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Abstract—Multiple-scale analysis is employed for the analysis of
plane wave refraction at a nonlinear slab. It will be demonstrated
that the perturbation method will lead to a nonuniformly valid
approximation to the solution of the nonlinear wave equation. To
construct a uniformly valid approximation, we will exploit multiple-
scale analysis. Using this method, we will derive the zeroth-
order approximation to the solution of the nonlinear wave equation
analytically. This approximate solution clearly shows the effects of
self-phase modulation (SPM) and cross-phase modulation (XPM) on
plane wave refraction at the nonlinear slab. In fact, the obtained
zeroth-order approximation is very accurate and there is not any need
for derivation of higher-order approximations. As will be shown, the
proposed method can be generalized to the rigorous study of nonlinear
wave propagation in one-dimensional photonic band-gap structures.

1. INTRODUCTION

In recent years, there have been many studies on nonlinear wave
propagation in one-dimensional photonic band-gap structures as a
result of which a rich set of phenomena such as bistability, gap
and Bragg solitons has been discovered in these structures [1, 4].
There is an increasing interest among researchers for theoretical study
and experimental observation of these phenomena as well as their
applications to optical signal processing [5]. The coupled mode theory
or the nonlinear Shrödinger equation (NLSE) have been conventionally
used for investigation of nonlinear wave propagation in these structures
near the Bragg wavelength and where the grating is very shallow
[5]. However, rigorous study of nonlinear wave propagation in these
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Figure 1. Plane wave refraction at a slab with Kerr-type nonlinearity.

structures opens up a way to interpret the phenomena which cannot be
accurately explained using the conventional methods. A rigorous study
of wave refraction in a nonlinear slab along with a method applicable to
nonlinear photonic band-gap structures will provide a reliable approach
for analyzing nonlinear wave propagation in these structures.

To our knowledge, the problem of plane wave refraction at
nonlinear slabs has not been addressed in the literature. The majority
of authors have concentrated on the analysis of nonlinear slab-
guided waves where the nonlinear propagation modes of a nonlinear
slab sandwiched between two or more layers of homogeneous linear
dielectrics have been studied [6, 8].

It is the aim of this work to study the refraction of normally
incident plane wave at a dielectric slab with Kerr-type nonlinearity.
As a first step, plane wave refraction in the slab is modeled by wave
propagation in a nonlinear transmission line. A multiple-scale analysis
will then be exploited for derivation of the solution to the resulting
nonlinear wave equation.

2. FORMULATION

Fig. 1 depicts a plane wave incident on a nonlinear slab. It is assumed
that the slab is made of Kerr-type nonlinear material for which the
refractive index is given by n = no + n2|Ex|2. Therefore, the relative
permittivity of the slab is [10]

εr = (no + n2|Ex|2)2 ≈ n2
o + 2non2|Ex|2 (1)
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where no is the linear refractive index of medium which is
dimensionless, and n2 is the nonlinear refractive index with a unit of
m2/V 2. Since the problem is one-dimensional and the incident plane
wave is normal to the slab, only Ex and Hy field components exist.
Maxwell’s equations in the slab are given as follows

dEx

dz
= −jωµoHy (2)

dHy

dz
= −jωεoεrEx. (3)

Hence, the nonlinear wave equation in the slab is

d2Ex

dz2
+ k2

o(n
2
o + α|Ex|2)Ex = 0 (4)

in which ko = ω
√

µoεo and α = 2non2.
According to (2) and (3), we can model wave propagation in

the slab with wave propagation in a nonlinear transmission line with
an inductance per unit length of L = µo and a capacitance per
unit length of C = εo(n2

o + α|Ex|2) where the electric field Ex and
magnetic field Hy play the role of voltage and current on this line,
respectively. In the present work, we concentrate on the derivation
of transmission characteristics of the nonlinear slab. To this end,
an ideal voltage source is assumed to be connected to the equivalent
nonlinear transmission line at z = 0. Since the region z > L is free
space, we terminate the equivalent nonlinear transmission line to free-
space characteristic impedance Zo =

√
µo/εo. Therefore, the nonlinear

equation given by (4) must be solved with a hard boundary condition
at z = 0 and an impedance boundary condition at z = L.

