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Abstract—Representation of electromagnetic expressions in terms
of the four-dimensional differential-form formalism has been recently
shown to allow simple analysis to problems involving general classes
of linear electromagnetic media. In the present paper, another class
of media is defined by expressing the medium dyadic representing
the mapping between the electromagnetic two-forms in terms of one
dyadic representing mapping between two four-vectors. Thus, the
class, labeled as that of IB-media, is represented by 16 parameters
instead of the 36 of the most general bi-anisotropic medium. Condition
for the medium dyadic is derived and and properties of fields in the
IB-medium are discussed.

1. INTRODUCTION

It has been demonstrated that differential-form representation is of
advantage not only for the basic Maxwell equations† [1–5],

d ∧ Φ = 0, d ∧ Ψ = γ, (1)

relating the source and field multiforms

Φ = B + E ∧ dτ, Ψ = D − H ∧ dτ, γ = � − J ∧ dτ, (2)

but also when analyzing various classes of linear electromagnetic media.
In fact, expressing the linear relation between the electromagnetic two-
forms in terms of the medium dyadic M as

Ψ = M|Φ, (3)
† Notation adopted here follows that of [5]. A brief introduction can be found in the
Appendix of [6].
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it has been shown that many important and interesting classes of media
represented in a complicated form in terms of the classical Gibbsian
three-dimensional dyadics take a simple form in the four-dimensional
differential-form representation. As an example we may first mention
the PEMC medium, a generalization of PEC and PMC media, which
appears quite pathological in the light of Gibbsian medium parameters
ε, µ, ξ, ζ but is represented by a simple scalar factor in place of M in (3)
[7–9]. As another example, the class of decomposable media, defined
through a complicated set of Gibbsian dyadic expressions in [10–12]
can be expressed in quite simple terms [5, 13].

In the present study, a class of electromagnetic media, simply
defined in differential-form formalism, is analyzed for the existence
of electromagnetic fields. The analysis is based on the extension of
Gibbsian three-dimensional vectors and dyadics to four-dimensional
multivectors and dyadics. Because of space limitation, the reader
should consult [5] for details of in the methods used in this analysis.
However, an interpretation of the basic results will be also given in
terms of Gibbsian vectors and dyadic medium parameters.

2. IB MEDIUM

In continuation of the research of simple classes of electromagnetic
media using four-dimensional differential-form formalism we consider
a class which can be defined in terms of a single dyadic B ∈ E1F1

expressed in the form

M =
(
I∧∧B

)
T =

(
B∧∧ I

)
T = IT ∧∧BT . (4)

Such a class of media will be labeled here as that of IB-media.
Assuming that the eigenvectors ei, i = 1 · · · 4 of the dyadic B form
a basis and their dual basis is denoted by εi, we can write

B|ei = Biei, B =
∑

i

Bieiεi, (5)

with Bi denoting the eigenvalues. Applying the identity(
I∧∧B

)
|
(
ei ∧ ej

)
=

(
I|ei

)
∧

(
B|ej

)
+

(
B|ei

)
∧

(
I|ej

)
= (Bi + Bj) ei ∧ ej , (6)

the left eigenbivectors of M can be identified as ei ∧ ej = eij ,
corresponding to the eigenvalues Bi + Bj and the expansion

M =
∑
i<j

(Bi + Bj) εijeij . (7)
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From this the following relation between the scalar invariants is found:

trM =
∑
i<j

(Bi + Bj) = 3
∑

Bi = 3trB. (8)

Because the dyadic B has 4 × 4 = 16 free parameters, the dyadic M
is defined by the same number of parameters, instead of 6 × 6 = 36
which corresponds to the most general medium. Thus, M must satisfy
some restricting condition. From the result (A7) with Y replaced by
MT in Appendix A we see that the condition for a medium dyadic to
be of the form (4) is

6M + 2I(2)T
(
trM

)
− 3

(
M��I

)
∧∧ IT = 0, (9)

or
M = −1

6
IT ∧∧ IT

(
trM

)
+

1
2

IT ∧∧
(
M��I

)
. (10)

If this is satisfied by M, the dyadic B can be identified as

B =
1
2

MT ��IT − 1
6

(
trM

)
I. (11)

