr) × d[krFn(kr)]/d(kr) in spherical coordinates [21].
Similarly, G′

n = d[Gn(kr)]/d(kr) in cylindrical coordinates and G′
n =

1/(kr) × d[krGn(kr)]/d(kr) in spherical coordinates. Fn and Gn are
chosen to respectively represent the incoming and outgoing waves in
the selected coordinate system. fn(u) and en(u) respectively stand for
the angular eigenfunction and the eigenvector of order n. Fn, Gn, fn
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and en are known quantities in a given coordinate system [20]. The
coefficients α′

n and β′
n are the complex amplitudes of the incoming and

reflected waves, observed at the surface of radius r, for the n-th order
mode. Those complex amplitudes are very similar to the a′n and b′n
coefficients defined in Section 2.2. Fn and Gn account for propagation
and play the same role as exp(±jknZ) in the circuit case. Moreover,
in the same way as in the microwave network theory, it is possible
to change the reference surface of observation, so that the tangential
components of the field taken at the r = R surface SL, and given
by (12) and (13), appear as expansions with respect to the angular
harmonics fn(u):

Etg(r,u) =
k√
K

∑
n

{αn + βn} fn(u)en(u) (14)

Htg(r,u) =
−k√
K

∑
n

{
αn/Z

+
n − βn/Z

−
n

}
fn(u)[u × en(u)] (15)

where αn = α′
nFn(kR) and βn = β′

nGn(kR) are respectively
the amplitudes of the n-th order incoming and outgoing waves
evaluated at the SL surface. Z+

n = jηFn(kR)/F ′
n(kR) and Z−

n =
−jηGn(kR)/G′

n(kR) are the corresponding wave impedances. It is
then possible to respectively associate a voltage Vn and a current In
to the electric and magnetic modal field components tangential to SL,
such that:

Vn = αn + βn (16)
In = αn/Z

+
n − βn/Z

−
n (17)

Note that the knowledge of Vn and In for every mode order is sufficient
to determine the field distribution in the whole space exterior to Ss and
SL. In the case where the medium surrounding the source and scatterer
is lossless (k real), Z+

n and Z−
n are shown to be conjugate [20]. This

allows to write (16) and (17) in a form similar to (9) and (10) obtained
in 2.2:

Vn =
√
Rn · [an + bn] (18)

In =
√
Rn ·

[
an/Z

+
n − bn/Z

−
n

]
(19)

where |an|2 and |bn|2 have the dimension of power, and Rn is the real
part of Z+

n = Rn+jXn and Z−
n = Rn−jXn. It is noteworthy that, even

if the medium is lossless, the wave impedances are complex, so that
Z+

n and Z−
n are generally different. Those impedances are only equal

at infinity and tend to the plane-wave impedance η of the medium.
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This is due to the fact that the cylindrical or spherical wavefronts tend
to be plane for large radii. Note that, for the sake of simplicity, the
surrounding medium will now be considered as being lossless. However,
the main rationales that follow are still valid in the case of a lossy
medium.

First of all, note that the angular functions fn(u) are orthogonal
over the r = R surface, so that each mode is independent of the other
ones at the exterior of SL. In other words, it is possible to consider
that the modal excitations are provided by N decoupled generators,
whereN is the number of modes considered to generate a non-negligible
dissipated power (this number N will be discussed later in 3.4). It
is then possible to model the lossy object by an equivalent N -ports
electromagnetic junction J (multipole load), completely characterized
by its normalized N × N scattering matrix [S] defined at the SL

reference surface. This matrix verifies (8), with (a) and (b) being
respectively the vectors containing the an and bn modal coefficients for
1 ≤ n ≤ N . Hence, the problem of electromagnetic power transfer
between a source and a lossy scatterer appears as equivalent to the
problem of power transfer between a set of generators and a lumped
junction/multipole load, as represented on Figure 1b. For a separable
lossy cylindrical or spherical scatterer, there is no mode conversion, so
that the scattering matrix is diagonal in the appropriate coordinate
system. In such a case, the equivalent junction model reduces to a
set of N independent generators delivering power to distinct loads of
impedance ZL,n, as represented on Figure 1c.

Despite the strong link existing between the circuit and
electromagnetic problems, it is worth noting that, the equivalent
circuit/junction model verifies equations (18) and (19), which are
generally different from (9) and (10), since Z+

n and Z−
n are not generally

equal, except when R tends to infinity. This difference impacts
on many formulas resulting from (18) and (19). For instance, the
expressions of the power dissipated in the junction J , the load factor,
or the reflection coefficient are modified with respect to the classical
circuit case (see Appendix A).

