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Abstract—The propagation of the TEM and higher order Modes
in GTEM cells is theoretically treated in this work in spherical co-
ordinates. The derived wave equation for the principal mode is solved
analytically in two different ways. In which case, two general closed-
solutions are derived. In addition to this a simple approximation
for the special case of the symmetric cells is presented. For higher
order waves, E- and H-modes are determined by solving the Helmholz
equations for phasor. By imposing the boundary conditions on
fields, the determination of local higher-order modes is, for symmetric
cells, reduced to the solution of a simple transcendental equation
Lmν

n (cos θ) = 0. For asymmetric cells, the matching-points method
is applied. In the longitudinal direction, the propagation of the fields
is examined by means of cylindrical functions which are combined with
the spherical one. Furthermore, since the GTEM cell is a conical-horn
resonator, the resonance behavior of the cell is investigated. The main
advantages of the method amongst others are its simplicity and high
degree of accuracy. Its appeal consist of precise description of the cell’s
geometry compared with the other methods.

1. INTRODUCTION

A common point in most of the methods used in the analysis
of electromagnetic fields in Gigahertz Transverse Electromagnetic
(GTEM) cell is the approximation of the cell to a rectangular
pyramidal horn. Since this approximation is an extension of a
rectangular waveguide, calculation of the fields is forcibly carried
on in the cartesian coordinate system [1–3]. The GTEM Cell is
but, a coaxial-conicalhorn, terminated with a combination of discrete
resistances and RF-absorbers, it is therefore called-for and convenient
to use spherical coordinates to analyze the field distribution in the cell.
Two pertinent reasons for this approach are as follows:
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1) There is no orthogonal co-ordinate system e1, e2, e3 where the
plane surfaces e1 = const. and e2 = const. are identical with the
walls of a conical horn.

2) The propagation of each mode (both TEM and Higher order
waves) in a GTEM Cell depends to a large extent on the
geometrical shape of the cell, although the part played by the
method of the excitation responsible for its formation and form is
of course not of less significance or importance.

This work investigates the propagation of spherical TEM-, TE-
and TM-waves in GTEM cells. For this purpose, quasi stationary
conditions are assumed for the TEM case; that is, only the principal
mode propagates in the cell. The fields are obtained by solving the
Laplace equation.

For higher electromagnetic waves, the cell will no longer be
assumed to be infinitely long; that is, quasi stationary conditions
are no longer assumed. The fields (TM- and TE-waves) are then
determined by solving the Helmholz equations for phasor fields in
spherical coordinates. By imposing the boundary conditions on
fields, the determination of local higher-order modes is, for symmetric
cells, reduced to the solution of a simple transcendental equation
Lmν

n (cosϑ) = 0. For asymmetric cells, the matching-points method
is applied. In the longitudinal direction, the propagation of the fields
is examined by means of cylindrical functions which are combined with
the spherical one. Furthermore, since the GTEM cell is a conical-horn
resonator, the resonance behavior of the cell is investigated.

The main advantages of the method amongst others are its
simplicity, high degree of accuracy. Its appeal consist of precise
description of the cell’s geometry compared with the other methods.

Notice that, throughout this work, the time harmonic dependence
ejωt has been suppressed.

2. THE TEM MODE

2.1. Calculation of the Fields

2.1.1. The Wave Equation and Its Solutions

Let us assumed that only the principal wave i.e., the TEM-Mode
propagates in the cell. We can therefore express the H-field as a
rotation of an r oriented potential Πr

H = ∇× Πr. (1)

The potential Πr should as such satisfied the Laplace equation.
For this purpose, the GTEM-cell will be implemented in spherical
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Figure 1. The GTEM-cell in spherical coordinates.

coordinates (Fig. 1) and the solutions of equation (2) will be written
in this coordinate system.

∇2Πr =
1

r2 sinϑ
·
[
∂

∂ϑ

(
sinϑ · ∂Πr

∂ϑ

)
+

∂

∂ϕ
·
(

1
sinϑ

· ∂Πr

∂ϕ

)]
= 0 (2)

To solve this partial differential equation, we apply the product
solution method — also called method of separation of variables. The
formulation

Πr = D(ϑ) · U(ϕ) (3)

substituted in (2) leads to equation (4)

1
D(ϑ) sinϑ

· ∂

∂ϑ

(
sinϑ · ∂Dϑ

∂ϑ

)
+

1
U · sin2 ϑ

· ∂
2U

∂ϕ2
= 0, (4)

which may be separated in two ordinary independent differential
equations (5), (6) since D is a function of ϑ and U is a function of
ϕ respectively:

∂2U(ϕ)
∂ϕ2

+m2U(ϕ) = 0; m ∈ R (5)

∂2D(ϑ)
∂ϑ2

+ cotϑ · ∂D(ϑ)
∂ϑ

− m2

sin2 ϑ
D(ϑ) = 0 (6)
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The solutions of the first equation are well known. They are

U(ϕ) = A′ sin(mϕ) +B′ cos(mϕ). (7)

In the case of ϕ-direction, an even solution is needed. This leads to
the following simplification

U(ϕ) = B′ cos(mϕ). (8)

The second equation (6) will be solved in two different ways.

The first method: The Legendre’s solution Equation (6) is an
equation of Bocher’s class. More precisely, it is a particular case of the
general Legendre wave equation [5, 6]

(z2−1)
d2Z

d2z
+2z

dZ

dz
+

[
χ2a2(z2 − 1) − p(p+ 1) − m2

z2 − 1

]
·Z = 0. (9)

In fact, by substituting in (9) χ = p = 0 and D(ϑ) = Z, we obtain
with z = cosϑ the equation (6). The general solution of this equation
is [4–6]:

D(ϑ) = A · Pm
0 (cosϑ) +B · Qm

0 (cosϑ) (10)

whereby

Pm
0 (z) = z

l=∞∑
l=0

(−1)l · ∆l(1) · z2l

(2l + 1)!
and Qm

0 (z) =
l=∞∑
l=0

(−1)l · ∆l(0) · z2l

(2l)!
.

