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Abstract—A novel approach based on spatiotemporal differential-
operators is developed here for broadband, velocity-dependent
scattering. Unlike the spectral-domain representations, the new
method facilitates a compact formulation for scattering by arbitrary
excitation signals, in the presence of moving objects. In free space
(vacuum), relativistically exact formulas are developed.

After developing the general theory, analysis of relativistically
exact free-space scattering by cylinders, and a half-plane, are
examined. For cylinders the analysis shows that in the far field
pulses are located on circles in the co-moving reference-frame where
the object is at-rest. In other reference frames this feature is
valid only as an approximation. These results apply also to the
diffractive part of the half-plane scattered field. The geometrical-optics
contribution is associated with plane-waves and obeys the appropriate
transformations. The various zones for these fields in an arbitrary
reference-frame are analyzed.

1. INTRODUCTION

An arbitrary space-time dependent function f(R) can be represented
in terms of a four-fold Fourier integral

f(R) = q

∫
(d4K)f(K)eiK·R, q = (2π)−4, d4K = dkxdkydkzdiω/c

R = (r, ict) = (x, y, z, ict), K = (k, iω/c) = (kx, ky, kz, iω/c) (1)

compactly symbolized by using in (1) Minkowski four-vectors K, R,
and usually the four integrations extend over the range −∞ to ∞, and
all the provisos for the existence of the integrals are met.
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Functions as in (1) are involved in Maxwell’s equations in
sourceless domains

∂r × E = −∂tB, ∂r × H = ∂tD

∂r · D = 0, ∂r · B = 0
(2)

where in the spatiotemporal domain E = E(R), etc. See for example
[1] for notation. In order to solve (2) one needs constitutive relations,
e.g.,

D = ε̃ · E, B = µ̃ · H (3)

where in simple nondispersive media the dyadics (matrices) ε̃, µ̃,
reduce to constant scalars ε, µ, respectively.

Substituting the constitutive relations, e.g., (3), in (2) yields
the associated wave-equations. In sourceless domains we have
homogeneous wave-equations, which can be symbolized by an operator
F (∂R)

F (∂R)f(R) = 0, ∂R = (∂r,−i∂t/c) (4)

where in (4) f(R) can stand for any Cartesian component of the
fields E, D,B, H, in (2), and ∂R is the Minkowski four-gradient
vector. The wave-equation (4) is obtained from Maxwell’s equations
in sourceless domains (2), including the constitutive equations, e.g.,
(3), by repeated substitution reduction, or equivalently, by equating to
zero the symbolic determinant of the system.

Applying the wave operator F (∂R) to the integral (1) and equating
to zero defines f(R) as a solution of (4). Now, interchanging order
of integration and differentiation, and applying the derivatives to the
exponential, yields

F (∂R)f(R) = q

∫
(d4K)f(K)F (iK)eiK·R = 0 (5)

where in (5) the component-derivatives of ∂R are simply replaces by
the corresponding components of the Minkowski vector iK.

It follows that the algebraic expression, the so-called dispersion-
relation

F (iK) = 0 (6)

must be satisfied. The constraint (6) can be incorporated into the
integral (1) in the form

f(R) = q

∫
(d4K)g(K)eiK·R = 0, g(K) = f(K)δ(F (iK)) (7)

where the Dirac delta function δ indicates that the integrals vanish
unless (6) is satisfied. Alternatively, the four-fold integral can be
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collapsed to a three-fold integral, e.g.,

f(R) = q

∫
(d3k)f(k)eiK·R = 0

f(k) = f(k, iω(k)/c), K · R = k · r − ω(k)t
(8)

with K expressed in terms of k, ω and ω eliminated by substituting
from (6) in the form

F (iK) = F (ik,−ω(k)/c) = 0 (9)

Note that (8) is no more a Fourier-integral proper, and therefore no
inverse can be given.

We need a few elements from Einstein’s Special-Relativity theory
[2]. For more detail see also [3, 4]. Accordingly if (2) is valid in an
inertial reference-frame Γ, it is also valid in another arbitrary inertial
reference-frame Γ′ in the form

∂r′ × E′ = −∂t′B′, ∂r′ × H ′ = ∂t′D
′

∂r′ · D′ = 0, ∂r′ · B′ = 0
(10)

where in the present spatiotemporal domain E′ = E′(R′), etc. The
coordinates are related by the Lorentz transformation R′ = R′[R] in
the form

r′ = Ũ · (r − vt), t′ = γ(t− v · r/c2)
γ = (1 − β2)−1/2, β = v/c, v = |v|, (11)

Ũ = Ĩ + (γ − 1)v̂v̂, v̂ = v/v

and the associated transformation for the derivatives ∂R′ = ∂R′ [∂R] is
given by

∂r′ = Ũ · (∂r + v∂t/c
2), ∂t′ = γ(∂t + v · ∂r) (12)

Consequently the fields transformations are prescribed by F ′ =
F ′[F ] in the form

E′ = Ṽ · (E + v × B), B′ = Ṽ · (B − v × E/c2)

D′ = Ṽ · (D + v × H/c2), H ′ = Ṽ · (H − v × D) (13)

Ṽ = γĨ + (1 − γ)v̂v̂

Postulating the phase-invariance “principle” (which is actually
superfluous if we already have declared K, R, to be Minkowski four-
vectors [3, 4]), we have

K · R = k · r − ωt = K ′ · R′ = k′ · r′ − ω′t′ (14)
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Consequently (14) yields the relativistic Doppler-effect K ′ =
K ′[K] in the form

k′ = Ũ · (k − vω/c2), ω′ = γ(ω − v · k) (15)

The formulas R′ = R′[R], ∂R′ = ∂R′ [∂R], F ′ = F ′[F ], K ′ =
K ′[K] (11), (12), (13), (15), have inverses R = R[R′], ∂R =
∂R[∂R′ ], F = F [F ′], K = K[K ′], respectively, obtained by
exchanging primed and unprimed symbols and noting that v′ = −v.

