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Abstract—In this paper a study is presented to handle the behavior
of radar cross section (RCS) of partially convex targets of large sizes
up to five wavelengths in free space. The nature of incident wave
is an important factor in the remote sensing and radar detection
applications. To investigate the effects of incident wave nature on
the RCS, scattering problems of plane and beam wave incidences are
considered. Targets are taking large sizes to be bigger enough than the
beam width with putting into consideration a horizontal incident wave
polarization (E-wave incidence). The effects of the target configuration
together with the beam width on the laser RCS compared to the case
with the plane wave incidence are numerically analyzed. Therefore, we
will be able to have some sort of control on radar detection using beam
wave incidence.

1. INTRODUCTION

The radar scattering from electrically real targets of finite sizes remains
a very challenging problem in computational electromagnetics. Some
methods proposed to formulate the scattering wave were presented:
examples are in [1–3]. In this regard, some years ago, a method has
been presented for solving the scattering problem as a boundary value
problem [4–8]. This method is characterized by the estimation of the
current on the whole surface and not only on the illumination region as
in the physical optics method. Therefore this method gives a precious
calculation of the wave intensity.

Numerical results have been shown for RCS of conducting convex
bodies such as circular and elliptic cylinders [4]. Later as the more
practical models, the effects of target configuration and polarization on
the radar cross section (RCS) were analyzed in many of my publications



324 El-Ocla

(e.g., [5–8], where other references are available). It was found that the
target configuration together with incident wave polarization obviously
affect the RCS.

It should be noted that for generating waves of infinitely large
plane wave fronts, an infinitely large source should be used. This can
not be available easily especially for plane waves wide sufficiently at the
fronts of large size targets in the far field. In an attempt to generate
plane wave, an expansion of plane wave into Gaussian beam waves
was derived [9]. Gaussian beams play a key role in different fields of
physics; let us mention applications in lasers, electromagnetic waves,
etc. Many problems of propagation and scattering of Gaussian beams
have been solved (see [6, 10, 11], where other references can be found).
On the other hand, the research on laser radar [12] for target ranging,
detection, and recognition [13] has become the one key technology to
evaluate and model the characteristics of scattering from a complex
target in the military and civil applications.

In this regard, the scattering characteristics are analyzed through
studying the behavior of laser RCS (LRCS) of the target. In doing
that, one can calculate the LRCS by assuming a beam wave incident
on a nonconvex target in free space. In fact, we can consider the
beam wave as a plane wave when the mean size of the target becomes
smaller than the beam width, however, this is not usually the general
case practically. To detect targets of larger sizes, we should, therefore,
handle the case where the beam width is smaller than the target size.

Here, we evaluate the effects of the target configuration including
size and curvature on the RCS of target for the two cases of plane
and beam wave incidences. To achieve this aim, we draw on our
method described earlier to conduct numerical results for the RCS of
concave-convex targets of large sizes up to about five wavelengths to be
bigger enough than the beam width. Next, we estimate the normalized
RCS (NRCS), defined as the ratio of LRCS σb to RCS for plane wave
incidence σ0. Therefore, we will be able to analyze the difference in the
behavior between RCS and LRCS. I consider the case where a directly
incident wave is produced by a line source distributed uniformly along
the axis parallel to the conducting cylinder (target) axis. Then we can
deal with this scattering problem two-dimensionally with assuming
horizontal polarization (E-wave incidence). In the previous work
[5, 7], it has been clarified that the RCS changes obviously with the
illumination region curvature. In this study, it is concentrated on the
wave backscattering from convex illumination portion only. The time
factor exp(−iwt) is assumed and suppressed in the following section.
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2. FORMULATION

Let us consider scattering waves from targets with assuming two cases:
(1) plane wave incidence, (2) beam waves incidence, in free space.
For both scattering problems, geometry of the problem is shown in
Figure 1. Here, k = ω

√
ε0µ0 is the wavenumber in free space where

ε0 and µ0 are the free space permitivity and magnetic permeability,
respectively, and W is the beam width.
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Figure 1. Geometry of the problem of wave scattering from a
conducting cylinder.

Consider the case where a directly incident wave is produced by
a line source f(r′) distributed uniformly along the y axis. Then, the
incident wave is cylindrical and becomes plane approximately around
the target because the line source is very far from the target. Here, let
us designate the incident wave by uin(r), the scattered wave by us(r),
and the total wave by u(r) = uin(r) + us(r). An electromagnetic wave
radiated from the line source located at rt propagates in free space,
illuminates the target and induces a surface current on the target. A
scattered wave from the target is produced by the surface current and
propagates back to the observation point that coincides with the source
point.