(11)
The determinants ∆l(1) and ∆l(0) in equations (11) are given by
equations (12) and (13), where B2 = −m2 and B2k = −k · m2 with
k > 1.

Pm
0 and Qm

0 are the general Legendre wave functions of the zero
order, where Pm

0 and Qm
0 are of the first and second kind respectively.

These general Legendre functions are not to be confused with the
associated functions Pm

n and Qm
n nor with the familiar Legendre

polynomes Pn and Qn. The last two arts of functions can be derived
from the general one. More details about this functions are reported
in the literature [4, 5]. Combining (7) and (8) under consideration of
the boundary conditions, the potential is completely determined. But
before going on with the investigation of the final expression of Πr, let
us examine the second solution.

The second method: The alternative solution We would like to
propose an alternative solution of equation (6) in this section. This



Progress In Electromagnetics Research, PIER 57, 2006 213

solution is based on the method of variation of constants.

∆l(1) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B2 − 2 2 · 3 0 0 · · · 0

B4 − 2 B2 − 6 4 · 5 0 · · · 0

B6 − 2 B4 − 6 B2 − 10 6 · 7 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B2l−2−2 B2l−4−6 B2l−6−10 · · · · · · (2l−2)(2l−1)
B2l − 2 B2l−2−6 B2l−4−10 · · · · · · B2 − 4l + 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

and

∆l(0) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B2 1 · 2 0 0 · · · 0

B4 B2 − 4 3 · 4 0 · · · 0

B6 B4 − 4 B2 − 8 5 · 6 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B2l−2 B2l−4−4 B2l−6−8 · · · · · · · · · (2l−3)(2l−2)
B2l B2l−2−4 B2l−4−8 · · · · · · · · · B2 − 4(l − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13)

The multiplication of equation (6) with sinϑ and its subsequent
division with D(ϑ) leads to the nonhomogeneous linear differential
equation of the second order (14):

1
sinϑ

· ∂

∂ϑ

(
sinϑ · ∂D(ϑ)

∂ϑ

)
− m2

sin2 ϑ
·D(ϑ) = 0

⇐⇒

∂

∂ϑ

[
sinϑ · ∂D(ϑ)

∂ϑ

]
D(ϑ)

− m2

sinϑ
= 0. (14)

Let a(ϑ) = sinϑ, and f(ϑ) = m2

sin ϑ . By substituting these terms in (14),
we have

∂

∂ϑ
[a(ϑ) ·D′(ϑ)]

D(ϑ)
= f(ϑ). (15)
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Equation (15) is an inhomogeneous differential equation of second
order. Let us first solve the homogeneous equation (16):

∂

∂ϑ
[a(ϑ) ·D′(ϑ)]

D(ϑ)
= 0. (16)

This equation can also be rewritten as

∂[a(ϑ) ·D′(ϑ)]
∂ϑ

= 0 ⇐⇒ a′(ϑ) ·D′(ϑ) + a(ϑ) ·D′′(ϑ) = 0

⇐⇒ a′(ϑ)
a(ϑ)

+
D′′(ϑ)
D′(ϑ)

= 0. (17)

Integrating (17) yields

ln(D′(ϑ)) = − ln(a(ϑ)) + k, where k = ln(k0), k0 is a constant

⇐⇒ ln
(
D′(ϑ)
k0

)
= ln(a−1(ϑ))

=⇒ D′(ϑ) = k1 ·
1

a(ϑ)
=

k1

sinϑ
. (18)

Since we need to determine D(ϑ) and not D′(ϑ), equation (18) has to
be integrated with respect to ϑ. We then have

D(ϑ) =
∫

k1

sinϑ
dϑ = k1 · ln

∣∣∣∣tan
ϑ

2

∣∣∣∣ + k2. (19)

D(ϑ) is the general solution of the homogeneous differential equation
(16).

The general solution of equation (15) is obtained by making use
of the well-known method of variation of constants [8]. This requires
that: D(ϑ) be a solution of the nonhomogeneous equation (15) when
and only when k1 and k2 as functions of ϑ are solutions of the set of
equations (20).

k′1 · ln
∣∣∣∣tan

ϑ

2

∣∣∣∣ + k′2 = 0 (a)

k′1

(
1

tan
ϑ

2

· 1

cos2
ϑ

2

)
=

m2

sinϑ
(b)

(20)

The solution of eq. (20b)

k1 =
1
2
m2ϑ+ c1. (21)
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is obtained after transformation with the aid of the addition theorem
of trigonometric functions and integration with respect to ϑ. In (21)
c1 is a constant of integration. Equation (20a) leads therefore to

k′2 = −k′1 · ln
∣∣∣∣tan

ϑ

2

∣∣∣∣ = −1
2
m2 ln

∣∣∣∣tan
ϑ

2

∣∣∣∣ (22)

and, by integrating k′2 with respect to ϑ we have [7]:

k2 = −m2

[
ϑ

2
ln
ϑ

2
− ϑ

2
+

∞∑
n=1

22n(22n−1 − 1)Bn

n(2n+ 1)!
·
(
ϑ

2

)2n+1

+ c2

]
,

(23)
whereby c2 is a constant of integration and

Bn =
(2n)!

22n−1 · π2n

∞∑
l=1

1
l2n

(24)

are the Bernoulli’s numbers [9].
The general solution D(ϑ) of the inhomogeneous equation (15) is

obtained from (19) and is [10]:

D(ϑ) =
1
2
m2ϑ


ln

∣∣∣∣tan
ϑ

2

∣∣∣∣
ϑ

2

+ 1




−m2
∞∑

n=1

22n(22n−1−1)Bn

n(2n+ 1)!

(
ϑ

2

)2n+1

+c1 ln
∣∣∣∣tan

ϑ

2

∣∣∣∣−m2 · c2. (25)

c1 and c2 are constants which have to be determined according to the
boundary conditions. The Bn as defined above, are the Bernoulli’s
numbers.

Again, the potential and therefore the field components are
completely determined by combining (7) and (25) under consideration
of the boundary conditions. This last point is the focus of the next
section.

2.1.2. The Complete Determination of the Potential and Fields

For a complete determination of the potential and subsequently, the
fields, the boundary conditions on the surrounding metal walls, on the
inner conductor as well as in the gap regions between the septum’s end
and the outer metal walls must be satisfied.