2. SPATIOTEMPORAL DIFFERENTIAL-OPERATORS

Recently differential-operators representations for velocity-dependent
scattering have been developed [3, 5, 6], with emphasis on harmonic ex-
citation. Presently we aim at developing corresponding spatiotemporal
domain operators. To that end we substitute the Maxwell equations
(2) in (13). For example, the first formula (2) is recast in the form
B = −∂−1

t ∂r × E, consequently the first formula (13) becomes

E′ = Ṽ · (E + v × B) = Ṽ · (E − v × ∂r × ∂−1
t E) = W̃ · E

W̃ = Ṽ · (Ĩ − v × ∂−1
t ∂r × Ĩ)

(16)

defining the new dyadic differential-operator W̃ . In (16) ∂−1
t denotes

the primitive time-integration (indefinite integral). Similarly we find

H ′ = Ṽ · (H − v × D) = W̃ · H (17)

with the same dyadic differential-operator as given in (16). We can
also introduce

B′ = Ṽ · (B − v × E/c2) = −Q̃ · E
D′ = Ṽ · (D + v × H/c2) = Q̃ · H (18)

Q̃ = Ṽ ·
(
∂−1
t ∂r × Ĩ + v × Ĩ/c2

)
completing the general formulas.

Inasmuch as in (16)–(18) no constitutive relations are incorpo-
rated, inverse formulas are obtained by interchanging primed and un-
primed fields and coordinates, and replacing v by −v, yielding

E = W̃
′ ·E, H = W̃

′ · H ′, W̃
′
= Ṽ ·

(
Ĩ + v × ∂−1

t′ ∂r′ × Ĩ
)

B = −Q̃
′ ·E′, D = Q̃

′ ·H ′, Q̃
′
= Ṽ ·

(
∂−1
t′ ∂r′×Ĩ − v×Ĩ/c2

) (19)
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It seems interesting that in (18) the electric field is derived from
the magnetic one, and vice-versa. Of course one cannot expect that
in (18), say in the first formula, E be eliminated by substituting
B = −∂−1

t′ ∂r ×E, because an inverse operation to ∂r× does not exist.
By manipulation of (16)–(19) we obtain additional relations

D = S̃ · H, D′ = S̃
′ · H ′, B = −S̃ · E, B′ = −S̃

′ · E′

S̃ = Q̃
′ · W̃ , S̃

′
= Q̃ · W̃ ′

, W̃ · W̃ ′
= W̃

′ · W̃ = Ĩ
(20)

In (20) the first four relations look very much like some new kind of
constitutive relations, but of course they are not, because no material
considerations have been included so far. If we do admit constitutive
relations, e.g., (3), then by substitution we find

Q̃
′ · H ′ = ε̃ · W̃ ′ · E′, Q̃

′ · E′ = −µ̃ · W̃ ′ · H ′ (21)

The equations (21) are indeed constitutive-relations which should
reduce to the well-known Minkowski constitutive-relations. For more
detail see e.g., [1, 7].

Below, the new tools (16), (17) and their inverses will serve us in
discussing spatiotemporal velocity-dependent scattering.

3. THE SCATTERING ALGORITHM

Corresponding to (7), consider a solution of the Maxwell equations (2),
in the form {

E(R)
H(R)

}
= q

∫
(d4K)

{
gE(K)
gH(K)

}
eiK·R (22)

where in (22) E, H, hence respectively gE, gH , are related by
constitutive equations, e.g., (3).

Specific waves of the form (22) will serve us as the initial
excitation-wave specified in the “laboratory” reference-frame Γ. In
order to be able to discuss scattering problems in the reference-frame
Γ′ in which the scatterer is at rest, we need to apply the operators
(16), (17) to (22), yielding{

E′(R)
H ′(R)

}
= W̃ R ·

{
E(R)
H(R)

}
= q

∫
(d4K)eiK·RW̃ K ·

{
gE(K)
gH(K)

}

β = v/vph, vph = ω/k (23)

W̃ R = Ṽ · (Ĩ − v×∂−1
t ∂r×Ĩ), W̃ K = Ṽ · (Ĩ + βv̂×k̂×Ĩ)
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Incorporating (14) in the exponent in (23), it is possible to express
the fields in terms of the native coordinates of Γ′, denoted for brevity
by E′(R′), H ′(R′){

E′(R′)
H ′(R′)

}
= q

∫
(d4K)eiK

′·R′
W̃ K ·

{
gE(K)
gH(K)

}
(24)

where in (24) K ′ is related to K through the relativistic Doppler-effect
K ′ = K ′[K], (15).