First, in the considered case of a lossless surrounding medium,
the application of the Poynting theorem [20] and integration over the
whole SL surface, gives the following formula for the total power Pd

dissipated in the load (see Appendix B):

Pd =
1
2
Re

(
N∑

n=1

VnI
∗
n

)
=

N∑
n=1

1
2
|an|2 ·

{
1 − |ρn|2

}
/

{
1 + χ2

n

}
(20)

where χn = Xn/Rn, ρn = bn/an. fn(u)en(u) is supposed to be
normalized in such a way that

∫
Ω |fn(u)|2||en(u)||2dΩ(u) = 1, where
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dΩ is the elementary solid angle and Ω the total solid angle subtended
by SL. Similarly to the microwave network theory, the definition of
the modal load factor γL,n and power Pa,n available at the SL surface
can be derived from (20):

Pa,n =
1
2
|an|2 (21)

γL,n =
{
1 − |ρn|2

}
/

{
1 + χ2

n

}
(22)

The dissipated power Pd,n per mode of order n is then obtained as
the product of γL,n and Pa,n. The total power dissipated in the
scatterer is the sum of all the Pd,n over the N ports of J . The available
power at each port of the junction can be viewed as provided by an
equivalent generator of EMF Eg, n = 2

√
Rnan and internal impedance

Zg, n = Z+
n (Z−

n could be chosen as well; the following results would
present slight differences, but the main ideas would be the same). It
is noteworthy that the EMF and internal impedance of the equivalent
generators (and hence the modal available power) are independent of
the load if the surface SL is fixed.

When the load is separable ([S] is diagonal), the equivalent circuit
model of Figure 1c applies. In such a case, ρn represents the reflection
coefficient at the n-th port of the junction and can be related with the
n-th order equivalent load impedance ZL,n, such as (see Appendix A):

ZL,n = Vn/In = Z+
n (1 + ρn)/

(
1 − ρn

(
Z+

n /Z
−
n

))
(23)

ρn =
(
Z−

n /Z
+
n

)
·
(
ZL,n − Z+

n

)
/

(
ZL,n + Z−

n

)
(24)

As explained before, (22), (23) and (24) are different from analog
equations in the classical transmission line theory (see (5) and (7)).

3.3. Load Factor for Electromagnetic Fields

It has been shown in [16–18] that the available power and load factor
could be used to identify parameters impacting on the total dissipated
power in a given scatterer, as well as to characterize and understand
their impact. More than this, when the load is separable, the equivalent
circuit of Figure 1c, thanks to the load factor concept, allows to obtain
properties of minima and maxima of power absorption that can be
reached with various sources and scatterers. Indeed, if one considers
a given scatterer, the minimization (respectively maximization) of Pd

requires that the source mostly excites the terminals presenting the
lowest (respectively highest) load factors. Note that, as shown in (22),
γL, n directly decreases with the modulus of the reflection coefficient
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and the reactance-to-resistance ratio χn of the modal generator. This
formula shows that, even if the impedance ZL, n at the n-th port of
the scatterer is well matched with that of the corresponding generator,
modes above a given order transmit a negligible amount of power due
to the high values of χn [20], imposing a low load factor.

Such a behavior is very different to that of microwave circuits.
This is illustrated on Figure 3a and Figure 3b representing the load
factors given by (7) and (22). As shown on Figure 3a, the load factor in
circuit theory equals 1 if the ZL = Z∗

g matching condition is satisfied,
whatever the reactance-to-resistance ratio of the generator. In the
equivalent junction model, γL, n = 1 only if ρn = 0 and if the generator
impedance is purely resistive. The second condition is only verified
when SL becomes infinitely large.
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Figure 3. (a) Load factor given by (7) as a function of RL/Rg and
(XL + Xg)/Rg. (b) Load factor given by (22) as a function |ρn| and
|χn|.

For a given surface SL containing a separable scatterer and a
given frequency, γL, n only depends on the geometrical and electrical
characteristics of the lossy object. Modifying these parameters may
significantly change the reflection coefficient ρn of a mode of given
order n, but does not affect the χn parameter which only depends
on k and SL (the available power per mode is also unchanged). As an
example, for a homogeneous scatterer whose conductivity σ varies from
0 to infinity, γL, n will take all the values between 0 and a maximum
value, which will necessarily be less than 1/(1 + χ2

n), and Pd, n will
follow these variations. In such a case, in order to minimize the power
absorbed by the load, for instance, it is better to tune σ so as to
increase the reflection coefficient of low order modes.
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Figure 4a and Figure 4b illustrate the load factor and power
transfer variations with conductivity. Figure 4a represents γL, 0 as
a function of conductivity, for an infinite cylindrical load of radius
R = 20 mm and relative permittivity εr = 42.0 (SL is chosen to fit
with the cylinder surface). Figure 4b shows Pd/Prad variations also
as a function of the conductivity of the same cylinder exposed to a
uniform current line source at a distance of 10 mm (rs = 30 mm). For
both figures, the considered frequency is 900 MHz.
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Figure 4. (a) Load factor of the zero order mode as a function of
the conductivity of the cylindrical scatterer. (b) Ratio of the total
dissipated power in the cylinder to total radiated power of the line
source as a function of the load conductivity.