As a special case, the perfect electromagnetic conductor (PEMC) [7] or
axion medium [4] is included in the class of IB media. In fact, assuming

B =
M

2
I, M =

1
2
trB, (12)

we have
M = M I(2)T , (13)

which is the definition of the PEMC medium. Obviously, we can
extract the axion part from the general IB medium dyadic and write

M = M I(2)T + Mo, M =
1
6
trM, (14)

where Mo is trace-free.
Nature of the dyadic Mo can be conveniently studied by applying

the identity (B9) from Appendix B, which for C = MT can be written
as

I(4)��M = tr
(
M

)
I(2) −

(
MT ��IT

)
∧∧ I + MT . (15)
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This is valid for any medium dyadic M. For the present IB-medium
with M = (I∧∧B)T and trB = trM/3 (15) takes on the simpler special
form (B10) as

I(4)��M =
1
3
tr

(
M

)
I(2) − MT . (16)

Inserting I(4) = eNεN with eN = e1234 a quadrivector and εN = ε1234

its reciprocal dual quadrivector, (16) can be transformed to

eN�M =
trM
3

I(2)�eN −
(
eN�M

)
T . (17)

Defining the modified (metric) medium dyadic as Mg = eN�M [5], (17)
now becomes

Mg =
trM
3

I(2)�eN − Mg
T , (18)

which is valid for the modified medium dyadic of any IB medium.
Noting that

I(2)�eN =
∑
i<j

eijεij�e1234

= e12e34 − e13e24 + e14e23 + e23e14 − e24e13 + e34e12

(19)

is a symmetric dyadic, from (18) we find that the modified
medium dyadic corresponding to a trace-free IB medium dyadic is
antisymmetric.

In summary, the medium dyadic M of an IB-medium was seen to
consist of two components: a multiple of the unit dyadic I (2)T and
a trace-free part Mo, which modified by eN� gives an antisymmetric
dyadic. In a decomposition of the medium dyadic in three irreducible
pieces, Hehl and Obukhov have called the former component by the
name axion, and the latter component by the name skewon [4, 14–16].
The third piece, called principal by the same authors and defined by
trace-free M and symmetric Mg, is thus missing from the IB-medium.
Conversely, any medium with zero principal part can be represented
as an IB medium in the form M = (I∧∧B)T .

3. FIELD AND POTENTIAL EQUATIONS

Let us consider the field two-forms Φ, Ψ generated by the electric
source γ in a homogeneous IB medium. Since there is no magnetic
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source, the field Φ satisfying the first of the Maxwell equations (1) can
be (locally) represented in terms of a potential one-form α as

Φ(x) = d ∧ α(x). (20)

Invoking the rule [5](
AT ∧∧BT

)
|
(

β1 ∧ β2

)
=

(
AT |β1

)
∧

(
BT |β2

)
+

(
BT |β1

)
∧

(
AT |β2

)
,

(21)
valid for any dyadics A, B ∈ E1F1 and one-forms β1, β2 ∈ F1, we can
expand

Ψ(x) = M|Φ(x) =
(
IT ∧∧BT

)
|
(
d ∧ α(x)

)
= d ∧

(
BT |α(x)

)
+

(
BT |d

)
∧ α(x), (22)

whence the second of the Maxwell equations (1) becomes

d ∧ M|Φ(x) = d ∧
(
d|B

)
∧ α(x) = −

(
d|B

)
∧ d ∧ α(x) = γ(x), (23)

which for the field two-form reads(
d|B

)
∧ Φ(x) = −γ(x). (24)

Because of charge conservation, the source three-form γ(x) must satisfy
d∧γ(x) = 0. (24) requires that, in an IB-medium, it must also satisfy
a second condition, (

d|B
)
∧ γ(x) = 0, (25)

because otherwise there would be no solution Φ for (24). In other
words, a source not satisfying (25) cannot exist in an IB medium.
This is not too extraordinary as it was previously seen that certain
sources could not exist within the PEMC medium.