We can do even better than that: the integral (24) can be
transformed into K ′ coordinates by using the Jacobian determinant
det[∂KK ′], which for the present case equals unity, e.g., see [1, 8]{

E′(R′)
H ′(R′)

}
= q

∫
(d4K)eiK

′·R′
{

g′
E

g′
H

}
{

g′
E

g′
H

}
=

{
g′

E(K ′)
g′

H(K ′)

}
=

[
W̃ K ·

{
gE(K)
gH(K)

}]
K=K[K′]

(25)

d4K ′ = det[∂KK ′]d4K = d4K

where in (25) we used the fact that both K and K ′ are
integrated over the entire four-dimensional spatiotemporal spaces, and
g′

E(K ′), g′
H(K ′) are obtained as a function of K ′ by substituting the

Doppler-effect formulas K = K[K ′], i.e., the inverse of (15).
Consider (22) to be the excitation wave specified in reference-

frame Γ. Then (25) provides the fields measured in the reference-frame
Γ′ of the object at-rest. In many cases scattering by harmonic plane-
wave excitation is analyzed. This makes (25) a convenient starting
point. In response to the plane-wave excitation under the integral
sign, the scattering wave is created, chosen in a manner prescribed by
the boundary-conditions and behaving as an outgoing wave at large
distances.

Without going into the details of the solution of the boundary-
value problem, the scattered wave created by a spectrum of plane waves
(25) can be presented in the form{

E′
sc(R

′)
H ′

sc(R
′)

}
= q

∫
(d4K ′)

{
E′
sc(R

′, g′
E(K ′),K ′)

H ′
sc(R

′, g′
H(K ′),K ′)

}
(26)

where in the integral (26) in E′
sc(R

′, g′
E(K ′),K ′), H ′

sc(R
′, g′

H(K ′),K ′)
the plane-wave exponential eiK

′·R′
is already included. The depen-

dence on K ′ is due both to this exponential, and via the complex
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vector weight-functions g′
E(K ′), g′

H(K ′), with their absolute value
and direction of polarization included.

In order to derive the scattered wave in the initial reference-frame
Γ, the inverse spatiotemporal operator (cf. (23)) is applied to (26){

Esc(R′)
Hsc(R′)

}
= W̃

′
R′ ·

{
E′
sc(R

′)
H ′

sc(R
′)

}

= q

∫
(d4K ′)W̃

′
R′ ·

{
Esc(R′, g′

E(K ′),K ′)
Hsc(R′, g′

H(K ′),K ′)

}
(27)

W̃
′
R′ = Ṽ · (Ĩ + v × ∂−1

t′ ∂r′ × Ĩ)

Obviously in (27) the Γ fields are still expressed in terms of
reference-frame Γ′ native coordinates. If so wished, the Lorentz
transformation (11) can be exploited to derive the fields in terms of Γ
native coordinates.

4. FREE-SPACE IMPULSIVE PLANE-WAVE
EXCITATION

As a concrete example for broadband, velocity-dependent scattering,
consider propagation in free-space, i.e., in (3)

D = εE, B = µH, ε = ε0, µ = µ0, ε0µ0 = 1/c (28)

where in (28) ε0, µ0 are constants, valid for all inertial systems, and c
is the speed of light in free-space.

For broadband excitation-waves we consider the extreme case of
an impulsive, transversal plane-wave, whose time-dependence is stated
by a Dirac delta-function

{
E
H

}
=

{
Êe

Ĥh

}
δ(τ), δ(τ) =

∫ ∞

−∞
e−iωτdω/2π

τ = t− k̂ · r/c, ωτ = ωt− k · r (29)

ω/k = vph = (µε)−1/2, e/h = Z = (µ/ε)1/2

Ê · Ĥ = Ê · k̂ = Ĥ · k̂ = 0, Ê × Ĥ = k̂

We could also derive (29) from the general form (22). Assume a
Cartesian coordinate system with the wave vector k = ξ̂kξ pointing
in the ξ-direction, perpendicular to coordinates η, ζ. We thus have
to include in the integral constraints δ(kη), δ(kζ). Furthermore, we
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include a constraint δ(kξ − ω/c) which is the dispersion-equation (6)
appearing in the integral (5). We now have

{
E
H

}
=

{
Êe

Ĥh

}
q

∫
(d4K)geiK·R =

{
Êe

Ĥh

}
δ(τ)

g = −icδ(kξ − ω/c)δ(kη)δ(kζ)(2π)3
(30)

where in (30) the arbitrary weight function contains the factors (2π)3
and −ic compensating for the factor i/c due to the definition of the
normalized frequency in (1), and adjusting (30) to (29).

In accordance with (25), we have the wave (30) transformed into
reference-frame Γ′. Inasmuch as we have only a single direction of
propagation we can use the operator W̃ K defined in (23). Therefore
in Γ′ we now have {

E′

H ′

}
= W̃ K ·

{
Êe

Ĥh

}
δ(τ) (31)

Exploiting the phase-invariance (14) which prescribes ω′τ ′ = ωτ ,
and changing the integration variable, (31) is rewritten as

{
E′

H ′

}
=

{
Ê

′
e′

Ĥ
′
h′

}
δ(τ ′),

{
Ê

′
e′

Ĥ
′
h′

}
= W̃ K ·

{
Êe

Ĥh

}

τ ′ = t′ − k̂
′ · r′/c, ω′τ ′ = ωt (32)

δ(τ) =
∫ ∞

−∞
e−iωτdω/2π =

∫ ∞

−∞
e−iω

′τ ′pdω′/2π = pδ(τ ′)

p = dω/dω′ = 1/(γ(1 − βv̂ · k̂))

It follows from (32) that in Γ′ the transformation leads once
again to an impulse plane-wave, whose direction and amplitude are
determined by the factors shown in (31), (32). Furthermore, since the
spectrum is flat and infinite, there is no way of detecting frequency
shifts according to the Doppler-effect formulas (15). Of course, there
will be a change in the amplitude and the direction, but compared to
frequency shifts, these parameters are usually much more complicated
to measure.