As observed, the load factor effectively passes through a
maximum, as well as the power absorbed by the cylinder. These
maxima do not generally coincide, except when the considered cylinder
is sufficiently small to consider that only the zero order mode dissipates
a significant power. In such a case, whatever the complexity of the
source, power transfer in the near-field can be described with a single
circuit. This particular configuration will be considered in more details
in Section 4.2

3.4. Available Power for Electromagnetic Fields

The example of a cylindrical TM source exciting only the l-th order
mode out of the Ss surface (Figure 2), in the coordinate system
centered on O′, is now considered. Ss here denotes any cylinder
centered on O′ and containing the source. The couple (rs,us) indicates
the position of the referential “attached to the source” in the referential
centered on O. Without loss of generality, us is assumed to be parallel
to the x axis of this last coordinate system (Figure 2). By means of
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(C3), the modal available power Pa, n per unit length at the cylindrical
surface of radius R can be simply expressed as follows (see (C5) of
Appendix C):

Pa,n = πηkRPrad ·
∣∣∣H(2)

n−l(krs) ·H(1)
n (kR)

∣∣∣2 /(8Rn) (25)

where Prad is the power radiated per unit length by the source. Note
that, for the sake of simplicity, the index n is now (and in the following)
chosen symmetrical around 0. H(2)

n−l(krs) is the Hankel function of the

second kind and order n−l, taken at krs; H
(1)
n (kR) the Hankel function

of the first kind and order n, taken at kR. By means of (C9), one can
show that:

Pa,n =
1
2

∣∣∣an

∣∣∣2 ≥ 1
2

∣∣∣an

∣∣∣2 / (
1 + χ2

n

)
=
Prad

4

∣∣∣H(2)
n−l(krs)

∣∣∣2 (26)

Since the right member of (26) diverges as n goes to infinity, Pa,n

also goes to infinity. The fact that the available power diverges as
the mode order increases can be related to the similar behavior in the
circuit case (2.1). As a matter of fact, the higher is the mode order
the more the equivalent generator becomes reactive. In the limit case
of an infinitely reactive generator having no internal resistance but a
non-zero EMF, the available power becomes infinite, and more exactly
“indefinite”. Indeed, the available power is the active part of power
that one could obtain at most, by connecting a load to the generator
terminals. Such an upper bound value is not determined in the case of
a purely reactive generator: the maximal power that can be transferred
to the load only depends on the resistance of the load. To illustrate this
behavior of the modal available power, Figure 5a represents Pa, n/Prad

on the surface of a R = 50 mm 2-D cylinder, exposed to the field
radiated by a uniform current line source (zero-order mode). The line
source is located parallel to the cylinder axis and at 10 mm from its
surface. The frequency of operation is 900 MHz. Those parameters
will be used for the computation of other quantities in this section.

On the other hand, as explained in Section 3.3, the load filters
high order modes presenting a high available power with a very low
load factor. This is observed on Figure 5b representing the modal load
factor for the same 2-D cylinder example, with εr = 42.0 and σ = 1.

A consequence is that only a finite number N of modes generates a
non negligible dissipated power and the concept of available power for
modes of order much greater than N has no clear interest. In the case
of an homogeneous cylindrical or spherical load, N can be evaluated by
using arguments similar to those developed by Harrington [20; p. 309],
or Hansen in [21; p. 17]. Actually, due to the cut-off properties of Bessel
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functions, the field modes of orders n such as |n| > |kL|R [16–18] (kL is
the wavenumber inside the load), must weakly contribute to the total
dissipate power. As a consequence, in such a configuration, one can
take N as 2Nmax + 1, where Nmax = [|kL|R] denotes the first integer
larger than |kL|R. If a better accuracy is needed for the calculation of
Pd, then Nmax can be taken equal to [|kL|R]+n1. In general, a number
n1 smaller than 10 is sufficient [21].

Figure 5c illustrates that the modes of order higher than Nmax

only participate to a small amount of the total dissipated power. In
the chosen case of cylinder-line source configuration, Nmax = 7. As
observed on Figure 5a, b, and c, for modes of order n such that
n > Nmax, the available power increases exponentially with n, whereas
the load factor and dissipated power decrease exponentially.

4. LOWER AND UPPER BOUNDS OF DISSIPATED
POWER IN A LOSSY SCATTERER

4.1. General Derivation of the Lower and Upper Bounds of
Dissipated Power

The arguments of Harrington [20] and Hansen [21] were originally
applied to characterize the modal distribution of the electromagnetic
field exterior to a volume containing an antenna. Indeed, as shown
in [21], if Ss is the minimal cylindrical or spherical surface of radius
R′ centered on O′ (Figure 2) containing the source, then the modes
of orders |l| > L = [kR′], in the referential centered on O′, must be
strongly attenuated outside Ss. Only 2L + 1 modes are hence to be
considered in order to describe the field exterior to Ss, in a sufficiently
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Figure 5. (a) Available power normalized to total radiated power as a
function of the mode order. (b) Load factor as a function of the mode
order. (c) Dissipated power normalized to total radiated power as a
function of the mode order.
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accurate way. If a better accuracy is needed, one can slightly increase
the number of modes considered.