It should be noted that α is typically very small compared with
the linear relative permittivity of nonlinear materials. This allows us
to use perturbation method for solving the nonlinear wave equation.
In this method, the electric field Ex is expanded to a power series of α
[9], i.e.,

Ex =
∞∑

m=0

αmEm = Eo + αE1 + α2E2 + · · · (5)

If this expansion is substituted in the nonlinear wave equation and the
terms with equal powers of α are balanced, the differential equations for
determining the coefficients of this expansion are derived. For example,
the differential equations for the zeroth- and first-order perturbation
approximation are given by

d2Eo

dz2
+ k2

on
2
oEo = 0 (6)
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d2E1

dz2
+ k2

on
2
oE1 = −k2

o |Eo|2Eo. (7)

Note that the boundary conditions for (6) are those of the original
problem whereas the boundary conditions for (7) and other higher-
order approximations are zero. In other words, we assume Em = 0
and dEm

dz = 0 at z = 0 and z = L for every m ≥ 1. From (6), it is
obvious that the zeroth-order approximation Eo is given by

Eo = aoe
−jβz + boe

jβz (8)

in which ao and bo are complex numbers representing the amplitude
and phase of the forward and backward waves and β = kono. It can
be easily shown that

|Eo|2 = |ao|2 + |bo|2 + aob
∗
oe

−2jβz + a∗oboe
2jβz. (9)

Now, from (9), it is obvious that if |Eo|2 is multiplied by Eo, some terms
proportional to e−jβz and ejβz will appear in the right-hand side of (7).
These terms are in fact the solutions of the homogeneous differential
equation. This means that some nonphysical terms (secular terms [9])
of the form ze−jβz and zejβz will appear in the solution of E1. This
implies that if the slab thickness approaches infinity the solution will
be unbounded. In fact, the solution given by perturbation series (5)
does not converge uniformly to the solution of the original nonlinear
wave equation, i.e. with increasing z the error of the approximate
solution increases rapidly. Note that although the individual terms of
the perturbation series are secular, the secularity disappears when the
series is summed up [9]. For removing this secularity, use will be made
of multiple-scale analysis to be explained in the next section.

2.1. Multiple-Scale Analysis for Removing Secularity

For eliminating the most secular terms to all orders, a new variable
ζ = αz is introduced. Even though the exact solution Ex(z) is a
function of z alone, multiple-scale analysis seeks solutions which are
functions of both ζ and z treated as independent variables. We wish to
emphasize that expressing Ex as a function of two variables is merely a
mathematical technique to remove secularity; the actual solution has z
and ζ related by ζ = αz so that z and ζ are ultimately not independent.

The formal procedure consists of assuming a perturbation
expansion of the form

Ex(z) = Eo(z, ζ) + αE1(z, ζ) + · · · (10)
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Chain rule for partial differentiation is to be used for computing
derivatives of Ex(z). Hence, for the first-order derivative with respect
to z, we have

dEx

dz
=

(
∂Eo

∂z
+

∂Eo

∂ζ

dζ

dz

)
+ α

(
∂E1

∂z
+

∂E1

∂ζ

dζ

dz

)
+ · · · (11)

However, since ζ = αz,

dEx

dz
=

∂Eo

∂z
+ α

(
∂Eo

∂ζ
+

∂E1

∂z

)
+ O(α2). (12)

Similarly, it can be shown that for the second-order derivative with
respect to z, we have

d2Ex

dz2
=

∂2Eo

∂z2
+ α

(
2
∂2Eo

∂ζ∂z
+

∂2E1

∂z2

)
+ O(α2). (13)

If this relation is substituted in the nonlinear wave equation and the
terms with equal powers of α are balanced, we will obtain the following
differential equations for Eo(z, ζ) and E1(z, ζ)

∂2Eo

∂z2
+ β2Eo = 0 (14)

∂2E1

∂z2
+ β2E1 = −k2

o |Eo|2Eo − 2
∂2Eo

∂ζ∂z
. (15)

