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Abstract—Measured equation of invariance in the time domain (TD-
MEI) has been used as an FDTD-ABC. The TD-MEI coefficients,
are derived using a new technique named “self metron”. Unlike the
traditional MEI, in this technique there is no need to use metrons to
find the MEI coefficients. The real field values of the same FDTD
problem but with a PEC surface instead of a radiation boundary
condition are sampled and used to find the MEI coefficients. The key
is to locate the PEC mesh truncation, farther away than the MEI
truncation boundary, such that during the sampling time interval,
no wave reflects into the MEI truncation boundary. After the MEI
coefficients are found, according to the “time invariance” property
of the TD-MEI coefficients, the MEI boundary absorbs the wave for
all times. The proposed technique is very fast and the results show
that the accuracy is much higher than traditional absorbing boundary
conditions and some other ABC’s.

1. INTRODUCTION

Since the advent of the measured equation of invariance, the most
of the effort is devoted to frequency domain problems. Thereafter it
was approved that the MEI coefficients can be also used in the time
domain [1]. In further works, it was shown that the MEI coefficients,
which are postulated to be “invariant with time”, can be numerically
determined by using the analytical solutions of the wave equation [2].
The derived analytical solutions are not the actual values of the fields
in the related problem. These values are derived from choosing some
arbitrary current distributions (metrons) on the scatterer based on the
third postulate of MEI [3]. In the proposed technique in the present
paper, the MEI coefficients are calculated from the actual field values
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which are generated by the actual excitation, using the FDTD solution
of the same problem up to necessary time and space steps. The values
of the real fields of the same problem are found using FDTD with a
PEC surface instead of a radiation boundary condition. These values
are then sampled and used to find the MEI coefficients. The most
important key is to locate the PEC mesh truncation, farther away
than the proposed MEI truncation boundary. This ensures that during
the sampling time interval, no wave reflects into the MEI truncation
boundary. After the MEI coefficients are found, according to the “time
invariance” property of the TD-MEI coefficients, the MEI boundary
absorbs the wave for all times.

The advantages of this method over the traditional MEI are:
1- The accuracy of this method is much more than traditional MEI.
2- The MEI coefficients can be derived easier and faster than

traditional MEI.
3- Since the MEI coefficients are derived from the actual excitation,

it terminates the debates concerning MEI’s third postulate [4].
4- This method is suitable and can be applied not only for PEC’s

objects but also for the objects of inhomogeneous and anisotropic
materials with arbitrary geometry, without resorting to the
complicated Green’s function of the related constructions.

Two examples support the accuracy of the proposed technique: The
first one shows the TM radiation of an infinite line source, and the self
metron results are compared with that of the traditional MEI, PML
and Mur2 ABC’s. The second example shows the scattering from a
circulant microstrip line, and the self metron results are compared
with that of a 10-layer UPML.

2. SUMMARY OF THE TRADITIONAL MEI
APPROACH

The MEI equations in the time domain is expressed as follows [5]:
∑
j∈S

∑
m∈T (j)

aj,mφ
m
j = 0 (1)

Where T (j) is a series of time steps, S is a set of field points near the
truncated boundary node i, and φm

j is a set of field values. aj,m, is
a set of MEI coefficients to be determined by a series of known φm

j

named measuring functions, which should satisfy Maxwell’s equations.
In fact many truncated boundary conditions can be summarized

by equation (1). Experiments show that the nodes distributed along



Progress In Electromagnetics Research, PIER 56, 2006 55

a straight line which is perpendicular to the boundary, as shown in
Figure 1, provide absolute stability for equation (1). The form of
equation (1) applied in this paper is:

φn+1
i = a1φ

n+1
i−1 + a2φ

n
i + a3φ

n
i−1 (2)

Which is referred to as the first MEI relationship. In two-dimensional
coordinate systems, the radiation field of a line source J(�r0, t)
positioned at �r0 is

φ(�r, t) =
+∞∫

−∞
G(�r, �r0; t, t′)

∂

∂t′
J(�r0, t′)dt′ (3)

Where G(�r, �r0; t, t′) is the Green’s function in the time domain

G(�r, �r0; t, t′) =
C

2π
√
C2(t− t′)2 − |�r − �r0|2

H[C(t− t′) − |�r − �r0|] (4)

And H is the Heaviside function, and C is the wave velocity in free
space. In TDMEI, J(�r0, t) need not be the true current distribution,
and can be chosen arbitrarily to obtain the measuring functions. After
the choice of measuring currents, a series of φm

j is obtained and
substituted into equation (2). In order to find 3 MEI coefficients
in equation (2), one needs 3 set of known solutions of φ at least.
These solutions can be obtained from 3 different time steps (measuring
interval) that satisfy equation (2). To get to better and more accurate
coefficients one needs to take more equations and utilizing the least
squares method to find the MEI coefficients.