As a consequence, for r′ > R′, the tangential components of the
fields due to an antenna exciting TM cylindrical waves or TE spherical
waves, can be expanded in the appropriate coordinate system, in a
finite weighted sum of 2L+1 outgoing wave functions, in the referential
centered on O′:

Etg(r′,u′) =
k
√
η√
K ′ ·

+L∑
l=−L

s′lGl(kr′)fl(u′)el(u′) (27)

Htg(r′,u′) =
−k

j
√
ηK ′ ·

+L∑
l=−L

s′lG
′
l(kr

′)fl(u′)[u′ × el(u′)] (28)

where s′l is the spectral coefficient of the l-th source mode on the Ss

surface, in the referential centered on O′. The “source vector” (s′) of
the s′l coefficients is normalized, thanks to the K ′ factor, such that
Prad = 1

2‖(s′)‖2 = 1
2

∑+L
l=−L |s′l|2. u′ denotes the unit radial vector

pointing in the angular direction of the observation point (Figure 2).
As explained in 3.1, the power available at the SL surface can be

calculated by applying the addition theorem for radial wave functions
[20, 22] (Ss and SL are assumed to have no intersection). In a very
general manner, the addition theorem can be expressed in matrix
formulation as follows (it can be directly seen from (C3) or (C5), for
example):

(a) = [A](s′) (29)

where [A] is a matrix with an infinite number of lines and 2L + 1
columns. Here the [A] matrix represents the transformation of TM
waves in the cylindrical coordinate system centered on O′ (respectively
TE waves in spherical coordinates) into TM waves (respectively TE
waves) in the O centered referential. Another matrix should be defined
to characterize the TM (respectively TE) to TE wave (respectively
TM) transformation. Note that, in a cylindrical coordinate system, it
is possible to choose the referentials related with the source and load,
so that the field may be TM or TE in both referentials. Then, only one
matrix can be considered. In such a coordinate system, the coefficients
Anl of the [A] matrix can be deduced from (C5). Due to what
was explained in 3.4, when SL contains a lossy scatterer, [A] can be
considered as a finite rectangular matrix of size (2Nmax +1)× (2L+1).
For the sake of simplicity, the indices n and l of the vectors are chosen
symmetrical around 0 (|n| ≤ Nmax, |l| ≤ L). It is noteworthy that
[A] only depends on the coordinate system, the krs product, the us

vector, and the load and source volumes (through kR and kR′).
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After (8), (20) and (29), the total power Pd dissipated in the
junction can be written as a scalar product, such as:

Pd =
1
2

t(s′)∗t[A]∗
{
[D] − t[S]∗[D][S]

}
[A](s′) =

1
2

t(s′)∗[U ](s′) (30)

where tX∗ denotes the transposed conjugate of any X vector or matrix.
[D] is a diagonal matrix with coefficients Dnn = 1/(1 + χ2

n). This
formula is very general and allows to compute the total dissipated
power due to any source in any scatterer, supposing that the modal
coefficients of the source are known as well as the scattering matrix of
the load. It can be observed that [U ] = t[A]∗{[D] − t[S]∗[D][S]}[A] is
a definite positive hermitian matrix of dimension (2L + 1) × (2L +
1). Indeed, it is possible to show that t[U ]∗ = [U ] and that
Pd in a lossy scatterer is always strictly positive except for trivial
cases (no source excitation or infinitely small load). It is hence
possible to apply the spectral theorem for hermitian matrices [23, 24]
claiming that [U ] admits real eigenvalues ξ−L, ξ−L+1, . . . , ξ+L and that
an orthonormal basis of associated eigenvectors u−L, u−L+1, . . . , u+L

exists. Furthermore, since [U ] is definite positive, all the eigenvalues
are strictly greater than 0. The source vector (s′) can be expressed in
the basis of the eigenvectors such as (s′) =

∑+L
l=−L ζlul. By using this

expression in (30), the following equation is obtained:

Pd =
1
2

+L∑
l=−L

ξl|ζl|2 (31)

If ξM (resp. ξm) is the maximum (resp. minimum) eigenvalue, then Pd

verifies the following inequality:

ξmPrad ≤ Pd ≤ ξMPrad (32)

These bounds of Pd give a new point of view on the parameters limiting
the power absorbed by a lossy scatterer exposed to field radiated by
an electromagnetic source. Actually, in a given coordinate system,
ξm and ξM depend on the wavelength in the surrounding medium
(through k), the distance between the antenna center of phase and
scatterer (through rs), the source and load volumes (through Nmax, L,
and R), and the electrical parameters (through [S]) of the lossy object.
Those eigenvalues do not depend on the source radiation characteristics
(the (s′) vector). As a consequence, assuming that the frequency
of operation, the surrounding medium, the lossy scatterer and the
distance between the source and load volumes are fixed, the previous
inequalities show that the minimal and maximal power potentially



38 Derat and Bolomey

dissipated in the scatterer are only determined by the power radiated
by the source Prad and do not depend on the fine modal distribution
of the source excitation (it is only related with the norm of the source
vector). Moreover, these bounds show a separate dependence on the
source and scatterer. Note that the detailed structure of the antenna
only imposes how far is the power Pd effectively dissipated in the
scatterer from the lower and upper limits. Those limits can be reached
with particular sources whose (s′) vectors are eigenvectors related to
extreme eigenvalues.