216 Pouhè

There are five conductors, whereby the four outer ones are at the
same zero-potential and the center conductor having a Vo voltage. This
means that in ϑ direction at ϑ = ϑ1 and ϑ = ϑ2 as well as in the ϕ-
direction at ϕ = ±ϕ1 the potential vanishes. The boundaries in the
azimuthal direction require that U(±ϕ1) = 0 i.e.,

cos(mϕ1) = 0 =⇒ mn =
(2n− 1)

ϕ1
· π
2
, (26)

with n = 1, 2, 3, . . ..
Hence, the numbers mn are determined and with them the

function
Umn(ϕ) = B′

mn
· cos(mnϕ). (27)

In order to satisfy the boundary conditions in ϑ direction, the cell is
subdivided in two regions (1) and (2) at the plane ϑ = ϑ0 where the
septum is placed (Fig. 2). (1) denotes the lower region and (2) indicates
the upper one. ϑ1 and ϑ2 are therefore the lower and upper values of
ϑ at the boundaries respectively. Along the planes ϑ = ϑ1 and ϑ = ϑ2

we have:

A(1,2)
mn

· Pmn
0 (cosϑ1,2) +B(1,2)

mn
· Qmn

0 (cosϑ1,2) = 0.

=⇒ B(1,2)
mn

= −A(1,2)
mn

· P
mn
0 (cosϑ1,2)

Qmn
0 (cosϑ1,2)

(28)

In general, the function D
(1,2)
mn becomes

D(1,2)
mn

(ϑ) =

A
(1,2)
mn · [Qmn

0 (cosϑ1,2) · Pmn
0 (cosϑ) − Pmn

0 (cosϑ1,2) · Qmn
0 (cosϑ)]

Qmn
0 (cosϑ1,2)

. (29)

Figure 2. The calculated model.
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Thus the last function for the description of the potential is completely
determined. By virtue of (3), we have the following resulting potential
Π(1,2)r in which the product, B′

mn
· A(1,2)

mn , is denoted as a single new

constant C(1,2)
mn :

Π(1,2)
r (ϕ, ϑ) =

∞∑
n=1

C(1,2)
mn

· Smn

0,(1,2)(cosϑ) cos(mnϕ) (30)

where

S(1,2)
mn

(cosϑ) =
Qmn

0 (cosϑ1,2) · Pmn
0 (cosϑ) − Pmn

0 (cosϑ1,2) · Qmn
0 (cosϑ)

Qmn
0 (cosϑ1,2)

· cos(mnϕ).

(31)

In equations (28) to (30), the indices mn are defined as stated above.
The subscripts 1 and 2 denote the regions below and above the
inner conductor, respectively. With equation (30), the potential in
both regions are up to the integration’s constants C

(1)
1,mn

and C
(2)
2,mn

completely determined. The determination of this last terms is
dictated by the continuity limit conditions between regions (1) and
(2) at the plane ϑ = ϑ0 in the gape regions between the end of the
septum and the metal walls and, the value of the potential on the
inner conductor as well.

On the inner conductor, we impose the potential level of Vo = 1V ,
which means requiring, respectively, the following

Π(1)
r (ϕ, ϑ0) = 1, and Π(2)

r (ϕ, ϑ0) = 1 for − ϕs ≤ ϕ ≤ ϕs. (32)

that is ∞∑
n=1

C(1)
mn

· Smn
1 (cosϑ0) cos(mnϕ) = 1 and

∞∑
n=1

C(2)
mn

· Smn
2 (cosϑ0) cos(mnϕ) = 1

both for − ϕs ≤ ϕ ≤ ϕs

(33)

In the gap regions, we require the continuity of the potential meaning
that

Π(1)
r (ϕ, ϑ0) = Π(2)

r (ϕ, ϑ0) for − ϕ1 < ϕ < −ϕs and ϕs < ϕ < ϕ1,
(34)
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that is
∞∑

n=1

C(1)
mn

· Smn
1 (cosϑ0) cos(mnϕ) =

∞∑
n=1

C(2)
mn

· Smn
2 (cosϑ0) cos(mnϕ)

for − ϕ1 < ϕ < −ϕs and ϕs < ϕ < ϕ1 (35)

The unknown coefficients C(1)
mn and C

(2)
mn for the potential distribution

in the cell can now be obtained numerically from the set of equations
(33) and (35) with the aid of the point-matching method. In the
above equations, −ϕs and +ϕs are the left and right values of ϕ at
the septum’s end respectively (Fig. 2).

In our investigations in this part of the work up till now, we only
considered the first solution presented above. However, the derivation
of a closed-form formula of the potential in both regions can be carried
out in a similar way to the previous treatment out going from the
proposed second solution. Consequently we will restrict attention in
the following paragraph to expressions of the potential derived using
the second method and write down the answers directly. In this case
the potential is given by

Π(1,2)
r (ϑ, φ) =

∞∑
n=1


A(1,2)

mn




1
2
m2

n


ϑ


ln

∣∣∣∣tan
ϑ

2

∣∣∣∣
ϑ

2

+ 1




−ϑ1,2


ln

∣∣∣∣tan
ϑ1,2

2

∣∣∣∣
ϑ1,2

2

+ 1


 +

∞∑
k=1

22k+1(22k−1 − 1)Bk

k(2k + 1)!

·




(
ϑ1,2

2

)2k+1

−
(
ϑ

2

)2k+1








 + C(1,2)

mn
ln

∣∣∣∣tan
ϑ

2

∣∣∣∣∣∣∣∣tan
ϑ1,2

2

∣∣∣∣




· cos(mnφ), (36)

where A(1,2)
mn , C

(1,2)
mn are unknown constants of integration, which have

to be determined according to the boundary conditions and following
the procedure described above. We recalled that the subscript 1 and
2 denote the lower and upper regions as stated above.