The target is assumed as a conducting cylinder. The cross-section
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of the cylinder is expressed by

r = a[1 − δ cos 3(θ − φ)] (1)

where a is the mean size of the target in which a � rt, δ is the concavity
index, and φ is the rotation index which represents the incident angle.

Using the current generators YE and Green’s function in free space
G0(r | r′), we can express the scattered wave as

us(r) =
∫

S
dr1

∫
S

dr2 [G0(r | r2)YE(r2 | r1)uin(r1 | rt)] (2)

For the scattering problem with plane wave incidence, uin(r1 | rt)
is expressed as

uin(r1 | rt) = G0(r1 | rt) (3)

whose dimension coefficient is understood. Here YE is the operator
that transforms incident waves into surface currents on S and depends
only on the scattering body [4–8]. The current generator can be
expressed in terms of wavefunctions, which satisfy Helmholtz equation
and the radiation condition. That is, for E-wave incidence, the current
generator is obtained as

YE(r | r′) � Φ∗
M (r)A−1

E � ΦT
M (r′) (4)

where ΦM = [φ−N , φ−N+1, . . . , φN ], M = 2N + 1 is the total mode
number, φm(r) = H

(1)
m (kρ) exp(imθ), and AE is a positive definite

Hermitian matrix given by

AE =




(φ1, φ1) . . . (φ1, φM )
...

. . .
...

(φM , φ1) . . . (φM , φM )


 (5)

in which its m,n element is the inner product of φm and φn:

(φm, φn) ≡
∫

S
φm(r)φ∗n(r)dr (6)

where � ΦT
M , denotes the operation (7) of each element of ΦT

M and
the function uin to the right of ΦT

M

� φm(r), uin(r) �≡ φm(r)
∂uin(r)
∂n

− ∂φm(r)
∂n

uin(r). (7)

The YE is proved to converge in the sense of mean on true operators
when M → ∞.
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For the scattering problem with Gaussian beam wave incidence,
let us consider uin(r1 | rt) to be represented by

uin(r1 | rt) = G0(r1 | rt) exp

[
−

(
kx1

kW

)2
]

(8)

The beam expression is approximately useful only around the cylinder.
The plane wave can be considered as a beam wave with infinite

beam width, that is:

W = ∞ for plane wave incidence (9)

We can obtain the RCS σ0 for plane wave incidence using equations (2)
and (3), and obtain LRCS σb using equations (2) and (8). We use σ as
a general symbol that indicates both σ0 and σb and can be calculated
as

σ = |us(r)|2 k(4πz)2. (10)

3. NUMERICAL RESULTS

Here, we point out that N , in the formulation, depends on the target
parameters. For example, we choose N = 24 at δ = 0.1 in the range of
0.1 < ka < 5; at ka = 20, we choose N = 40 at δ = 0.1. As a result,
our numerical results are accurate because these values of N lead to
convergent RCS. In the numerical results, it is assumed that φ = π.

Let us define the effective illumination region (EIRp) as that
surface that is illuminated by the plane wave incidence as shown in
Figure 2-a. On the other hand, we define the effective illumination
region (EIRb) as that surface that is illuminated by the beam wave
incidence and restricted by the 2kW as shown in Figure 2-b. According
to (9) and as shown in Figure 2, EIRp >EIRb, which results in increase
in the surface current generated and that leads to the relation: σ0 >σb,
as we are going to see in the numerical results. Also, from Figure 2,
we expect that the target configuration including δ and ka together
with kW are going to affect the EIR generally. Accordingly, the RCS,
LRCS, and the enhancement factor of NRCS will be influenced by a
way that will be clarified in the numerical results.

We define DRCS as the difference in the behavior of RCS σ with
ka between plane and beam wave incidences, i.e., between σ0 and σb.
To detect the target through calculating its RCS, the target should
be surrounded by the incident wave. This condition is realized with
the plane wave but not with the beam wave since the later illuminates
only a portion of the target. Therefore the beam wave does not cause
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Figure 2. Geometry shows the effective illumination region where (a)
plane wave incidence, (b) beam wave incidence.

generating enough surface current needed for correct RCS calculation.
Accordingly, as the DRCS decreases, as the estimated RCS becomes
more accurate. In the following sections, a numerical analysis for the
parameters that affect the DRCS is going to be presented.