4.2. Dissipated Power Bounds in a Simple 2-D
Source-Scatterer Configuration

The meaning of the eigenvectors and eigenvalues obtained in the
previous paragraph is not obvious. In order to have a better
understanding of these quantities, it can be interesting to study a
simple source-scatterer configuration, for which explicit values can be
calculated. To this purpose, the case of a very small cylinder exposed
to the field of a TM source is here considered.

First, the expression of Pd in such a configuration can be simply
derived from (C10), by taking only the n = 0 contribution into account.
By applying the Cauchy-Schwartz theorem [23], one can obtain a
feasible upper bound of Pd:

Pd ≤ Prad

4

+L∑
l=−L

∣∣∣H(2)
l (krs)

∣∣∣2 · {1 − |ρ0|2
}

(33)

This upper bound is coherent with the maximal eigenvalue ξM of the
[U ] matrix, whose coefficients are given by (C12). This can be shown
by solving the characteristic equation of [U ] [23]. Such a bound is
reached for a source whose modal coefficients s′l are such that:

s′l =

[
H

(2)
−l (krs)

]∗
√∑+L

l=−L

∣∣∣H(2)
l (krs)

∣∣∣2
√

2Prad (34)

By inserting this expression in (C1), one obtains the tangential
component of the electric field due to this source at r′ = rs, in its
attached coordinate system:

Ez(rs, θ′) =
k
√
ηPrad√
πK ′

1√∑+L
l=−L

∣∣∣H(2)
l (krs)

∣∣∣2
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·
{∣∣∣H(2)

0 (krs)
∣∣∣2 + 2

+L∑
l=1

(−1)l
∣∣∣H(2)

l (krs)
∣∣∣2 cos(lθ′)

}
(35)

The very small cylinder is supposed to be located at θ′ = π, so that
Ez in this direction can be simplified into:

Ez(rs, π) =
k
√
ηPrad√
πK ′

√√√√ +L∑
l=−L

∣∣∣H(2)
l (krs)

∣∣∣2 (36)

Since the considered cylinder is small, the power absorbed by this
load, for a portion of length p, exposed to the field of (36), can also be
calculated as follows:

Pd = πR2p× σ|Ez(rs, π)|2
2

=
−πR2Im(k2

L)Prad

4

+L∑
l=−L

∣∣∣H(2)
l (krs)

∣∣∣2
(37)

σ is the conductivity of the cylinder. This equation is coherent with
the upper bound value of (33) and gives an approximation of (1−|ρ0|2)
as R tends to zero.

Note that the upper bound of (33) can also be interpreted in E-
field terms. Indeed, by directly applying the Cauchy-Swartz theorem to
(C1), one can show that (36) also defines the maximal feasible electric
field magnitude in a given direction, at r′ = rs. An antenna generating
the maximal absorbed power in the small cylindrical load is hence an
antenna which maximizes the electric field magnitude in the direction
of the load. This behavior is illustrated on Figure 6a, representing the
electric field magnitude near-zone pattern at r′ = rs, for L between 0
and 3, and Prad = 1 W. For computing this figure, the radius of the
cylinder is chosen to be R = 0.1 mm, rs is set equal to 10 cm, and
the frequency of operation is 900 MHz. The electrical characteristics
of the cylinder are the same as those used in 3.3. rs = 10 cm does not
mean that the distance between the source and scatterer is 10cm, but
that the maximal possible cylinder containing the source has a radius
of R′ = rs − R ≈ 10 cm. As explained in 4.1, this distance limits the
maximal order of modes L to be taken into account to kR′ ≈ 2 or a
little more (here L = 3 is considered at most).

Note that, as shown on Figure 6a, for L = 0, the source
is omnidirectional and the power absorbed by the load is directly
proportional to the radiated power Prad (see (C11)). For L greater
than zero, the peak of electric field magnitude is clearly observed in
the direction of the load. On the other hand, as the cylinder tends
to be infinitely small, the dissipated power tends to zero. However,
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as long as the source has a non-zero volume the null dissipated power
can never be reached, so that the lower bound of Pd should be strictly
positive.

We have assumed here that we could consider only the zero order
mode in the load referential. However this truncation results in an
approximation of Pd. Because of this approximation, the lower bound
of Pd can be shown to be equal to zero. However, this is not the case in
real configurations where higher order modes (in the load referential)
always contribute to the dissipated power. As a consequence, it is here
possible to find non-trivial s′l coefficients such that Pd = 0, but in fact
they are such that Pd tends to 0. A set of such coefficients can be
expressed as follows (see (C10)):

s′l =




√
Prad/L , if l > 0

0 , if l = 0
(−1)l+1

√
Prad/L , if l < 0

(38)

Inserting these coefficients in (C1) allows to obtain the following E-field
expression:

Ez(rs, θ′) =
jk

√
2ηPrad√
πLK ′

+L∑
l=1

∣∣∣H(2)
l (krs)

∣∣∣2 sin(lθ′) (39)

The modulus of Ez as given by (39) is represented on Figure 6b as a
function of θ′, for L = 1 to 3, and Prad = 1 W. The same configuration
as for the Figure 6a is used. On the opposite of the sources generating
the maximal absorbed power, these sources are such that a minimum
of E-field occurs at the load location.