It also follows that reflections from moving plane interfaces, as
long as the material is nondispersive, will lead in the initial reference-
frame Γ to scattered impulsive plane-waves having the same spectral
structure, hence once again for delta-function impulses no Doppler
frequency shifts are detectable.
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5. BROADBAND SCATTERING BY CYLINDERS
AT-REST

Intuition suggests that an impulsive plane-wave excitation as in (29),
when hitting a small object at-rest, will be scattered as circular-
cylindrical, or spherical-waves, in the two- or three-dimensional cases,
respectively. Careful scrutiny shows that this problem is much more
complicated, compared to reflection from plane interfaces, for objects
at rest and more so for objects in motion.

We consider the two-dimensional case of scattering by cylinders
at rest in Γ′. The excitation wave in Γ is given by (29), (30), polarized
along the cylindrical z-axis, i.e., for say the E-field, we have Ê = ẑ.
The motion is considered in the plane perpendicular to ẑ, i.e., v̂ ·ẑ = 0.
Using the vector identities for ∂r × (v × Ĩ) and v̂ × (k̂ × Ĩ), in (23),
(27), the operators reduce to

W̃ R = γ
(
1 + (v · ∂r)∂−1

t

)
Z̃, W̃ K = γ(1 − βv̂ · k̂)Z̃

W̃
′
R′ = γ

(
1−(v · ∂r′)∂−1

t′

)
Z̃, W̃

′
K′ = γ(1+βv̂ · k′)Z̃, Z̃ = ẑẑ

(33)
In the initial reference-frame Γ the excitation wave is provided by

(30) with Ê = ẑ. The scatterer is at rest in Γ′, hence the transformed
excitation wave is given by (31), (32) with Ê

′
= ẑ = ẑ′. It is noted

that in the present case the factor γ(1 − βv̂ · k̂) appearing in (32) in
the denominator cancels with the same factor, appearing according to
(33) in the numerator. However, it must be remembered that this is
a special case, for the field of a plane wave polarized perpendicularly
with respect to v. It will not work for the H-field of the same wave,
unless it too satisfies v · H = 0, i.e., v̂ = k̂.

Various representations for the scattered wave are summarized
in [3], in particular see Twersky (ref. [9] there), who discusses the
special-function representation of the scattered wave and shows that it
exists at least (there exists also a weaker condition) outside the circle
circumscribing the scatterer’s cross-section.

Accordingly, for Ê
′
= ẑ, and a scatterer whose geometry is defined

relative to the spatial origin of Γ′, (26) can be written as

E′
sc(R

′) = ẑe′
∫ ∞

−∞
dω′E′

sc(R
′, ω′)/2π

E′
sc(R

′, ω′) = e−iω
′t′Σmi

mam(ω′, α′)Hm(ρ′)eimϕ
′

(34)

=
∫
ψ′
eiρ

′Cϕ′−ψ′−iω′t′g(ψ′)dψ′/π, Cϕ′−ψ′ = cos(ϕ′ − ψ′)
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ψ′

=
∫ ψ′=ϕ′+(π/2)−i∞

ψ′=ϕ′−(π/2)+i∞
, ρ′ = ω′r′/c,

Σm = Σm=∞
m=−∞, g(ϕ′) = Σmame

imϕ′

In (34) ϕ′, α′ are the azimuthal and the incidence angles,
respectively. The Hankel functions of the first kind Hm = H

(1)
m ,

together with the time-factor e−iω
′t′ provide for outgoing waves.

The coefficients am(ω′, α′) are given, e.g., by solving the pertinent
boundary-value problem. The complex integral representation is
recognized as a plane-wave integral-representation based on the
Sommerfeld integral-representation for the Hankel functions (e.g., see
[9]). Note also the compact notation for the trigonometric functions.
The function E′

sc(R
′, ω′) denotes the integrand in (34), and its

dependence on the frequency ω′.
In order to find the spatiotemporal function E′

sc(R
′) the integral

must be evaluated, which seems analytically infeasible. Even far-field
expressions in terms of the asymptotic approximation of the Hankel
function are inapplicable, because the infinite range of ω′ prescribing
an unbounded argument for Hm = H

(1)
m .

Furthermore, consider the example of scattering by a perfectly
conducting circular cylinder of radius a and Ê = ẑ polarization. For
this case (e.g., see for example Kong [10]), we have

am(ω′, α′) = −eimα′
Jm(ρ′a)/Hm(ρ′a)

ρ′a = ω′a/c
(35)

For thin cylinders with infinitesimally small a we find

a0 ≈ − iπ

2 ln(2/(δρ′a))
, δ = 1.78107

am ≈ −e−imα′
iπm(ρ′a/2)22m/(m!)2, m = 1, 2, . . .

(36)

where in (36) δ is Euler’s constant (e.g., see [9], p. 358). For fixed ω′

and very small a the dominant term in (36) is a0, hence the scattered
wave will display monopole behavior, i.e., the scattered field will be
independent of directions.

For Ĥ = ẑ polarization, instead of (35) we find

am(ω′, α′) = −e−imα′
∂ρ′aJm(ρ′a)/∂ρ′aHm(ρ′a) (37)

For this case, instead of (36) we find

a0 ≈ −iπ(ρ′a/2)2

am ≈ −e−imα′
iπm(ρ′a/2)22m/(m!)2, m = 1, 2, . . .

(38)
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hence according to (38) the dominant multipoles are both the monopole
a0 and the dipole a1 which is already dependent on directions.
In general the scattering-amplitude terms am govern the azimuthal
dependence of the field.