The magnetic field components Hϕ, Hϑ, can be derived from the
Potential Πr via equation (1) and are related to the electric fields
components Eϕ and Eϑ by the first Maxwell equation

∇× H = jωε0E. (37)
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Figure 3. Isolines of the potential (Πr/[V ]) in the cross-section of a
asymmetric GTEM cell. Obtained from the first solution (above) and
from the second solution (below). The difference in the contour lines
for both solutions at the plane ϑ = 90◦ between septum and outer
metal wall is due to numerical constrains and round off.
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Fig. 3 shows the potential distribution as obtained from the calculation
at any cross section of a 50Ω-GTEM cell with the inner plate in an
asymmetrical position. The geometrical data of the investigated cell
are identical to those of the symmetric one (see table 1, sect. 3.2) with
the difference in the height hs of the septum; which, for the present
case, is 44.63 cm. As can be seen from these figures, the equipotential
lines portray the potential lines expected for these types of problems.

The solutions for the potential distribution presented above are
exact and general. Furthermore they can be used for the calculation
of the TEM mode in GTEM cells with any position of the septum
as demonstrated. For practical applications however, the general
Legendre functions and the derived new solution could be unwieldy
even if the number m, because of the boundary conditions in the
azimuthal direction at ϕ = ±ϕ1, is easy to calculate. It is therefore
judicious, for the special case of symmetric cells, to look for a simple
well-known solution. We deal with this aspect in the next subsection.

2.2. A Simple Approximation for the Special Case of
Symmetric Cells

Since the GTEM cell has a small vertical angle (ϑ ≤ 20◦), it could be
useful to take advantage of the symmetry in ϑ-direction for the case of
symmetric cells.

Kleinwachter has shown in [16] that for conical horn with narrow
vertical angle, the associated Legendre functions can be approximated
by trigonometric functions. Piefke [17] confirmed this and showed
that the maximal relative error for angle up to 30◦ is negligible.
We therefore take inspiration from their works and derive the
approximated solution for symmetric cells. Like Kleinwachter, let us
set ϑ = π

2 , that is cotϑ = 0 and sinϑ = 1 in equation (6) and, with
ϑ = π

2 − ϑ∗, yields

∂2D(ϑ∗)
∂ϑ∗2 −m2D(ϑ∗) = 0. (38)

Equation (38) is a classical differential equation which solutions are a
combination of cosh- and sinh-functions

D(ϑ∗) = A1 cosh(mϑ∗) +B1 sinh(mϑ∗). (39)

From the boundary conditions on the surrounding metal walls at ϑ =
±ϑ∗1, an analogue relation as in equation (28) between the integration
coefficients A1 and B1 can be derived. The general expression of
the function D(ϑ) for the description of the potential in one region
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is therefore

Dm(ϑ∗) = A1,m · sin(mϑ∗1) · cosh(mϑ∗) − cosh(mϑ∗1) · sinh(mϑ∗)
sinh(mϑ∗1)

= A1,m
sinh[m(ϑ∗1 − ϑ∗)]

sinh(mϑ∗1)
. (40)

From equation (3) the resulting potential is obtained

Πr(ϑ∗, ϕ) =
∞∑

n=1

Cmn · sinh[mn(ϑ∗1 − ϑ∗)]
sinh(mnϑ∗1)

· cos(mnϕ), (41)

where Cmn denote new constants, which determination is dictated by
the continuity boundary conditions between regions (1) and (2) and the
value of the potential on the inner conductor. The numbers mn are
defined as in equation (28). The electric and magnetic field components
can be obtained as in the previous section.

It is to remind that equation (41) is the common used solution for
the TEM mode in TEM waveguides. Moreover, for/in the analysis in
the section, the septum was place at the equator in such way that ϑ
fir the cell inner room varies between 90◦ − ϑ1 and 90◦ + ϑ1 (Fig. 4).

Figure 4. Position of the symmetric GTEM cell in the spherical
coordinates. The cell was placed at the equator in such way that ϑ for
the cell inner room varies between 90 − ϑ∗1 and 90 + ϑ∗1.
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3. HIGHER-ORDER MODES IN UNLOADED CELLS

For the calculation of higher-order modes in the cell, quasi stationary
conditions are no longer assumed. The potential Πr should as such
satisfied the Helmholz equation in spherical co-ordinates.

∇2Πr − k2Πr = 0

⇐⇒ ∂2Πr

∂r2
+

1
r2 sinϑ

[
∂

∂ϑ

(
sinϑ

∂Πr

∂ϑ

)
+

∂

∂ϕ

(
1

sinϑ
∂Πr

∂ϕ

)]
+ k2Πr = 0

(42)

To solve this partial differential equation, let us apply again the
product solution method. The formulation

Πr = R(r) ·D(ϑ) · U(ϕ) (43)

substituted in (42) leads to equation (44)

1
R(r)

∂2R(r)
∂r2

+ k2r2 +
1

r2D(ϑ) sinϑ
· ∂

∂ϑ

(
sinϑ · ∂D(ϑ)

∂ϑ

)

+
1

r2U(ϕ) · sin2 ϑ
· ∂

2U(ϕ)
∂ϕ2

= 0, (44)

which may be, after multiplication by r2, separated in three ordinary
independent differential equations (45) since R, D and U are functions
of r, ϑ and ϕ respectively:

r2

R(r)
· ∂

2R(r)
∂r2

+ k2r2 − n(n+ 1) = 0, (a)

∂2U(ϕ)
∂ϕ2

+m2U(ϕ) = 0; (b)

∂2D(ϑ)
∂ϑ2

+cotϑ · ∂D(ϑ)
∂ϑ

+

[
n(n+1)− m2

sin2 ϑ

]
D(ϑ) = 0; (c)

n,m ∈ R

(45)

General Solutions of the equations (45) can be found in any
standard book of fields and waves theory ([13] for example), and they
are: For eq. (45a)

R(r) =
√
krZn+ 1

2
(kr) (46)

whereby Zn+ 1
2
(kr) are known forms of Bessel functions (Hankel

functions for example).
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For eq. (45b),