Considering solutions of the potential equation (23), one can note
that if α1(x) is one solution, so is the one-form

α(x) = α1(x) + c1dφ1(x) + c2d|Bφ2(x) (26)

for any two scalar functions φ1(x), φ2(x) and scalar coefficients c1, c2.
To find these coefficients it appears necessary to have two extra
conditions corresponding to the single Lorenz condition defined for
the Q-media, for example [5].
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4. PLANE WAVES

To convince oneself that there may exist nonzero fields in a
homogeneous IB medium, let us consider plane-wave type of fields

Φ(x) = Φo exp(ν|x), Ψ(x) = Ψo exp(ν|x), (27)

satisfying the Maxwell equations (1) with γ(x) = 0 in the region of
interest. Here, ν ∈ F1 is the propagation dual vector and Φo, Ψo ∈ F2

are the field-amplitude dual bivectors. Equations (1) and (24) now
require that ν and Φo satisfy

ν ∧ Φo = 0,
(
ν|B

)
∧ Φo = 0. (28)

Substituting the field amplitude in terms of a potential-amplitude dual
vector αo as

Φo = ν ∧ αo, (29)

leads to the plane-wave equation(
ν|B

)
∧ ν ∧ αo = 0, (30)

which means that the three dual vectors must be linearly dependent.
Beyond (30), there are no restrictions concerning the choice of the
two dual vectors ν and αo. In fact, we could start by choosing the
dual vector ν. Assuming that ν and ν|B are linearly independent:
ν|B ∧ ν 	= 0 i.e., ν is not a left dual eigenvector of the dyadic B, there
must exist two scalars c1, c2 such that we can write

αo = c1ν + c2ν|B. (31)

In this case the field amplitude of the plane wave has the form

Φo = ν ∧ αo = c2ν ∧
(
ν|B

)
(32)

and from (22) the other field amplitude is obtained as

Ψo = ν ∧
(
BT |αo

)
+

(
ν|B

)
∧ αo = c2ν ∧

(
ν|B2

)
. (33)

However, if the propagation dual vector is chosen to satisfy

ν|B = λν, λ 	= 0, (34)

(30) is valid for any αo and the two equations (28) become the same.
In this case there is a lot of freedom for Φo to choose from, because it
is only required to satisfy ν ∧ Φo = 0.
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To conclude, an IB medium defined by the dyadic B can support
the following electromagnetic field:

Φ(x) = cν ∧
(
ν|B

)
exp

(
ν|x

)
, Ψ(x) = cν ∧

(
ν|B2

)
exp

(
ν|x

)
,

(35)
satisfying the Maxwell equations

d ∧ Φ(x) = ν ∧ Φ(x) = 0, d ∧ Ψ(x) = ν ∧ Ψ(x) = 0, (36)

as well as the medium condition

Ψ(x) = M|Φ(x) =
(
I∧∧B

)
T |Φ(x), (37)

for any ν except when it is chosen as a dual eigenvector of B.

5. 3D REPRESENTATION OF THE IB MEDIUM

To explore the properties of an IB-medium, we extract the temporal
vector e4 and dual vector ε4 in the expansion

B = A + aε4 + e4α + ae4ε4, (38)

where A ∈ E1F1 is a three-dimensional (spatial) dyadic, a is a three-
dimensional vector, α is a three-dimensional dual vector and a is a
scalar. Also, denoting

d = ds + ε4∂τ , (39)

where ds differentiates along the three-dimensional spatial coordinates,
the condition (25) for the source three-form γ can be expanded as(

d|B
)
∧ γ(x) =

(
ds|A + ds|aε4 + ∂τα + a∂τε4

)
∧

(
� − J ∧ ε4

)
= −ds|A ∧ J ∧ ε4 + (ds|a) ε4 ∧ � − ∂τα ∧ J ∧ ε4

+ a∂τε4 ∧ �

= 0, (40)

or
ds|A ∧ J + (ds|a)� + α ∧ ∂τJ + a∂τ� = 0. (41)

Combining with

d ∧ γ = 0 ⇒ ∂τ� + ds ∧ J = 0, (42)

we obtain a condition for the current two-from J:(
ds|A∂τ + α∂2

τ − a|dsds − ads∂τ

)
∧ J = 0. (43)
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For example, J constant in time and space satisfies the condition.
Expanding the unit dyadic as