Obviously in view of the infinite range of ω′ the term “thin
cylinder” is inapplicable in (34)–(38). Moreover, upon trying to
implement the far-field asymptotic approximation (e.g., see [9], p. 359)
in (34) in the form

imHm(ρ′) ∼ (2/iπρ′)1/2eiρ
′

(39)

we have to conclude that it is inapplicable because of the infinite range
of ω′.

To be able to implement the above approximations, we need
to assume a limited but sufficiently broadband spectrum centered
about some arbitrary ω′

0, so that the impulsive nature of the peak
amplitude is significant, but the band is limited in order to allow the
approximations. This is implemented by assuming a spectral window
W (ω′) instead of the delta-function (29)–(32).

We assume that in (34) and the far-field approximation (39) only
the exponentials vary rapidly, hence we conclude that the slowly-
varying factors are well-approximated as constants at ω′

0 and we finally
approximate (34) in the form

E′
sc(R

′, ω′
0) ∼ ẑe′LgS(τ ′),

τ ′ = t′ − r′/c, L = (2/iπρ′0)
1/2, ρ′0 = ω′

0r
′/c

S(τ ′) =
∫ ∞

−∞
W (ω′)e−iω

′τ ′dω′/2π

g = g(ϕ′, ω′
0) = Σmam(ω′

0, α
′)eimϕ

′

(40)

Subject to the approximations, (40) displays in the time-domain
a spiked impulsive scattered wave, spatially modulated according to
g = g(ϕ′, ω′

0). If W (ω′) is sufficiently broad, the pulse is increasingly
spiked in the vicinity of τ ′ = 0. The equation of motion

τ ′ = t′ − r′/c = 0 (41)

displays circular outgoing waves, propagating with a radial group-
velocity dr′/dt′ = c.

At a first glance (41) looks trivial, but actually it is not self-
evident. The dispersion-relation (6) is derived for plane waves assumed
in (5). Accordingly, in free space (29) prescribes ω/k = vph = c. The
reason for the simplicity of (40) stems from the fact that we are dealing



62 Censor

with a far-field form where the outgoing wave with a slow-varying
amplitude locally resembles a plane wave. Furthermore, in free-space
the phase- and group-velocities are identical.

Special cases are provided by (36), (38). Without delving into
the complicated mathematics of electromagnetic scattering by three-
dimensional objects (e.g., see [9] for a discussion of the Mie problem),
it is expected that the results be similar, i.e., for a band-limited
spectrum the impulsive scattered-wave will display the spatial behavior
prescribed by the scattering-amplitude, and outgoing spherical waves
governed by (40) with r′ now denoting the spherical radius.

6. BROADBAND SCATTERING BY MOVING
CYLINDERS

The transition from E′
sc(R

′), the scattered field measured in Γ′

in terms of the coordinates R′ native to this reference-system, to
Esc(R′), the field measured in Γ, but expressed in terms of the non-
native coordinates R′, is effected by applying the differential operator
indicated in (27), (33) to E′

sc(R) in (34). The harmonic case has been
discussed recently [5] in relation to elliptical coordinates. We obtain

Esc(R′) = ẑe′
∫ ∞

−∞
dω′Esc(R′, ω′)/2π

Esc(R′, ω′) = e−iω
′t′Bξ′Σmi

mam(ω′, α′)Hm(ρ′)eimϕ
′

(42)
Bξ′ = γ(1 − iβ(Cϕ′−ξ′∂ρ′(Sϕ′−ξ′/ρ

′)∂ϕ′)), Cξ′ = v̂ · x̂′

where in (42) ξ′ is the angle subtended by the two unit vectors
v̂, x̂′ in Γ′.

For ξ′ = 0, we have a simpler expression, already obtained before
(without employing the differential-operator forms) [1, 11]

Esc(R′, ω′) = e−iω
′t′BΣmi

mam(ω′, α′)Hm(ρ′)eimϕ
′

= e−iω
′t′γΣmi

mbm(ω′, α′)Hm(ρ′)eimϕ
′

B = γ(1 − iβ(Cϕ′∂ρ′ − (Sϕ′/ρ′)∂ϕ′))

bm = am + (am−1 + am+1)β/2

(43)

In (42), (43) it is demonstrated that the application of the
differential operator modifies the scattering coefficients. It has been
noted before [1, 11] that this mode-coupling displays new, velocity-
dependent, multipole terms.

Subject to (43), the analog of (40) is now obtained simply by
replacing am (40) by bm, (43). This result is remarkable in that
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the pulse spectrum of the scattered wave Esc(R′), measured in
reference-frame Γ, but expressed in terms of Γ′ native coordinates,
is unchanged, except for its space-dependent amplitude as determined
by the scattering amplitude g.

What do we intuitively expect for the equation of motion of
the pulse in Γ, in terms of the Γ native coordinates? This point is
discussed in many textbooks, e.g., see [12]. According to a somewhat
oversimplified argument, once the wave is emitted by the thin cylinder,
it propagates in free space, and therefore pulse speed should be c. The
simple argument then continues, claiming that for moving sources we
should get non-concentric circles (or non-concentric spherical surfaces
in the corresponding three-dimensional case), with centers indicating
the position from which the scattered wave initially emanated.