U(ϕ) = cos
sin

}
(mϕ) (47)

and for eq. (45c), the well-known general solution is

D(ϑ) = A · Pm
n (cosϑ) +B ·Qm

n (cosϑ) (48)

whereby Pm
n and Qm

n are the associated Legendre functions of the
first and second kind respectively. For nonintegral values of n (we are
expecting solutions for which m + n /∈ N) however, two independent
solutions of (45c) are Pm

n (cosϑ) and Pm
n (− cosϑ). The function D(ϑ)

therefore becomes

D(ϑ) = A · Pm
n (cosϑ) +B · Pm

n (− cosϑ). (49)

As a result, the expression for the potential Πr is given by:

Πr(r, ϑ, ϕ)=
√
krZn+ 1

2
(kr)·[A·Pm

n (cosϑ)+B ·Pm
n (− cosϑ)] cos

sin

}
(mϕ)

=
√
krZn+ 1

2
(kr) · S(ϑ, ϕ), (50)

with

S(ϑ, ϕ) = [A · Pm
n (cosϑ) +B · Pm

n (− cosϑ)] cos
sin

}
(mϕ). (51)

Equation (50) is general and valid for all geometrical structures which
form can be described in spherical coordinates. The aim of this work
however is to investigate field propagation in a GTEM cell, which is
a conical coaxial wave-guide. It is therefore imperative to take into
consideration the particularity of its geometry. For this purpose, we
will, again, subdivide the cell in two regions (1) and (2) at the plane
ϑ = ϑ0, where the septum is placed (Fig. 2). (1) denotes the lower
region and (2) indicates the upper one. ϑ1 and ϑ2 are as in the previous
section, the lower and upper values of ϑ at the boundaries respectively.
The potential Πr can therefore be rewritten as

Π(1,2)r(r, ϕ, ϑ) =
√
krZn+ 1

2
(kr)

· [A1,2 · Pm
n (cosϑ) +B1,2 · Pm

n (− cosϑ)] cos
sin

}
(mϕ)

=
√
krZn+ 1

2
(kr) · S1,2(ϑ, ϕ) (52)

for both regions.
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3.1. Determination of the TM- and TE-Waves

Higher order modes can be derived from the following relations

E = −jµ0ω∇× Πr (a) H = k2Πr + ∇(∇Πr) (b) (53)

that is

Er = 0, Hr = k2Πr +
∂2Πr

∂r2

Eϑ = −j µ0ω

r sinϑ
∂Πr

∂ϕ
; Hϑ =

1
r

∂2Πr

∂r∂ϑ

Eϕ = j
µ0ω

r

∂Πr

∂ϑ
; Hϕ =

1
r sinϑ

∂2Πr

∂r∂ϕ

(54)

for the TE-waves and

H = −jωε0∇× Πr (a) E = k2Πr + ∇(∇Πr) (b) (55)

that is

Hr = 0, Er = k2Πr
∂2Πr

∂r2

Hϑ = j
ωε0

r sinϑ
∂Πr

∂ϕ
; Eϑ =

1
r

∂2Πr

∂r∂ϑ

Hϕ = −j ωε0

r

∂Πr

∂ϑ
; Eϕ =

1
r sinϑ

∂2Πr

∂r∂ϕ

(56)

for TM modes.
Since the determination of explicit expressions of the above fields is

closely related to the potential, it is convenient to express the potential
in a more closed-form. Closed-form expressions for the potential
solution (52) are obtained through the boundary conditions. These
require that the tangential components of the electrical field and the
normal components of the magnetic field shall vanish on surrounding
metal walls (contour C).

For the TE modes, this means that the potential shall satisfy the
Neumann’s boundary condition

∂ΠTE
(1,2)r

∂n
= 0 ⇐⇒

∂STE
1,2 (ϕ, ϑ)
∂n

= 0 on C (57)

whereas for the TM waves, the potential shall fulfill the Dirichlet’s
boundary condition

ΠTM
(1,2)r = 0 ⇐⇒ STM

1,2 (ϕ, ϑ) = 0 on C. (58)
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From the boundary conditions in the azimuthal direction, the number
m can be determined. In fact we have U(±ϕ1) = 0, i.e.,

cos
sin

}
(mϕ1) = 0 ⇒ mν =

ν · π
2ϕ1

, (59)

with ν = 0, 1, 2, 3, . . . for TE waves and ν = 1, 2, 3, . . . for TM modes.
Solving eqs. (57) and (58) along the planes ϑ = ϑ1 and ϑ = ϑ2

with respect to B(1,2) (A(1,2) are assumed to be parameters), lead to

STE,mν

(1,2)n (ϑ, ϕ) =

ATE,mν

(1,2)n

P ′mν
n (− cosϑ1,2) · Pmν

n (cosϑ) − P ′mν
n (cosϑ1,2) · Pmν

n (− cosϑ)
P ′mν

n (− cosϑ1,2)

· cos
sin

}
(mνϕ) (60)

for TE-waves and

STM,mν

(1,2)n (ϑ, ϕ) =

ATM,mν

(1,2)n

Pmν
n (− cosϑ1,2) · Pmν

n (cosϑ) − Pmν
n (cosϑ1,2) · Pmν

n (− cosϑ)
Pmν

n (− cosϑ1,2)

· cos
sin

}
(mνϕ) (61)

for TM-waves. General expressions for the potential Πr are obtained
by setting eqs. (60) and (61) in (50). We therefore have

ΠTE
(1,2)r(r, ϑ, ϕ) =ATE,mν

(1,2)n ·
√
krZn+1/2(kr)

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2)Pmν
n (cosϑ)

− P ′mν
n (cosϑ1,2) · Pmν

n (− cosϑ)
]
· cos

sin

}
(mνϕ) (62)

for TE waves and

ΠTM
(1,2)r(r, ϑ, ϕ)=ATM,mν

(1,2)n ·
√
krZn+1/2(kr)

Pmν
n (− cosϑ1,2)

[Pmν
n (− cosϑ1,2)·Pmν

n (cosϑ)

− Pmν
n (cosϑ1,2) · Pmν

n (− cosϑ)] · cos
sin

}
(mνϕ). (63)

for TM waves. In the above formulas, the subscripts (1) and (2) denote
the lower and upper region of the cell respectively, n is the index of
the Legendre function, mν , is defined as above.
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Explicit expressions of the field components are given in the
appendix. ATE,mν