It is obvious that Eo is given by

Eo(z, ζ) = a(ζ)e−jβz + b(ζ)ejβz. (16)

a(ζ) and b(ζ) will be determined under the condition that secular terms
do not appear in the solution to (15). From (16), the right-hand side
of (15) is(

2jβ
da

dζ
− k2

oa(|a|2 + 2|b|2)
)

e−jβz −
(

2jβ
db

dζ
+ k2

ob(2|a|2 + |b|2)
)

ejβz

−k2
oa

2b∗e−3jβz − k2
oa

∗b2e3jβz. (17)

If the coefficients of e−jβz and ejβz are nonzero, then the solution to E1

would be secular. To preclude the appearance of secularity, we require
that a(ζ) and b(ζ) satisfy


da
dζ = − jk2

o
2β a(|a|2 + 2|b|2)

db
dζ = jk2

o
2β b(2|a|2 + |b|2)

(18)
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For solving these equations, we write a(ζ) and b(ζ) in their polar
representation, i.e.

a(ζ) = R1(ζ)ejθ1(ζ) (19)

b(ζ) = R2(ζ)ejθ2(ζ). (20)

It can be easily shown that dR1/dζ = 0 and dR2/dζ = 0 and the
differential equations for determining the angles are


dθ1
dζ = − ko

2no
(R2

1 + 2R2
2)

dθ2
dζ = ko

2no
(2R2

1 + R2
2)

(21)

Hence, a(ζ) and b(ζ) are given by

a(ζ) = R1(0)ejθ1(0)e−j ko
2no

(R2
1(0)+2R2

2(0))ζ (22)

b(ζ) = R2(0)ejθ2(0)ej ko
2no

(2R2
1(0)+R2

2(0))ζ . (23)

Using complex representation of a(ζ) and b(ζ), we will arrive at the
following relations

a(ζ) = ae−j ko
2no

(|a|2+2|b|2)ζ (24)

b(ζ) = bej ko
2no

(2|a|2+|b|2)ζ (25)

in which a = R1(0)ejθ1(0) and b = R2(0)ejθ2(0) are complex constants
which are found by satisfying the boundary conditions. This solution
clearly shows the simultaneous effects of SPM and XPM on wave
refraction. In another word, the nonlinearity of the medium has
imposed a nonlinear phase shift on the forward and backward waves.
As can be seen, the forward and backward waves impose nonlinear
phase shift on themselves (SPM) and on each other (XPM).

Now, we concentrate our attention to the calculation of a and
b from the boundary conditions. It is assumed that the nonlinear
transmission line is connected to a voltage source with a phasor Es at
z = 0. From (16), the boundary condition at z = 0 is

Es = a + b. (26)

Also, it is assumed that the nonlinear transmission line is terminated
to impedance ZL at z = L. Therefore, the boundary condition at this
interface will be

Eo(L,αL)
Ho(L,αL)

= ZL. (27)
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Hence, we need to find an expression for Ho(L,αL). It can be simply
shown that the magnetic field at z = L is

Ho(L,αL) =
a

Zc

(
1 +

α

2n2
o

(|a|2 + 2|b|2)
)

e−j(β+φ1)L

− b

Zc

(
1 +

α

2n2
o

(2|a|2 + |b|2)
)

ej(β+φ2)L (28)

in which Zc = Zo/no, φ1 = koα
2no

(|a|2 + 2|b|2)L, and φ2 = koα
2no

(2|a|2 +
|b|2)L. For the sake of simplicity, we assume Es to be a real number
and normalize a and b to this real quantity. Using (16) and (28) for
computing Eo(L,αL), we will derive the following nonlinear equations
for determination of ā = a/Es and b̄ = b/Es

ā + b̄ = 1 (29)

b̄

ā
ej 3ko

2no
αLE2

s (|ā|2+|b̄|2) =
Z̄

(
1 + α

2n2
o
E2

s (|ā|2 + 2|b̄|2)
)
− 1

Z̄
(
1 + α

2n2
o
E2

s (2|ā|2 + |b̄|2)
)