The present discussion is more detailed. It reveals that, expressed
in terms of Γ′ native coordinates, the far-field forms of (42), (43) leave
the equation of motion (41) unchanged. Upon squaring terms in (41)
and substituting (11) we now find

t′2 = γ2
(
t− v · r/c2

)2
= γ2

(
t2 − 2vr‖/c

2 + (vr‖/c
2)2

)
= (r′/c)2 = (γ(r‖ − vt) + r⊥) · (γ(r‖ − vt) + r⊥)/c2 (44)

=
(
γ2

(
r2‖ − 2vr‖t+ v

2t2
)

+ r2⊥
)
/c2

where in (44) ⊥, ‖, denote components perpendicular, parallel, to the
velocity, correspondingly, and it is noted that the term −2vr‖t cancels
on both sides of the equation. Obviously this does not conform with
the notion that in Γ we should find once again circular, spherical,
wavefronts, for the two, three dimensional cases, respectively.

To gain more insight, let us retain in (44) only first order effects
in v/c. This yields

t′2 =
(
t− v · r/c2

)2 =
(
t2 − 2vr‖/c2

)
=

(
r2‖ − 2vr‖t+ v2t2 + r2⊥

)
/c2 =

(
r2 − 2vr‖t+ v2t2

)
/c2

(45)

and upon simplifying (45) we obtain (cf. (41))

t− r/c = 0 (46)

This means that only in the far field, and to the first order in v/c,
the intuitively expected results of circular, spherical, wave-surfaces, are
indeed valid.
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7. BROADBAND SCATTERING BY A HALF-PLANE
AT-REST

The solution for the problem of scattering of a monochromatic plane
wave by a moving half-plane is historically attributed to Sommerfeld
[13], see also [14, 15] for a discussion of the problem and the related
Wiener-Hopf method, as well as early references. Presently we consider
the simple problem of scattering by a perfectly-conducting half-plane,
with the excitation-wave given by (29), (30) in reference-frame Γ, hence
in Γ′ we have the corresponding transformed (31), (32).

We rely mainly on formulas given by [14], therefore some remarks
on notation are needed. Throughout the present study, positive angles
are measured in the x′, y′ plane off the x′-axis towards the y′-axis.
This convention is also used in [14], except for the incident wave, see
Fig. 11.6, p. 566 there, which also indicates the scatterer half-plane,
taken along the positive x-axis. The direction of the incident wave is
indicated in [14] by the angle α0, which for positive values is measured
off the −x direction towards the −y direction. To conform with (29),
(30) we have to assume in the Γ reference-frame

α− α0 = π, Cα = k̂ · x̂, Cα0 = −k̂ · x̂ (47)

This would carry over to all subsequent formulas given in [14], but
in order to discuss the problem for an object at-rest in Γ′, apostrophes
have to be judicially added. Hence referring to (31), (32) we are dealing
with

α′ − α′
0 = π, Cα′ = k̂

′ · x̂′, Cα′
0

= −k̂
′ · x̂′, x̂′ = x̂ (48)

where in (48) we made a choice x̂′ = x̂, and the angles in (47), (48),
are related by the Doppler-effect formulas (15) which can be displayed
as the aberration formula for the angles of a plane wave in two inertial
reference-frames [2].

With all this in mind, for a monochromatic incident wave, the
wave scattered by a half-plane at-rest in Γ′ is given by (cf. [14], Ch.
11.5, Eqn. (8))

E′
sc(R

′, ω′) = ẑe′e−iω
′t′

∫
ψ′
eiρ

′Cϕ′∓ψ′g(ψ′)dψ′/π

g(ψ′) = iSα′
0/2
Sψ′/2/(Cψ′ + Cα′

0
)Σmam(α′

0)e
imψ′

(49)

where in (49) the sign ∓ applies to y′><0 half-planes, respectively. The

full solution (49) must include the contribution of the simple pole at
ψ′ = π − α′

0.
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It is noted that unlike the cylinder case, (34), here g(ψ′) is
frequency-independent. Also note the symmetry properties

g(ψ′) = −g(−ψ′) = −g(σ′), σ′ = −ψ′ (50)

enabling us to rewrite the part of (49) for y′ < 0, with the + in the
exponent, in the form

E′
sc(R

′, ω′) = −ẑe′e−iω
′t′

∫
σ′
eiρ

′Cϕ′−σ′g(σ′)dσ′/π (51)

Exploiting the similarity between (34), and (49), (51), we can
rewrite (49) using the Hankel-Fourier series representation in the form

E′
sc(R

′, ω′) = ±ẑe′e−iω
′t′

∫
ψ′
eiρ

′Cϕ′−ψ′g(ψ′)dψ′/π

= ±ẑe′e−iω
′t′Σmi

mam(α′
0)Hm(ρ′)eimϕ

′
(52)

∼ ±ẑe′(2/iπρ′)1/2eiρ
′−iω′t′g(ϕ′)

g(ϕ′) = iSα′
0/2
Sϕ′/2/(Cϕ′ + Cα′

0
) = Σmam(α′

0)e
imϕ′

where in (52) the sign ± applies to y′><0, respectively. We must

hasten and say that although Hm(ρ′) are singular at ρ′ = 0, in (52)
the scattered field at the origin is finite. In (52) the series must
be considered as a whole and not term by term. This “illusory”
effect of the “luminous edge”, as referred to by Sommerfeld [13] are
also discussed experimentally and from the point of view of the eye’s
physiology. Indeed, it is shown (e.g., see [13, 14]), that the total field
E′
sc+E′ can be represented in terms of the Fresnel-integrals functions

F in the form

E′
sc + E′ = ẑe′e−iω

′t′(iπ)−1/2

[
e
−iρ′Cϕ′−α′

0F (ρ′′C(ϕ′−α′
0)/2)

− e
−iρ′Cϕ′+α′

0F (ρ′′C(ϕ′+α′
0)/2)

]
, ρ′′ = −(2ρ′)1/2

(53)

and since F in (53) are finite at the origin, including both diffractive
and geometrical-optics contributions, so also is E′

sc (53).
We are now ready to discuss the broadband behavior of the

scattered field. Again the incident wave is an impulse as given by
(31), (32). The diffractive scattered waves corresponding to (49)–
(52) are now considered in the far field, in the same way (40) was
fashioned, expressed in terms of the impulsive signal S(τ ′), (40). It
will be advantageous to express the asymptotic behavior of the field
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in terms of the appropriate formulas for the Fresnel-integral functions.
Accordingly, the pulse peaks at circles as given in (41).