I = Is + e4ε4, (44)

the medium dyadic expressions (4) can be written as

M = IsT ∧∧AT + IsT ∧∧
(
ε4a

)
+IsT ∧∧

(
αe4

)
+

(
AT + aIsT

)
∧∧ ε4e4. (45)

The constitutive equations in terms of three-dimensional fields are

D − H ∧ ε4 = M|(B + E ∧ ε4)

=
(
IsT ∧∧AT − ε4 ∧ IsT ∧ a

)
|B

−
(
α ∧ IsT + ε4 ∧

(
AT + aIsT

))
|E. (46)

They can be split in two equations as

D =
(
IsT ∧∧AT

)
|B − α ∧ E, (47)

H = −a�B − AT |E − aE. (48)

Comparing with the representation [5]

D = α|B + ε
′|E, (49)

H = µ
−1|B + β

′
|E, (50)

we can identify the three-dimensional medium dyadics as

α = IsT ∧∧AT = trA Is(2)T − ε123e123��A, (51)

ε
′ = −α ∧ IsT = −I(2)�α, (52)

µ
−1 = −a�Is(2)T = −IsT ∧ a, (53)

β = −
(
AT + aIsT

)
. (54)

Because of ε
′|α = 0 and a|µ−1 = 0, the dyadics ε

′−1 and µ do not exist.
Thus, even if we can invert the equations and express (B, E) in terms
of (D, H), we cannot write the equations in the engineering form as
(D, B) in terms of (E, H), at least not in a straightforward manner.

The number of free parameters in an IB-medium can be checked
from A → 3 × 3 = 9, α → 3, a → 3 and a → 1, which makes
16 in total. This coincides with that of the four-dimensional dyadic
B → 4 × 4 = 16.
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6. GIBBSIAN REPRESENTATION

To see the connection to a classical representation in terms of three-
dimensional (spatial) Gibbsian vectors and dyadics, let us define the
vector counterparts of the field two-forms as

Dg = e123�D, Bg = e123�B, (55)

and of the field one-forms as

Eg = G|E, Hg = G|H, (56)

where G =
∑3

1 eiei is a three-dimensional metric dyadic. Moreover,
we can define

Ag = A|G ∈ E1E1, αg = G|α ∈ E1 (57)

corresponding to the dyadic A ∈ E1F1 and dual vector α ∈ F1. Let us
further define the dot product as

β|b = β|G · b = βg · b, (58)

and the cross product as

eN�(β ∧ γ) = βg × γg. (59)

for any dual vecors β, γ and vector b.
Expanding now

e123�
(
Is∧∧A

)
T|B=

(
Is(3)��

(
Is∧∧A

)
T
)
|Bg =

((
Is(3)��IsT

)
��AT

)
|Bg

=
(
Is(2)��AT

)
|Bg =

(
trA I − A

)
|Bg =

(
trA

)
Bg − Ag · Bg, (60)

(47) and (48) are transformed to the Gibbsian vector equations

Dg =
(
trA

)
Bg − Ag · Bg − αg × Eg, (61)

Hg = −a × Bg − Ag
T · Eg − aEg. (62)

Let us check the previously derived plane-wave condition from the
Gibbsian form. Assuming a time-harmonic plane wave with exp(−jk ·
r) dependence and denoting p = k/ω, the Maxwell equations become

p × Eg = Bg, (63)
p × Hg = −Dg. (64)
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Substituting (63) in (61) and (62), (64) then takes the form(
trA + a · p − a

)
p×E−αg ×E−

(
p × AT

g + Ag × p
)
·E = 0. (65)

Now the dyadic in brackets is actually antisymmetric and can be
expanded as

p × Ag
T + Ag × p =

(
trAp − p · Ag

)
× I, (66)

which is seen by writing Ag =
∑

risi, expanding

p× siri + risi ×p = (ri × (p× si))× I = (p(ri · si)−p · risi)× I, (67)

and noting that trA =
∑

ri · si. Inserting (66) in (65) we obtain the
final equation as

D(p) · Eg =
[(

a · p − a
)
p − αg + p · Ag

]
× Eg = 0. (68)

In more conventional media we proceed by requiring det D(p) = 0
which is called the dispersion equation, from which the possible values
for the propagation vector p are obtained. In the present case
D(p) = q(p) × I is antisymmetric with

q(p) = (a · p − a)p − αg + p · Ag, (69)

and det D(p) = 0 is satisfied for any p. This means that the plane wave
is possible for any chosen p. From (68) we see that the corresponding
electric field of a plane wave must be parallel to the vector q(p) and,
the B field, parallel to p×q(p) = αg ×p−p ·Ag ×p. However, if p is
chosen so that q(p) = 0, there is no restriction to the field vector Eg

due to (68).