Figure 1. Nodes in TDMEI equation.
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Figure 2. Configuration of the problem to find the MEI coefficients
using the self-metron technique.

3. THE SELF METRON METHOD PRINCIPLES

For the TM case, the first MEI relation has the following form [6]:

En+1
z (i) = a1E

n+1
z (i− 1) + a2E

n
z (i) + a3E

n
z (i− 1) (5)

As it was demonstrated, the required sampling time interval to obtain
the first MEI coefficients should be more than 3 time steps. According
to the time invariance of the MEI coefficients, the end of the sampling
time can be before the end of the simulation time. Once the MEI
coefficients are found, the MEI-ABC absorbs the wave for all times.

Assume that we want to simulate the configuration shown in
Figure 2, using the FDTD method with the MEI-ABC. Our intent
is to find the MEI coefficients and use the MEI-ABC on the ABCD
boundary near the object. First we set the exterior walls as PEC and
locate them on the EFGH boundary, and run the FDTD code with
this configuration. When the wave reaches to the ABCD boundary,
we sample the field values (measures) on the ABCD nodes and their
interior immediate neighbors. The sampling time should be more than
3 time steps, and during this interval, no wave should reflect from the
PEC surface (EFGH surface) into the MEI boundary. Then, when the
known solution sets are obtained, the MEI coefficients can be derived
by use of the least squares method.
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4. EXAMPLE 1: RADIATION OF A LINE SOURCE

4.1. Simulation Data

The configuration of the problem is shown in Figure 3. An infinite line
source with a Gaussian distribution is positioned at the point S. The
distribution of the pulse is chosen like that of used in [6], and is as
follows:

f(t) =




exp[−10(2Fbt− 1)2] − e−10

1 − e−10
0 ≤ t ≤ 1

Fb

0 t >
1
Fb

(6)

We choose the problem conditions exactly like [6]. The size of
the square meshes are chosen as ∆x = ∆y = λmin/20, in which
λmin = C/Fb (Fb is the highest frequency component of the pulse
∆t = ∆x/(2C) = 1/(40Fb), and Nx = Ny = 10. The test point M is
positioned in the middle of the line BP. We choose the region EFGH
(with PEC walls) large enough so that until the end of the simulation
time, no reflected wave enters into the ABCD region. In order to find
the MEI coefficients, the measuring interval is chosen 20 time steps,
(the time width of the pulse is 40 time steps), considering the distance
between ABCD walls (Fig. 3) and the line source which is 9 nodes,
the final sampling time will be 18 + 20 = 38 time steps. In order
to prevent the reflected wave from PEC walls (EFGH in Fig. 3), the
distance between ABCD and EFGH should be at least 5 nodes. In
this case, since there is no reflection error due to absorbing boundary
conditions, we call it “no reflection” case. The self-metron results are
compared with that of given in [6].

4.2. Error Analysis and Numerical Results

The self-metron case is compared with the traditional MEI. The error
at nodeM at different time steps, and the error on the boundary nodes
at a specific time step, and the total reflection error in the whole region
(global error) are measured.

4.3. Error on a Fixed Node at Different Time Steps

The distance between node M and the source is nearly 10 nodes. So
it takes 20 time steps that the pulse reaches to the point M . Since the
time width of the pulse is 40 time steps, it totally takes 60 time steps
that the pulse leaves the simulation region. We therefore, compare
the results with NR (no reflection) case before the time step 60, and
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Figure 3. Configuration of radiation of a line source.

Figure 4a. E-field reflection error due to traditional MEI, PML and
Mur2 at point M .

thereafter, the results are compared with zero (the exact value). We
define the reflection error as follows:

Er(i, j) = |Er(i, j)NR − Er(i, j)MEI | (7)

Figure 4a shows the results obtained from [6], and Figure 4b shows
the result obtained from the self-metron MEI technique. Comparison
shows that the accuracy of self-metron MEI is higher than the
traditional MEI, PML-ABC (with 8 layers), and Mur2.