For the various domains, we now need to consider the contribution
prescribed by the simple pole at ψ′ = π − α′

0, causing g(ψ′) in (49) to
become infinite. Inasmuch as g(ψ′) is now frequency-independent, the
additional impulsive waves will replicate the excitation wave, i.e., if
excitation-wave is taken as a delta-function impulse as in (31), (32),
this structure will be preserved. Within the “reflection region” this
prescribes [14] (cf. (31), (32))

E′
ref = −Ê

′
e′δ(τ ′ref ), τ

′
ref = t′ − k̂

′
ref · r′/c

k̂‖ref = k̂
′
‖, k̂

′
⊥ref = −k̂

′
⊥, 0 < ϕ′ < π − α′

0

(54)

where in (54) the definitions (48) are employed and ‖, ⊥ refer to
components parallel, perpendicular, with respect to the half-plane
scatterer. Thus (54) describes the geometrical-optics reflected wave.
This wave exists only in the sector indicated in (54), subtended by the
scatterer half-plane ϕ′ = 0, and the angle ϕ′ = π − α′

0 = 2π − α′.
In the region below the scatterer, i.e., for y′ < 0, π < ϕ′ < 2π,

there exists a sector

π < ϕ′ < α′, α′ = π + α′
0 (55)

illuminated by the excitation wave. Finally there exists the “shadow
zone”, where the excitation wave (31), (32) is annihilated by the
transmitted wave

E′
tr = −Ê

′
e′δ(τ ′), τ ′ = t′ − k̂

′ · r′/c, α′ < ϕ′ < 2π, α′ = π+ α′
0 (56)

This terminates the discussion of broadband scattering from a
half-plane at rest. In the next section, in a similar manner used above
for circular-cylinders, the question of scattering form a half-plane in
motion will be addressed.

8. BROADBAND SCATTERING BY A MOVING
HALF-SPACE

The above discussion facilitates the extension of the results to the
case of a moving half-plane. Investigation of a similar geometry, with
monochromatic excitation, has been considered before by De Cupis et
al. [16].

In addition to the convenience of using spatiotemporal operators
to describe velocity-dependent scattering, what makes this problem
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especially interesting is the fact that here we will have to deal with two
substantially different kinds of angles: Angles appearing in the phase of
a plane wave are usually transformed by invoking the phase-invariance
principle (14) and the ensuing Doppler-effect (15). On the other hand,
angles referring to purely geometrical properties in one reference-frame
will have to be transformed using the Lorentz-transformation (11), and
are expected to be spatiotemporally-dependent in another reference-
frame.

First consider the excitation wave (29), (30) in Γ, which is
transformed into reference-frame Γ′ yielding once again a plane, delta-
function impulsive excitation-wave (31), (32). From this point on we
deal with scattering by a half-plane at rest in Γ′, as discussed above.
Accordingly, the diffractive contribution for the monochromatic case,
is given by (49)–(52).

In view of the identical structure of (52), and the corresponding
(34) for the case of the cylinder, the same conclusions apply: Thus
in the far field and for a limited-broadband spectrum, the pulse is
characterized by the equation of motion (41) for the present case
as well. The transformation back to the reference-frame Γ, yielding
Esc(R′), is effected by the application of the operator as in (42),
(43). We conclude that the scattering coefficients are affected by the
velocity-dependent terms, but there are no major differences between
E′
sc(R

′), Esc(R′), i.e., no new poles will appear in the solution. Once
again, we have here the interesting effect of the equation of motion
for the impulsive cylindrical-wave as given by (44), and its first-order
approximation (45), (46).

In the present case we have the additional geometrical-optics
terms, due to the pole in g(ψ′), leading to the reflected wave (54),
and the transmitted wave (56) in Γ′. The transmitted wave is equal in
magnitude and opposite in sign in relation to the excitation-wave (31),
(32).

Therefore the application of the spatiotemporal operator to the
transmitted wave (56) recovers in Γ the original excitation wave (31),
(32), with an opposite sign. It follows that in the shadow zone the
annihilation observed in Γ′ persists also in the corresponding shadow-
zone in Γ.

The reflected wave (54) transforms according to (cf. (32), (33))

Eref = W̃
′
K′
ref

· E′
ref = −W̃

′
K′
ref

· Ê′
e′δ(τ ′ref ) = Êrefe

′δ(τref )

Êref = −p′refW̃
′
K′
ref

·Ê′
, τref = t− k̂ref · r/c, ω′τ ′ref = ωrefτref

W̃
′
K′
ref

= γ
(
1 + βv̂ · k̂′

ref

)
Z̃, Z̃ = ẑẑ (57)
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δ(τ ′ref ) =
∫ ∞

−∞
e−iω

′τ ′refdω′/2π =
∫ ∞

−∞
e−iωref τref p′refdωref/2π

p′ref = dω′/dωref = 1/
(
γ(1 + βv̂ · k̂′

ref )
)

where in (57) the transformation of k̂
′
ref in Γ′, to k̂ref in Γ, is governed

by (14), (15), and for the E-field we find once again the cancellation
of the factor γ(1 + βv̂ · k̂′

ref ).
It remains to discuss the various regions valid for the above waves,

as observed from the reference-frame Γ. This is a purely geometrical
property, and therefore governed by the Lorentz-transformation (11).
Consequently, regions that are purely spatial in Γ′, i.e., independent
of time t′, are expected to become spatiotemporally-dependent in Γ,
depending on both r and t.