7. EXAMPLE

As a concrete example of an IB-medium let us consider the simplest
generalization of the PEMC (axion) medium (13) defined by two scalar
parameters A and B through the B dyadic

B = AIs + Be4ε4. (70)

Expressing it as

B =
M

2
I +

N

2

(
Is − 3e4ε4

)
, (71)
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with
M =

3A + B

2
, N =

A − B

2
, (72)

the medium dyadic becomes

M =
(
I∧∧B

)
T = M I(2)T + N

(
Is(2)T − IsT ∧∧ ε4e4

)
. (73)

Obviously, for N = 0 we have the axion medium while for M = 0 the
dyadics B and M are trace-free and, thus, the medium falls to the class
of skewons. A medium defined by (70) was called spatially isotropic in
[5], pp.128–129, while the skewon medium with M = 0 was considered
in [4], pp.261–262.

The modified medium dyadic corresponding to (73) can be
expanded as

Mg = (M + N)(e34e12 + e14e23 + e24e31)
+ (M − N)(e23e14 + e31e24 + e12e34). (74)

Obviously, this dyadic is symmetric for N = 0 and antisymmetric for
M = 0. The medium conditions can be represented by

D = (M + N)B, H = (N − M)E, (75)

which appear generalizations of those of the PEMC medium [7]. In
fact, the Poynting two-form E ∧ H vanishes just like in the PEMC
medium, which means that no power can propagate in such a medium.
However, this does not mean that the fields must vanish within the
medium. Also, it must be emphasized that the Poynting two-form
does not vanish in general IB-media.

7.1. Time-harmonic Fields

Let us now consider time-harmonic fields in such a medium in terms
of Gibbsian vectors in a region outside the sources. The Maxwell
equations then become

∇× Eg = −jωBg, ∇× Hg = jωDg. (76)

Combining these as

∇× (Hg − (N − M)Eg) = jω(Dg + (N − M)Bg), (77)

we see that the left-hand side vanishes for the present medium. Thus,
outside sources we must also have Dg + (N − M)Bg = 0. But taking
into account the first condition (75), we have

Dg = MBg, NBg = 0. (78)
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Assuming finite M and nonzero N we end up in the quite restricting
conditions

Dg = 0, Bg = 0. (79)
Equations (76) now require that both Hg and Eg are irrotational fields
outside the sources and they are related by (75).

Considering a plane-wave solution in this medium, the vector
q(p) of (69) can be expanded after defining the Gibbsian medium
parameters as

Ag =
M + N

2

3∑
1

eiei, a = 0, αg = 0, a =
M − 3N

2
, (80)

whence (69) gives us q(p) = 2Np = 2Nk/ω. Thus, in a medium with
N 	= 0 the Gibbsian plane-wave fields are of the form

Eg(r) = Eok exp(−jk · r), (81)
Hg(r) = (N − M)Eok exp(−jk · r), (82)
Dg(r) = Bg(r) = 0. (83)

It is easy to verify that the fields satisfy the Maxwell equations for any
k. This kind of pathological longitudinal electromagnetic waves are
not encountered in ‘ordinary’ media. They do not carry any energy
when k is real because then Eg × H∗

g = 0.