(1,2)n and ATM,mν

(1,2)n have to be defined. Their
determination is dictated by the continuity limit conditions between
regions (1) and (2) at the plane ϑ = ϑ0 in the gape regions between the
end of the septum and the metal walls and, the value of the potential
on the inner conductor as well

On the inner conductor, the same conditions for the electrical and
magnetic field as on the outer metal walls are required. This means
that

∂Π(TE)
(1,2)r

∂n
= 0 ⇐⇒

∂STE
1,2 (ϕ, ϑ)
∂ϑ

= 0, (a)

Π(TM)
(1,2)r = 0 ⇐⇒ STM

1,2 (ϕ, ϑ) = 0, (b)
(64)

both for −ϕs ≤ ϕ ≤ ϕs.
The continuity of the fields in the gap regions means that the

potential and its derivative normal to the plane ϑ = ϑ0 should be
continuous for TM waves on the one side and on the other side the
potential as well as its derivatives parallel and normal to the plane
ϑ = ϑ0 have to be continuous. Since, by imposing the continuity of the
potential in the gap regions, the continuity of its parallel derivative
to the plane ϑ = ϑ0 is automatically satisfied, this last condition is
redundant. Therefore the conditions to impose on the potential and
its derivatives for the TM case are reduced to the same as for the TE
waves. As a result, four additional equations in each case are obtained

Π(TE,TM)
1r = Π(TE,TM)

2r ⇐⇒ S(TE,TM)
1 (ϕ, ϑ) = S(TE,TM)

2 (ϕ, ϑ)
for − ϕ1 ≤ ϕ ≤ −ϕs and ϕs ≤ ϕ ≤ ϕ1 (65)

∂Π(TE,TM)
1r

∂ϑ
=

∂Π(TE,TM)
2r

∂ϑ
⇐⇒ ∂S(TE,TM)

1 (ϕ, ϑ)
∂ϑ

=
∂S(TE,TM)

2 (ϕ, ϑ)
∂ϑ

for − ϕ1 ≤ ϕ ≤ −ϕs and ϕs ≤ ϕ ≤ ϕ1. (66)

By means of the symmetry in the ϕ direction, these equations are
reduced to two equations. With equations (64) we have a set of four
equations for the TE and TM case as well.

At this stage, the incoming development will be only hold for TM
waves since an analogous analysis can be carried out for TE waves.
Results for TE waves are given later without any particular derivation.

For TM waves, this set of four equations is

ATM,mν
1n · Nmν

n (cosϑ0) · cos
sin

}
(mνϕ) = 0 (a)



Progress In Electromagnetics Research, PIER 57, 2006 227

ATM,mν
2n · Wmν

n (cosϑ0) · cos
sin

}
(mνϕ) = 0 (b)

both for 0 ≤ ϕ ≤ ϕs (67)[
ATM,mν

1n · Nmν
n (cosϑ0) −ATM,mν

2n · Wmν
n (cosϑ0)

]
· cos
sin

}
(mνϕ) = 0

(c)[
ATM,mν

1n · N ′mν
n (cosϑ0) −ATM,mν

2n · W ′mν
n (cosϑ0)

]
· cos
sin

}
(mνϕ) = 0

(d)

the two last equations are valid for ϕs ≤ ϕ ≤ ϕ1.
In equations (67) Nmν

n and Wmν
n in are defined as follow

Nmν
n (cosϑ) =

Pmν
n (− cosϑ1) · Pmν

n (ϑ) − Pmν
n (cosϑ1) · Pmν

n (− cosϑ)
Pmν

n (cosϑ1)
(68)

Wmν
n (cosϑ) =

Pmν
n (− cosϑ2) · Pmν

n (ϑ) − Pmν
n (cosϑ2) · Pmν

n (− cosϑ)
Pmν

n (cosϑ2)
(69)

N ′mν
n and W ′mν

n are their derivative with respect to ϑ. Deriving
ATM,mν

2n from eq. (67c) and setting it in (67b) leads to eq. (70)

ATM,mν
1n · N ′mν

n (cosϑ) · cos
sin

}
(mνϕ) = 0 (70)

which is equivalent to equation (67a) and, therefore redundant.
Furthermore, by replacing ATM,mν

2n in eq. (67d) by its expression
obtained from equation (67c), we have

ATM,mν
1n

N ′mν
n (cosϑ0) · Wmν

n (cosϑ0) −W ′mν
n (cosϑ0) · Nmν

n (cosϑ0)
Wmν

n (cosϑ0)

· cos
sin

}
(mνϕ) = 0, for ϕs < ϕ < ϕ1. (71)

After suppression of the redundant equation (67b), the set of
equations (67) is reduced to the following system of equations

ATM,mν
1n · Nmν

n (cosϑ0) · cos
sin

}
(mνϕ) = 0 for 0 ≤ ϕ ≤ ϕs (a)

(72)
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ATM,mν
1n

N ′mν
n (cosϑ0) · Wmν

n (cosϑ0) −W ′mν
n (cosϑ0) · Nmν

n (cosϑ0)
Wmν

n (cosϑ0)

· cos
sin

}
(mνϕ) = 0, for ϕs < ϕ < ϕ1 (b)

Let us now consider the two well know art of cells: the symmetric
cell and the asymmetric one separately.

The symmetric cell as depicted in Fig. 4. In this case, the second
equation (72b) is superfluous and is therefore to eliminate, since
Nmν

n (cosϑ) = Wmν
n (cosϑ). The determination of the index n is

reduced to search of the solution of the transcendental equation

Lmν
n (cosϑ0)= Pmν

n (− cosϑ1)·Pmν
n (cosϑ0)−Pmν

n (cosϑ1)·Pmν
n (− cosϑ0)

= 0. (73)

Equation (73) can be solved numerically.