The half-plane edge is defined in Γ′ by the origin r′ = 0, hence
in Γ (11) prescribes r = vt. By (11) the unit-vector r̂′ transforms
according to

r̂′ = r′/(r′ · r′)1/2 = Ũ · (r − vt)/
(
γ2

(
r2‖ − 2vr‖t+ v

2t2
)

+ r2⊥
)1/2

≈ (r − vt)/
(
r2 − 2vrCξt+ v2t2

)1/2
, Cξ = r/r‖ (58)

From (58), together with a choice of parallel x-axes in the two
reference-systems, it follows that arbitrary angles obey

Cϕ′ = x̂′ · r̂′ = x̂ · Ũ · (r − vt)/
(
γ2

(
r2‖ − 2vr‖t+ v

2t2
)

+ r2⊥
)1/2

≈ x̂ · (r − vt)/T = (rCϕ − vCξt)/T (59)

T =
(
r2 − 2vrCξt+ v2t2

)1/2

It follows from (59) that the half-plane can be defined as Cϕ′ =
1. Applying (59) to the above defined angles for the illumination,
reflection, and shadow zones, displays their spatiotemporal behavior
as observed in Γ. With these remarks the problem can be considered
as fully solved.

9. CONCLUDING REMARKS

The present study demonstrates how free-space velocity-dependent
scattering of electromagnetic waves can be efficiently handled by using
the new spatiotemporal differential-operators. One of the advantages
of using these tools is the fact that broadband scattering is also easily
handled.
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In particular, two two-dimensional problems are tackled:
Scattering by cylinders, which has been considered before in circular
and elliptical coordinate systems, is investigated in the present context.
The other example is scattering by a moving half-plane, for which exact
and approximate results exist for the monochromatic case.

Intuitively one expects thin cylinders at-rest, excited by sharp
plane pulses to re-radiate pulses located on concentric circles. When
the cylinder is moving, intuition suggests that the pulses be located
on a series of eccentric circles, whose centers are prescribed by the
velocity-dependent location of the cylinder at the time the excitation
pulse arrives and is scattered. A careful analysis proves that such
notions are valid in the far field and only to the first order in v/c.

The field scattered by a half-plane contains diffractive contribu-
tions created by the edge, and additional geometrical-optics plane
waves which are due to the pole in the pertinent scattering amplitude.
The transformation of the latter waves from the co-moving reference-
frame Γ′ back to the initial reference-frame Γ, in which the excitation
wave was defined, is also discussed. Although intuitively plausible, it is
rigorously shown that the regions corresponding to the reflection and
shadow zones can be identified also in Γ, where the half-plane is ob-
served to be moving. In Γ the regions are spatiotemporally-dependent,
subject to the Lorentz-transformation.

Numerical simulations are left for future study, and hopefully will
help in visualizing the various characteristics of the present class of
problems.

REFERENCES

1. Censor, D., “Application-oriented relativistic electrodynamics
(2),” Progress In Electromagnetics Research, PIER 29, 107–168,
2000.

2. Einstein, A., “Zur elektrodynamik bewegter börper,” Ann. Phys.
(Lpz.), Vol. 17, 891–921, 1905; English translation: “On the
electrodynamics of moving bodies,” The Principle of Relativity,
Dover.

3. Censor, D., “The mathematical elements of relativistic free-space
scattering,” JEMWA — Journal of Electromagnetic Waves and
Applications, Vol. 19, 907–923, 2005.

4. Censor, D., “Relativistic electrodynamics: various postulates
and ratiocinations,” PIER-Progress In Electromagnetic Research,
Vol. 52, 301–320, 2005.

5. Censor, D., I. Arnaoudov, and G. Venkov, “Differential-operators



70 Censor

for circular and elliptical wave-functions in free-space relativistic
scattering,” JEMWA — Journal of Electromagnetic Waves and
Applications, Vol. 19, 1251–1266, 2005.

6. Censor, D., “Free space multiple scattering by moving objects,”
JEMWA — Journal of Electromagnetic Waves and Applications,
Vol. 19, 1157–1170, 2005.

7. Sommerfeld, A., Electrodynamics, Academic Press, 1964.
8. Censor, D., “Dispersion equations in moving media,” Proceedings

IEEE, Vol. 68, 528–529, 1980.
9. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

10. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.
11. Censor, D., “Scattering in velocity dependent systems,” Radio

Science, Vol. 7, 331–337, 1972.
12. Rossi, B., Optics, Addison-Wesley, 1962.
13. Sommerfeld, A., Optics, Lectures on Theoretical Physics, Vol. IV,

Academic Press, 1964.
14. Born, M. and E. Wolf, Principles of Optics, 6th (corrected) ed.,

Pergamon Press, 1989.
15. Noble, B., Methods Based on the Wiener-Hopf Technique for the

Solution of Partial Differential Equations, Pergamon Press, 1958.
16. De Cupis, P., P. Burghignoli, G. Gerosa, and M. Marziale,

“Electromagnetic wave scattering by a perfectly conducting
wedge in uniform translational motion,” JEMWA — Journal of
Electromagnetic Waves and Applications, Vol. 16, 345–364, 2002.