3.1. Radar Cross-section RCS

Here, I discuss the numerical results for σ0 and σb shown in Figures 3
and 4. We notice from these figures that there are two effects on both
σ0 and σb. The first is the effect of target configuration and can be
seen clearly with changing δ and ka as shown in Figure 3. For small
ka and/or large δ, DRCS becomes small. As ka increases and/or δ
decreases, as the DRCS increases due to the lack in EIRb, and vice
versa. To understand such behavior, we have to turn the attention
to that in case of beam wave incidence, the surface current outside
EIRb is relatively small compared to that at the beam spot that is
inside the EIRb. Therefore in accordance to (2), as EIRb shrinks, as
the contribution to the scattered waves decreases effectively.

The second is the effect of the beam width size kW shown in
Figure 4. Note that there is a direct relationship between σb and kW .
In other words, when kW increases, the results of σb become closer to
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Figure 3. RCS vs. target size for E-wave incidence in free space where
(a) δ = 0, (b) δ = 0.1, and (c) δ = 0.2.

σ0 and that agrees with the conclusion published in [14].
In Figure 4-a, σ0 is invariant with ka because the generated surface

current does not change since the illumination region is always covered
by the plane wave incidence. In contrast, with increasing ka in Figures
4-b,c, σb decreases as a result of the shortage in the surface current and
that leads to the gradual decrease in the scattered wave contribution
with ka as explained above. Also, it is observed that σb differs with δ
for small ka and absolutely coincides with larger ka. The coincidence
of σb becomes more obvious and earlier with ka for smaller kW . This
occurs when ka � kW in which the surface current outside EIRb has a
slight contribution to the scattered waves with different δ. At certain
limit, σb will diminish with large enough target and the beam wave
becomes incapable of target detection.



330 El-Ocla

0

1

2

3

4

5

6

0 5 10 15 20 25 30

σ
  /

(2
a)

 = 0  
   = 0.1  
   = 0.2  

Ka

0
δ

0

1

2

3

4

5

6

0 5 10 15 20 25 30

σ
  /

(2
a)

 = 0  
   = 0.1  
   = 0.2  

Ka

b

δ

(a) (b)

0

1

2

3

4

5

6

0 5 10 15 20 25 30

σ
  /

(2
a)

 = 0  
   = 0.1  
   = 0.2  

Ka

b

δ

(c)

Figure 4. RCS vs. target size for different δ where (a) plane wave
incidence (kW = ∞), (b) beam wave incidence with kW = 4.8, and
(c) beam wave incidence with kW = 1.5.

3.2. Normalized Radar Cross-section

Here NRCS, defined as the ratio of LRCS σb to RCS for plane wave
incidence σ0, is considered to manifest the DRCS and hence numerical
results for NRCS are presented in Figure 5.

NRCS is analyzed in three regions of ka compared to kW.
For ka � kW, the NRCS equals one and this value of

NRCS is realized, independent of illumination portion curvature, i.e.,
independent of the concavity index δ. In this range, beam wave seems
as if it is a plane wave for the small ka and therefore DRCS equals
zero.

For ka � kW, the NRCS oscillates remarkably and irregularly
far from one. In fact, this irregular oscillation, that decreases with
δ, is due to the DRCS. However, the strength of this oscillation, i.e.
enhancement factor, in NRCS decreases with increasing kW which in
turn reduces DRCS.
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Figure 5. Normalized RCS vs. target size for E-wave incidence in
free space where (a) δ = 0, (b) δ = 0.1, (c) δ = 0.2.

For ka > kW, NRCS decreases gradually with ka; this decrease is
faster with smaller kW, this behavior is due to the DRCS as illustrated
earlier. In the region ka � kW, the impact of δ becomes fairly limited
on the EIR, as has been explained previously, and therefore the amount
of scattered waves changes slightly. Accordingly, the decrease behavior
of RCS becomes quite similar with different δ for large ka.

4. CONCLUSION

The behavior of RCS of partially convex targets taking large sizes
up to five wavelengths in free space was evaluated. The scattering
problems of plane and beam wave incidences were considered. In this
study, we clarified the effects of the target configuration together with
beam width on the laser RCS (LRCS) compared to the case with plane
wave incidence. When target size becomes larger enough than the
beam width, it was found that target curvature has a slight effect on
the LRCS behavior. On the other hand of the later case, the LRCS
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was proved to differ obviously from RCS for plane wave incidence
and that difference increases with target size. At certain limit, LRCS
will diminish with large enough target and the beam wave incidence
becomes incapable of target detection. For larger beam width, LRCS
becomes closer to RCS for plane wave incidence, however, it changes
obviously with target curvature.
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