So as to have order of magnitudes of the minimal and maximal
eigenvalues ξm and ξM in the specific configuration studied here, these
quantities have been calculated numerically either by using the first
equality of (37), or by computing the “eigen-sources” defined by [U ].
A very good agreement between these formulas have been noticed for
the evaluation of ξM . However, only the matrix formulation allows to
correctly assess ξm, since it takes into account modes of order greater
than zero in the load referential. Figure 7a represents ξm and ξM
eigenvalues as functions of the maximal source order L considered.

Logically, since the cylinder is very small, even the maximal
power possible to dissipate with a source of order L = 3 is very
weak. However, it is interesting to notice that the upper bound of
dissipated power increases exponentially with L, and so decreases the
lower bound. This means that, for reasonable source orders (relatively
to the source volume), the power absorbed in a small cylinder can be



Progress In Electromagnetics Research, PIER 58, 2006 41

  50

  100

  150

30

210

60

240

90

270

120

300

150

330

180 0

             
             
             
             
             
             
             
             
             
             
             

L=3 
L=2 
L=1 
L=0   50

  100

  150

30

210

60

240

90

270

120

300

150

330

180 0

             
             
             
             
             
             
             
             

L=3 
L=2 
L=1 

(a) (b)

Figure 6. (a) |Ez(rs, θ′)| given by (35) as a function of θ′, for a
maximal mode order L = 0 to 3. Prad = 1 W. (b) |Ez(rs, θ′)| given
by (39) as a function of θ′, for a maximal mode order L = 1 to 3.
Prad = 1 W.

increased or reduced exponentially, as the modal complexity of the
source is increased.

The calculation of the eigenvalues and eigenvectors of the [U ]
matrix has also been performed for a much larger cylinder (R =
50 mm), with a maximal source volume of radius 15 cm (rs = 20 cm),
and similar results have been found. Indeed, the “eigen-sources”
minimizing or maximizing Pd exhibit quite similar near-zone patterns
as those represented on Figure 6a and Figure 6b, as shown on Figure 7b.
Particularly, antennas maximizing power absorption present a peak of
E-field magnitude at r′ = rs, in the direction θ′ = π of the center of the
load. Antennas minimizing power absorption present a hole of E-field
at this location. Moreover, ξm and ξM have been noticed to show the
same exponential decrease / increase as represented on Figure 7a.

5. CONCLUSION AND PERSPECTIVES

This paper shows how the modal field expansion leads to an equivalent
junction model, providing a new way to describe and quantify power
transfer mechanisms between an antenna and a lossy object. The
introduction of the concepts of available power and load factor for
sources and scatterers gives a different point of view on the parameters
impacting on power absorption. Under certain conditions, those
concepts allow to separate the load and source influence on dissipation
and to determine general trends in power loss phenomena. This
technique also provides a general formula to calculate the dissipated
power in a lossy object, as well as meaningful bounds on the possible
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Figure 7. (a) Minimal ξm and maximal ξM eigenvalues for the small
cylinder exposed to a TM source exciting modes of order ±L, at most.
(b) |Ez(rs, θ′)| as a function of θ′, for “eigen-sources” of maximal mode
order L = 1 to 3, giving the minimal ξm and maximal ξM eigenvalues.
The load is a cylinder of radius R = 50 mm. rs = 20 cm, Prad = 1 W.

range of variation of dissipated power. The obtained limits are very
general and do not suppose any particular characteristics of the source
or load, except that the source behavior is not significantly affected by
the load presence (interactions are neglected). The lower and upper
bounds derived with this method are interesting in many ways. First,
they are realizable with particular sources of calculable characteristics.
Second, their expressions show that the antenna and scatterer have
a separate influence on the minimal and maximal power potentially
absorbed. Indeed, for a given frequency and volume containing the
source, the only antenna parameter influencing those limits is the total
radiated power, which multiplies a term depending only on the lossy
scatterer and its distance to the source. Finally, the computation of
these bounds in a simple configuration suggests that an interesting
relationship exists between the electric field magnitude in the near-zone
of an antenna and the total dissipated power. Indeed, it is observed in
this configuration that antennas maximizing power absorption present
a peak of electric-field in the direction of the load. The opposite is
observed for antennas minimizing power absorption. Moreover, it is
also noticed that, under given conditions, the minimal and maximal
power potentially dissipated can be reduced/increased exponentially
by increasing the modal complexity of the source. Future work
will study the variations of those bounds with the source-scatterer
configurations and try to give numerical results in other particular
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cases. A special interest will be shown in extending these trends
and bounds to the characterization of more realistic situations, such
as human exposure in the near-field of mobile phones, base-station
antennas, or non-invasive RF hyperthermia treatments, for instance.
Among others, the equivalent junction model should give meaningful
directions for tentatively solving the particular problem of averaged
SAR minimization or maximization, which has become of more and
more crucial importance (e.g., [25]).