7.2. Bi-isotropic Representation

Following the pattern of PEMC medium representation given in [7],
we can show that the medium of our example can also be defined as a
bi-isotropic medium in the Gibbsian vector representation [17](

Dg

Bg

)
=

(
ε ξ

ζ µ

) (
Eg

Hg

)
(84)

in terms of the relative Tellegen and chirality parameters χr, κr as [18](
ε ξ

ζ µ

)
=

√
εµ

( √
ε/µ χr − jκr

χr + jκr

√
µ/ε

)
. (85)

In fact, assuming
χ2

r + κ2
r = 1, (86)

from (84) and (85) we have

Dg =
√

ε/µ(χr − jκr)Bg, (87)

Bg =
√

µε((χr + jκr)Eg +
√

µ/εHg). (88)
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When we assume
√

µε → ∞, and finite Bg, the latter condition
requires

Hg = −
√

ε/µ(χr + jκr)Eg. (89)

Comparing with the conditions (75) we can identify the relations
between the two sets of parameters as

M =
√

ε/µ χr, N = −j
√

ε/µ κr. (90)

The conditions (86) corresponds to

M2 − N2 = ε/µ (91)

between the parameters M and N . As a summary, the simple axion-
skewon medium studied in this example can be interpreted as a bi-
isotropic medium whose relative Tellegen and chiral parameters satisfy
the condition (86). The parameters ε and µ have infinite magnitudes
but finite ratio ε/µ.

8. CONCLUSION

A class of linear media whose medium dyadic M ∈ F2E2 can be defined
through a dyadic B ∈ E1F1 was studied in four and three-dimensional
representations. It turns out that the medium coincides with the one
called axion-skewon medium in [4]. Plane-wave solution in such a
medium was found to exist for given wave-vectors. As an example,
a simple axion-skewon medium was shown to be equivalent to a bi-
isotropic medium with infinite medium parameters.
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APPENDIX A.

Let us find the solution X ∈ E1F1 of the dyadic equation

I∧∧X = Y (A1)

for a given dyadic Y ∈ E2F2. Obviously, since X involves 16 scalars and
the most general Y 36 scalars, such a solution does not exist unless Y
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satisfies some condition. Assuming that a solution exists, we can apply
a rule from [5] with trI = 4:(

I∧∧X
)
��IT = X

(
trI

)
+ I

(
trX

)
− I|I|X − X|I|I = 2X + I

(
trX

)
, (A2)

and another rule,
tr

(
I∧∧X

)
= 3trX, (A3)

which is obtained by equating the trace of left and right sides of (A2):

tr
((

I∧∧X
)
��IT

)
=

(
I∧∧X

)
||

(
IT ∧∧ IT

)
= 2tr

(
I∧∧X

)
, (A4)

tr
(
2X + I

(
trX

))
= 2trX + 4trX = 6trX. (A5)

(A3) implies trX = trY/3 which inserted in (A2) yields the solution to
(A1):

X =
1
2

(
I∧∧X

)
��IT − 1

2
I
(
trX

)
=

1
2

Y��IT − 1
6

I
(
trY

)
. (A6)

Inserting this in the original equation (A1), the dyadic condition

6Y + 2I(2)trY − 3
(
Y��IT

)
∧∧ I = 0 (A7)

for Y is obtained. As a check of this condition we can expand the
trace of the left-hand side and notice that it vanishes for any dyadic
Y ∈ E2F2:

6trY + 2trI(2)trY− 3tr
((

Y��IT
)

∧∧ I
)

= 6trY + 2× 6trY− 3× 6trY = 0.

(A8)
For the last term we have applied the relation

tr
((

Y��IT
)

∧∧ I
)

=
((

Y��IT
)

∧∧ I
)
||I(2)T

= tr
(
Y��IT

)
trI −

(
Y��IT

)
||IT

= 6trY (A9)

based on

tr
(
Y��IT

)
=

(
Y��IT

)
||IT = Y||

(
I∧∧ I

)
T = 2trY. (A10)

Now, if Y does not satisfy (A7), a contradiction arises and Y cannot
be expressed in the form (A1). Thus, (A7) is a necessary condition for
the solution X to exist. (A7) is also a sufficient condition because its
form shows that Y can be expressed as I∧∧Z for some dyadic Z ∈ E1F1.
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APPENDIX B.