The asymmetric cell For this case, it is convenient to make used of
the point-matching method [18] by considering a number of M points
on the inner conductor where equation (72a) has to be fulfilled and a
number of (N −M) points between the septum and the outer metal at
the boundary between region (1) and region (2) where equation should
to be fulfilled. That is
∑
n

ATM,mν
1n Nmν

n (cosϑ0) · cos
sin

}
(mνϕi) = 0

for 0 ≤ ϕi ≤ ϕs, i = 1, . . . ,M (a) (74)∑
n

ATM,mν
1n

N ′mν
n (cosϑ0) · Wmν

n (cosϑ0) −W ′mν
n (cosϑ0) · Nmν

n (cosϑ0)
Wmν

n (cosϑ0)

· cos
sin

}
(mνϕi) = 0, for ϕs < ϕi < ϕ1, i = M + 1, . . . , N (b)

The index n is given by values of n for which the determinant of
the system of equations (74) is equal to zero.

A similar development as for equations (67) to (74) can be
hold for TE waves. As for the TM waves, it can be shown that
the determination of the index n is reduced to the solution of the
transcendental equation

Lmν
n (cosϑ0) = P ′mν

n (− cosϑ1)·P ′mν
n (cosϑ0)−P ′mν

n (cosϑ1)·P ′mν
n (− cosϑ0)

= 0, (75)
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in case of symmetric cells and, for asymmetric cells, n are values of n
for which the determinant of the system of equations (76) is zero.

∑
n

ATE,mν
1n N ′mν

n (cosϑ0) · cos
sin

}
(mνϕi) = 0

for 0 ≤ ϕi ≤ ϕs, i = 1, . . . ,M (a)
(76)∑

n

ATE,mν
1n

Nmν
n (cosϑ0) · W ′mν

n (cosϑ0) −N ′mν
n (cosϑ0) · Wmν

n (cosϑ0)
W ′mν

n (cosϑ0)

· cos
sin

}
(mνϕi) = 0, for ϕs < ϕi < ϕ1, i = M + 1, . . . , N (b)

where Nmν
n and Wmν

n are

Nmν
n (cosϑ) =

P ′mν
n (−ϑ1) · Pmν

n (ϑ) − P ′mν
n (ϑ1) · Pmν

n (−ϑ)
P ′mν

n (ϑ1)
(77)

Wmν
n (cosϑ) =

P ′mν
n (−ϑ2) · Pmν

n (ϑ) − P ′mν
n (ϑ2) · Pmν

n (−ϑ)
P ′mν

n (ϑ2)
(78)

N ′mν
n and W ′mν

n are, as defined above, their derivative with respect to
ϑ.

3.2. Cutoff Phenomena and Resonance Frequencies

Let us imagine one of the lowest-order mode† propagating radially
inward in the cell. Although modified by the convergence of the
sides, this mode will be only slightly different to the TE10 mode of
the rectangular wave guide. We would consequently expect a cutoff
phenomenon at such a point where the radial field impedance becomes
predominantly reactive [12]. The radial field impedance for an inward
traveling wave is in general given by

Z
(TE)
− =

(
Eϑ

Hϕ

)
−

= −jµ0ω
k
√
kr · Zη(kr)

d

dr

(√
krZη(kr)

) = Rη − jXη, (79)

where η = n + 1/2 and Zη is the Hankel functions of first kind. This
impedance becomes predominantly reactive at a value kr =

√
η(η + 1).

† It is assumed here that the lowest higher-order mode propagating in the cell is the TE10

mode although this is not always the case, since the TE01 mode can, depending on the
degree of the asymmetry, also propagates as first higher-order mode within the cell [3].
This point does not however affects the validity and generality of the demonstration.
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From the relations kr =
√
η(η + 1) and k = 2π

√
ε0µ0f , the cutoff

frequency can be obtained. It is given by

fc =
√
η(η + 1)

2πr
√
ε0µ0

, (80)

where r is the distance from the apex. Equation (80) can be reduced
to fc = η

2πr
√

ε0µ0
for large values of n or η.

Table 1. Calculated cutoff frequencies (left) and resonance frequencies
(right) of some higher-order modes in a symmetric cell at a distance
r = 210 cm from the apex. Cell’s geometrical data at this distance:
total height of the cell in the test zone: b = 68.23 cm, width of the
cell: a = 112.538 cm, width of the septum: bs = 65 cm, height of the
septum: hs = 34.11 cm.

Type fc [MHz]

TE10 158.65

TE11 204.29

TE20 204.26

TE21 249.80

TE12 250.00

TM11 212.267

Type fr [MHz]

TE101 230.91

TE102 312.09

TE111 281.05

TE112 365.66

TM111 289.73

Resonance frequencies are their side obtained at radii where the
radial field impedance becomes predominantly active. These radii are
points where the imaginary part Xη is zero. In our case, since the
origin is included, resonance frequencies are roots of Bessel functions
of first kind, for an inward propagating wave. In fact, the equation to
be solved is

−16jε0µ
2
0π

3 b

ϑ
f3 · Jn+ 1

2

(
2πb

√
ε0µ0

ϑ
f

)
= 0, (81)

where r has been substitute by b/ϑ. ϑ and b are the vertical angle and
the total height of the cell in the test zone respectively.

In case of TM waves, the radial impedance is given by

Z
(TM)
− = −

d

dr

(√
kr · Zη(kr)

)
jε0ωk

√
krZη(kr)

. (82)

Consequently, resonance frequencies are given by the roots of equation
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(83).

j

[
(2π

√
ε0µ0f + 2n+ 1) · Jn+ 1

2

(
2π

b

ϑ

√
µ0ε0f

)

− 4
b

ϑ
π
√
ε0µ0f · Jn+ 3

2

(
2
b

ϑ
π
√
ε0µ0f

)]
= 0 (83)

Calculated cut-off and first resonance frequencies are reported in
Table 1.