APPENDIX A. DERIVATION OF EXPRESSIONS (7)
AND (22) OF THE LOAD FACTOR FOR MICROWAVE
CIRCUITS AND ELECTROMAGNETIC FIELDS

Suppose that Figure 1a can either represent a classical single circuit
or an equivalent circuit modeling the power transfer of a given mode,
as described in Section 3. First, in the circuit case, equations (9) and
(10) applied to this simple system can be written as follows:

V =
√
Rg · [a+ b] (A1)

I =
√
Rg · [a− b]/Zg (A2)

By combining Pd = 1
2Re {V I∗} with (A1) and (A2), one obtains:

Pd =
Rg

2
Re

{(
|a|2 − |b|2 + 2jIm (a∗b)

)
/Z∗

g

}
(A3)

After a few manipulations, Pd can be written such as:

Pd =
1
2
|a|2 ·

{(
1 − |ρ|2

)
Re

(
Rg/Z

∗
g

)
+ 2Re

(
jIm(ρ)Rg/Z

∗
g

)}
(A4)

where ρ is defined by (5). Rg/Z
∗
g can be expressed as a function of the

reactance-to-resistance ratio of the generator χ = Xg/Rg such that:

Rg/Z
∗
g =

1
1 + χ2

+ j
χ

1 + χ2
(A5)

Inserting (A5) in (A4) allows to extract the expression of the load
factor γL as given by (7).

In the electromagnetic case, equations linking V and I to a and b
are different, as shown by (18) and (19). Applied to the single circuit
case of Figure 1a, these formulas are such that:

V =
√
Rg · [a+ b] (A6)

I =
√
Rg · [a/Zg − b/Z∗

g ] (A7)
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By combining Pd = 1
2Re{V I∗} with (A6) and (A7), one obtains:

Pd =
Rg

2
Re

{∣∣∣a∣∣∣2 /Z∗
g −

∣∣∣b∣∣∣2 /Zg + 2jIm
(
a∗b/Z∗

g

)}
(A8)

The term Re(jIm(a∗b/Z∗
g )) is null, so that (A8) gives:

Pd =
1
2

∣∣∣a∣∣∣2 · {Re
(
Rg/Z

∗
g

)
−

∣∣∣ρ∣∣∣2 · Re
(
Rg/Zg

)}
(A9)

Inserting (A5) in (A9) allows to obtain the expression of the load factor
as in (22). Formula (23) for the load impedance ZL is simply obtained
from (A6) and (A7), as the ratio of V over I. (24), giving the reflection
coefficient ρ as a function of ZL and Zg, is directly obtained by equating
V and ZLI.

APPENDIX B. APPLICATION OF THE POYNTING
THEOREM TO THE DETERMINATION OF (20)

Equation (1–62, p. 22) of [20] provides a formulation of the Poynting
theorem applied to a source-free region. Taking The real part of this
equation allows to show that the power Pd dissipated in the load
contained in SL (Figure 2) can be written such that:

Pd = −1
2
Re

(∫
SL

Etg × H∗
tgudS

)
(B1)

By using expressions (14) and (15) for the electric and magnetic
tangential components, as well as the orthogonality of wavemodes on
the SL surface, one obtains:

Pd =
k2

2K
Re

(∑
n

{
αn + βn

} {
α∗

n/Z
−
n − β∗

n/Z
+
n

}

·
∫

SL

(fn(u)en(u)) × (f∗n(u) [u × e∗
n(u)])udS

)
(B2)

After some manipulations on the vector products, the integral term
can be simply expressed as follows:∫

SL

(fn(u)en(u)) × (f∗n(n) [u × e∗
n(u)])udS

=
SL

Ω

∫
Ω
|fn(u)|2||en(u)||2dΩ(u) (B3)
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where Ω is the total solid angle subtended by SL and dΩ is the
elementary solid angle. In spherical coordinates, SL and Ω are
simply related by SL = ΩR2. In cylindrical coordinates, for a
cylinder portion of length p, SL = ΩpR. With an appropriate
normalization of the angular eigenfunctions and eigenvectors, namely∫
Ω |fn(u)|2||en(u)||2dΩ(u) = 1, the integral term of (B2) can be set

equal to SL/Ω. In Section 3.2, K is defined such as K = k2SL/Ω.
Hence, by using also (16) and (17), the following formulation for Pd is
obtained:

Pd =
1
2
Re

(∑
n

(αn + βn)
{
α∗

n/Z
−
n − β∗

n/Z
+
n

})
=

1
2
Re

(∑
n

VnI
∗
n

)

(B4)

(B4) is the same relationship as (20). By changing (16) and (17) into
(18) and (19), and making similar manipulations as in Appendix A,
the right member of (20) is directly obtained from (B4).