Let us derive a useful identity for a dyadic C ∈ E2F2 by starting from
the following contraction identities for two dyadics A, B ∈ E1F1 which
can be derived through basis expansions [19]

I(4)��AT =
(
trA

)
I(3) − I(2) ∧∧A, (B1)

I(3)��AT =
(
trA

)
I(2) − I∧∧A, (B2)(

I(2) ∧∧A
)
��BT =

(
tr

(
A|B

))
I(2) + I∧∧AtrB

− I∧∧
(
A|B + B|A

)
− A∧∧B. (B3)

From (B1) we have

I(4)��
(
A∧∧B

)
T =

(
I(4)��AT

)
��BT

=
(
trA

)
I(3)��BT −

(
I(2) ∧∧A

)
��BT . (B4)

Applying (B2) and (B3) we have

I(4)��
(
A∧∧B

)
T =

(
trAtrB − tr

(
A|B

))
I(2)

+ I∧∧
(
A|B + B|A −

(
trA

)
B −

(
trB

)
A

)
+ A∧∧B. (B5)

This identity can be made more compact through the rules [5](
A∧∧B

)
��IT =

(
trA

)
B +

(
trB

)
A − A|B − B|A, (B6)

tr
(
A∧∧B

)
=

1
2

((
A∧∧B

)
��IT

)
||IT = trAtrB − tr

(
A|B

)
.

(B7)

Inserted in (B5) we have

I(4)��
(
A∧∧B

)
T = tr

(
A∧∧B

)
I(2) −

((
A∧∧B

)
��IT

)
∧∧ I + A∧∧B. (B8)

Because (B8) is linear in A∧∧B, this dyadic can be replaced by an
arbitrary dyadic C ∈ E2F2, whence (B8) finally takes the form of the
identity

I(4)��CT =
(
trC

)
I(2) −

(
C��IT

)
∧∧ I + C. (B9)
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As a check, taking the trace of this identity gives trC = 6trC− 6trC +
trC. Also, operating both sides of (B9) by I(4)T �� and applying (B1),
(B2) can be shown to give the same identity (B9) transposed.

For the special case C = I∧∧B (B9) becomes

I(4)��
(
I∧∧B

)
T = tr

(
I∧∧B

)
I(2) −

(
trB I + 2B

)
∧∧ I + I∧∧B

= trB I(2) − I∧∧B, (B10)

when applying results from Appendix A. For the trace-free special
case, C = I∧∧Bo with trBo = 0, (111) reduces to

I(4)��
(
I∧∧Bo

)
T = −I∧∧Bo. (B11)

APPENDIX C.

We can prove that a dyadic of the form
(
I∧∧Bo

)
�eN ∈ E2E2 is

antisymmetric if the dyadic Bo ∈ E1F1 is trace free. For this purpose
we apply (B11) by inserting I(4) = eNεN

eN�
(
I∧∧Bo

)
T �εN = −I∧∧Bo. (C1)

Multiplying by �eN from the right we have((
I∧∧Bo

)
�eN

)
T = −

(
I∧∧Bo

)
�eN , (C2)

which shows us that
(
I∧∧Bo

)
�eN must be antisymmetric.

We can also prove the converse: any antisymmetric dyadic D ∈
E2E2 can be represented in the form

D =
(
I∧∧Bo

)
�eN , (C3)

with trace-free Bo. To show this, we start from (B9), which multiplied
by �eN gives

eN�CT =
(
trC

) (
I(2)�eN

)
−

((
C��IT

)
∧∧ I

)
�eN + C�eN . (C4)

Writing D = C�eN or C = D�εN , (C4) takes the form

D − DT = −
(
trC

) (
I(2)�eN

)
+

((
C��IT

)
∧∧ I

)
�eN . (C5)
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Now if D is antisymmetric, one can show that tr
(
D�εN

)
= trC = 0.

In fact,
trC =

(
D�εN

)
||I(2)T = D||

(
I(2)T �εN

)
, (C6)

which vanishes because I(2)T �εN ∈ F2F2 is symmetric, being the dual
of (19).

I(2)T �εN =
∑
i<j

εijeij�ε1234

= ε12ε34 − ε13ε24 + ε14ε23 + ε23ε14 − ε24ε13 + ε34ε12

(C7)

Thus, an antisymmetric D satisfies from (C5), (A10)

D =
((

1
2

C��IT
)

∧∧ I
)
�eN , (C8)

which is of the form
(
I∧∧Bo

)
�eN with

Bo =
1
2

(
C��IT

)
, trBo = trC = 0. (C9)
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