+ 1
e−2jβL (30)

where Z̄ = ZL/Zc is the load impedance normalized to the
characteristic impedance of the line in the linear regime. Since ā
and b̄ are complex numbers, these relations form a system of four
nonlinear equations to be numerically solved. These quantities are the
only unknowns that characterize the solution. After their evaluation,
we would be able to derive the electric and magnetic fields. These
equations can be easily solved using the conventional methods for
finding the roots of a nonlinear system of equations. The fact that
facilitates the derivation of the roots of this system is that there exists
a good initial guess for the solution when Es is relatively weak. In
this case, ā and b̄ are nearly equal to their counterparts in the linear
regime. Hence, for derivation of the roots of the system for a specific
value of the initial field, Es can initially be assumed to be weak, so
that the solution in the linear regime can be regarded as the initial
guess for the derivation of ā and b̄. Later this parameter is gradually
increased to the desired value so that the solution in the last step can
be regarded as the initial guess for the derivation of the solution in the
present step until the solution for desired value of Es is found.

3. NUMERICAL RESULTS

Using the method outlined in the last section, we have studied the
plane wave refraction in a nonlinear slab made of Type-RN Corning



88 Zamani Aghaie and Shahabadi

glass (no = 2.46 and n2 = 1.25 × 10−18 m2/V2) at λo = 1.53µm. We
have assumed L = λo and ZL = Zo. The variation of the magnitude of
the reflection coefficient at z = 0 with respect to Es has been depicted
in Fig. 2. As it can be seen, in contrast to the linear regime in which
the reflection coefficient is independent of the magnitude of the incident
electric field, the reflection coefficient increases as the intensity of the
electric field Es increases. The variation of transmission coefficient
seen at z = L also has been depicted in Fig. 3. It shows that the
transmission coefficient increases slightly as the intensity of the incident
electric field increases.

The normalized magnitude and real part of the electric field phasor
in the slab for three different values of Es have been shown in Fig. 4 and
Fig. 5, respectively. These figures clearly illustrate the simultaneous
effects of SPM and XPM on the wave refraction in the nonlinear slab.
As Es is increased, the distribution of the field in the slab deviates
rapidly from the field distribution in the linear regime.
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Figure 2. Variation of magnitude of reflection coefficient at z = 0
with Es.
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Figure 3. Variation of magnitude of transmission coefficient at z = L
with Es.
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Figure 4. Normalized magnitude of electric field phasor, |Ex/Es|, for
three different values of Es. Solid line: Es = 6.87 × 106 V/m. Dotted
line: Es = 12 × 107 V/m. Dashed line: Es = 22 × 107 V/m.
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Figure 5. Normalized electric field at t = 0 (real part of Ex/Es) for
three different values of Es. Solid line: Es = 6.87 × 106 V/m. Dotted
line: Es = 12 × 107 V/m. Dashed line: Es = 22 × 107 V/m.

4. CONCLUSIONS

A perturbation approach based on a multiple-scale analysis was
proposed for the study of plane wave refraction at a slab with Kerr-
type nonlinearity. A number of alternative analytical and numerical
techniques could have been used for this analysis. For example,
a Jacobian elliptic function can be used as the analytical solution
of the nonlinear wave equation [11]. The latter suffers from a
number of disadvantages. Firstly, since Jacobian elliptic functions
do not have explicit representations, satisfaction of complicated
boundary conditions such as impedance boundary condition, which
was considered in the present article, is very difficult. Secondly, in this
approach, the solution cannot be easily subdivided into forward and
backward waves and the reflection and transmission coefficients cannot
be easily defined. Thirdly, the generalization of this approach for
the study of nonlinear wave propagation in one-dimensional photonic
band-gap structures is very involved. A number of numerical methods
such as FDTD or BPM can also be regarded as candidates for the
study of the present problem, but these methods are computationally
inefficient and suffer from high memory requirements. In contrast
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to the aforementioned methods, our proposed method clearly shows
the simultaneous effects of SPM and XPM on the wave refraction
and it can be simply generalized to the rigorous analysis of nonlinear
wave propagation in one-dimensional photonic band-gap structures.
As shown, the only numerical step in our method is the solution of a
system of nonlinear equations which can be simply accomplished using
existing efficient methods such as Newton-Raphson method.
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