APPENDIX C. APPLICATION OF THE EQUIVALENT
JUNCTION MODEL TO THE DETERMINATION OF
THE TOTAL DISSIPATED POWER IN A 2-D
SOURCE-SCATTERER CONFIGURATION

For the sake of simplicity, a cylindrical source exciting only TM modes
is considered. It is also assumed that the referentials attached to the
source and load (Figure 2) have parallel axes. The angle between us

and x (see Figure 2) is supposed to be null. In such a configuration,
equations (27) and (28) can be written as follows [20; p. 200–202]:

Ez =
k
√
η√
K ′

+L∑
l=−L

s′lH
(2)
l (kr′)

exp(jlθ′)√
2π

(C1)

Hθ′ =
k

j
√
ηK ′

+L∑
l=−L

s′lH
′(2)
l (kr′)

exp(jlθ′)√
2π

(C2)

where (r′, θ′) is the couple of cylindrical coordinates in the referential
attached to the source. H

(2)
l (kr′) and H

′(2)
l (kr′) are respectively the

Hankel function of second kind and order l, and its first derivative. K ′

is a normalization factor such as K ′ = 2kp/π, which allows to obtain
1
2 ||(s′)||2 = Prad (p is the length of the considered cylinder portion).
The addition theorem for Hankel functions of any order [22] is then
applied to “translate” modes in the referential attached to the source,
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into modes in the referential attached to the load (Figure 2). This
addition theorem can be expressed as follows:

H
(2)
l (kr′) exp(jlθ′) =

+∞∑
n=−∞

H
(2)
n−l(krs)Jn(kr) exp(jnθ) (C3)

Jn(kr) = 1
2{H1

n(kr) +H2
n(kr)} is the Bessel function of the first kind

and order n, and H
(1)
n (kr) the Hankel function of the first kind and

order n. Utilizing (C3) in (C1) provides the following expression of Ez

in the load referential:

Ez =
k√
K

+∞∑
n=−∞

√
ηK

2
√
K ′


 +L∑

l=−L

s′lH
(2)
n−l(krs)




·
{
H(1)

n (kr) +H(2)
n (kr)

}
exp(jnθ)√

2π
(C4)

In the cylindrical case, K is such that K = k2Rp. From equations
(5–18, p. 202) of [20] and (C4), Hθ can be directly obtained. Note that
(C4) is similar to (12). Hence, applying this formula to the case where
r = R and using the definition of an resulting from (14), (16) and (18),
one obtains:

an =
1√
Rn

√
ηK

2
√
K ′


 +L∑

l=−L

s′lH
(2)
n−l(krs)


 ·H(1)

n (kR) (C5)

One can directly derive from (C5) the available power for the mode of
order n, thanks to (21). On the other hand, by applying (A5) to Z−

n ,
the incident power at the n-th port of the junction can be expressed
by:

1
2

∣∣∣an

∣∣∣2 / (
1 + χ2

n

)
=
ηK

8K ′

∣∣∣∣∣∣
+L∑

l=−L

s′lH
(2)
n−l(krs)

∣∣∣∣∣∣
2

·

∣∣∣∣∣∣H(1)
n (kR)

∣∣∣∣∣∣
2

Re


1/Z−

n




(C6)
The real part of 1/Z−

n can also be written in terms of Hankel functions:

Re
(
1/Z−

n

)
=

1

η|H(1)
n (kR)|2

Re
(
−j

(
H(1)

n (kR)
)∗
H

′(1)
n (kR)

)
(C7)

Using the Wronskian of Bessel’s equation (D-17, p. 463 of [20]), (C7)
can be simplified such that:

Re
(
1/Z−

n

)
= 2/

[
πηkR

∣∣∣H(1)
n (kR)

∣∣∣2 ]
(C8)
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Inserting (C8) in (C6) provides the following formulation of the
incident power:

1
2

∣∣∣an

∣∣∣2 / (
1 + χ2

n

)
=

1
8

∣∣∣∣∣∣
+L∑

l=−L

s′lH
(2)
n−l(krs)

∣∣∣∣∣∣
2

(C9)

Supposing that the modes generating a significant dissipation are such
that |n| ≤ Nmax, and using (C9) in (20) allows to obtain the following
expression for the power dissipated in the load:

Pd =
+Nmax∑

n=−Nmax

1
8

∣∣∣∣∣∣
+L∑

l=−L

s′lH
(2)
n−l(krs)

∣∣∣∣∣∣
2

·


 1 −

∣∣∣ρn

∣∣∣2

 (C10)

In case of a source exciting only the mode of order l, (C10) can be
simplified in the following way:

Pd =
Prad

4

+Nmax∑
n=−Nmax

∣∣∣H(2)
n−l(krs)

∣∣∣2 · { 1 −
∣∣∣ρn

∣∣∣2 }
(C11)

Finally note that (C10) allows to obtain analytical expressions for the
coefficients Uij of the [U ] matrix (see (30)) in the case of a separable
load:

Uij =
1
4

+Nmax∑
n=−Nmax

H
(1)
n−i(krs)H

(2)
n−j(krs) ·

{
1 −

∣∣∣ρn

∣∣∣2 }
(C12)
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