4. CONCLUSION

This work analyzes the propagation of the spherical TEM and higher
order modes in GTEM cells. Two general closed-form solutions for the
principal waves are derived. These expressions are fairly simple and
can be implemented on personal computers. Moreover, as have been
shown, they can be agreeably combined with the common spherical
and cylindrical functions in determining higher order modes in loaded
and unloaded cells. For symmetric cells, substantial simplification in
the analysis has been obtained for the determination of local higher
order modes. For asymmetric cells, the machting-points method has
been applied. The method presented leads to an easier and accurate
calculation of cutoff and resonance frequencies.
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APPENDIX A. CALCULATION OF THE FIELD’S
COMPONENTS FROM THE POTENTIAL Πr

As stated in Section 2.2, the magnetic field’s components Hϕ and Hϑ

can be derived from the equations. From equation (1) we have

Hϕ = −1
r

∂Πr

∂ϑ
and Hϑ =

1
r · sinϑ

∂Πr

∂ϕ
. (A1)

which results in the following explicit expressions

H(1,2)ϕ =

−1
r

∞∑
n=1

Cmn
1,2

Qmn
0 (cosϑ1,2)P ′mn

0 (cosϑ) − Pmn
0 (cosϑ1,2)Q′mn

0 (cosϑ)
Qmn

0 (cosϑ1,2)
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· cos(mnϕ) · e−jβ0r (a)
(A2)

H(1,2)ϑ =

− 1
r sinϑ

∞∑
n=1

mnC
mn
1,2

Qmn
0 (cosϑ1,2)Pmn

0 (cosϑ)−Pmn
0 (cosϑ1,2)Qmn

0 (cosϑ)
Qmn

0 (cosϑ1,2)

· sin(mnϕ) · e−jβ0r (b)

The primes in (A2a) denote the derivative. From the relation
(37) between the magnetic and the electric field, we have E(1,2)ϕ =
−Z0 ·H(1,2)ϑ and E(1,2)ϑ = Z0 ·H(1,2)ϕ i.e.,

E(1,2)ϕ =

Z0

r sinϑ

∞∑
n=1

mnC
mn
1,2

Qmn
0 (cosϑ1,2)Pmn

0 (cosϑ)−Pmn
0 (cosϑ1,2)Qmn

0 (cosϑ)
Qmn

0 (cosϑ1,2)

· sin(mnϕ) · e−jβ0r (a)
(A3)

E(1,2)ϑ =

−Z0

r

∞∑
n=1

Cmn
1,2

Qmn
0 (cosϑ1,2)P ′mn

0 (cosϑ)−Pmn
0 (cosϑ1,2)Q′mn

0 (cosϑ)
Qmn

0 (cosϑ1,2)

· cos(mnϕ) · e−jβ0r (b)

In (A2) to (A3) β0 = ω
√
ε0µ0 and Z0 = 377Ω. The above

relations are from the first solution given in Section 2.1.1. From the
alternative solution we have the equations (A4a)–(A5b) stated below
for Hϕ, Hϑ, Eϑ and Eϕ respectively.

H(1,2)ϕ =−1
r

∞∑
n=1


Amn

1,2

1
2
m2

n


ln

∣∣∣∣tan
ϑ

2

∣∣∣∣
ϑ

2

− 1 +
2ϑ

sin
ϑ

4

−
∞∑

k=1

22k(22k−1 − 1)Bk

k(2k)!

(
ϑ

2

)2k
]

+ Cmn
1,2

2

sin
ϑ

4




· cos(mnφ) · e−jβ0r, (a)
(A4)



Progress In Electromagnetics Research, PIER 57, 2006 233

H(1,2)ϑ =− −1
r sinϑ

∞∑
n=1


A(1,2)

mn




1
2
m2

n


ϑ


ln

∣∣∣∣tan
ϑ

2

∣∣∣∣
ϑ

2

+ 1




−ϑ1,2


ln

∣∣∣∣tan
ϑ1,2

2

∣∣∣∣
ϑ1,2

2

+ 1


 +

∞∑
k=1

22k+1(22k−1 − 1)Bk

k(2k + 1)!

·
[(
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(A5)

E(1,2)ϑ =
Z0

r sinϑ

∞∑
n=1


A(1,2)

mn




1
2
m2

n


ϑ


ln

∣∣∣∣tan
ϑ

2

∣∣∣∣
ϑ

2

+ 1




−ϑ1,2


ln

∣∣∣∣tan
ϑ1,2

2

∣∣∣∣
ϑ1,2

2

+ 1


 +

∞∑
k=1

22k+1(22k−1 − 1)Bk

k(2k + 1)!

·
[(

ϑ1,2

2

)2k+1

−
(
ϑ

2

)2k+1
] ]}

+ C(1,2)
mn

ln

∣∣∣∣tan
ϑ

2

∣∣∣∣∣∣∣∣tan
ϑ1,2

2

∣∣∣∣




· cos(mnφ) · e−jβ0r, (b)

Field components for higher order modes are
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E(1,2)r = 0

E(1,2)ϑ =−ATE,mν

(1,2)n · j µ0ω

r sinϑ
·
√
krZn+1/2(kr)

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2)

· Pmν
n (cosϑ) − P ′mν

n (cosϑ1,2) · Pmν
n (− cosϑ)

](cos
sin

}
(mνϕ)

)′

E(1,2)ϕ =ATE,mν

(1,2)n · j µ0ω

r
·
√
krZn+1/2(kr)

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2)

· P ′mν
n (cosϑ) − P ′mν

n (cosϑ1,2) · P ′mν
n (− cosϑ)

] cos
sin

}
(mνϕ)

H(1,2)r =ATE,mν

(1,2)n · kn(n+ 1)
(kr)2

·
√
krZn+1/2(kr)

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2)

· Pmν
n (cosϑ) − P ′mν

n (cosϑ1,2) · Pmν
n (− cosϑ)

] cos
sin

}
(mνϕ)

H(1,2)ϑ =ATE,mν

(1,2)n · 1
kr

·

(√
krZn+1/2(kr)

)′

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2) (A6)

· P ′mν
n (cosϑ) − P ′mν

n (cosϑ1,2) · P ′mν
n (− cosϑ)

] cos
sin

}
(mνϕ)

H(1,2)ϕ =−ATE,mν

(1,2)n · 1
kr sinϑ

·

(√
krZn+1/2(kr)

)′

P ′mν
n (− cosϑ1,2)

[
P ′mν

n (− cosϑ1,2)

· Pmν
n (cosϑ) − P ′mν

n (cosϑ1,2) · Pmν
n (− cosϑ)

](cos
sin

}
(mνϕ)

)′

for TE-waves, and
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for TM-waves. The primes in equations (A6) and (A7) denote the
derivative.
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