After the time step 60, when the pulse totally leaves the simulation
region, the exact field values at pointM should be zero. The computed
filed values using NR and self metron methods are shown in Figure 5.
Since after this time step, the pulse has totally left this point, the
residual field values shown in Figure 5 are error. As it can be seen, the
MEI results are even better than the no-reflection results. It is known
that there is a numerical dispersion error in the FDTD analysis which



Progress In Electromagnetics Research, PIER 56, 2006 59

Figure 4b. E-field reflection error due to self-metron MEI method at
point M .

Figure 5. Numerical error, resulted from the self-metron MEI and
no reflection cases, the time step 60, when the pulse totally leaves the
simulation region.

is proportional to the size of the simulation region. However, MEI is a
dispersion-free relation (frequency independent) and since the region
simulated by the MEI method is smaller than that of no reflection,
there is smaller error due to the dispersion in the MEI case.

4.4. Observation of All Nodes at a Fixed Moment

At t = 38∆t, the pulse has its maximum value in the truncation
boundary. The reflection error at side APB resulted from the
traditional and self-metron MEI are shown in Figures 6a and 6b
respectively. It can be seen that the self-metron error is much less
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than the results in [6].

4.5. Total Error in the Whole Simulation Region

The total reflection error (global error) is defined as follows [6]:

TEr =
∑

i

∑
j

|Er(i, j)|2 (8)

Figures 7a and 7b show the results of [6] and the self-metron MEI
respectively. It is obvious that the self-metron MEI is more accurate.

Figure 6a. Reflection error at side APB at t = 38∆t resulted from
different methods [6].

Figure 6b. Reflection error at side APB at t = 38∆t resulted from
the self-metron MEI.
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5. EXAMPLE 2, SCATTERING PROBLEMS

5.1. Simulation Data

The source is a TM-polarized Gaussian plane wave pulse with ∆t =
1/120Fb. The structure is a circulant symmetric microstrip line [7], as
shown in Figure 8.

The outer and inner radius of the dielectric are rout = λmin/2 and
rin = λmin/4 respectively. The mesh size is ∆x = ∆y = λmin/10,
and the relative permittivity of the dielectric, εr is 4. Two absorbing
boundary conditions, i.e. the MEI-ABC and the UPML are compared.
The MEI-ABC is located 24 nodes away from the center of the sim-
ulation region, and for the UPML case, a 10 cell quadrically graded

Figure 7a. Total reflection error resulted from traditional MEI and
etc. in the ABCD region (19 by 19 nodes).

Figure 7b. Total reflection error resulted from self-metron MEI
method in the ABCD region.
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UPML [8], has filled the region between ABCD and EFGH boundaries.
The MEI coefficients are derived using the self-metron technique.
The end of the sampling time is 150 time steps.

With respect to the given data of the problem, it can be calculated
that the extra layer to be added to prevent the reflacted wave from PEC
walls, should be about 15 nodes. this extra layer just leads to a few
more seconds comparing the problem size with ABCD borders, and is
used to collect the measuring functions.

Here we again emphasize that the end of the sampling time is very
sooner than the end of the simulation time, so it should not lead to
the misconception that to find the MEI coefficients we have solved the
problem first.

5.2. Error Analysis and Numerical Results

The error is compared with the no-reflection case. The error at fixed
nodes at different moments and the total error in the whole simulation
region is analyzed.

5.2.1. Error at Different Moments at Fixed Nodes

The error is defined like (7) and is analyzed at four different nodes
(Figure 8), at the points M1 (the middle of the line AB), M2 (the
middle of the line M1B), M3 (the middle of the line CD), and M4
(the middle of the lineM3D). Figures 9a to 9d show the reflection error
of the MEI and UPML ABC’s until the time step 250. The accuracy of
the MEI-ABC is higher in all cases. Although the end of the sampling

Figure 8. Scattering from circulant symmetric microstrip line
structure.



Progress In Electromagnetics Research, PIER 56, 2006 63

(a) (b)

(c) (d)

Figure 9. Error at fixed points at different moments, resulted from
the MEI and UPML ABC’s.

time is 150 time steps, it is obvious that the MEI-ABC almost absorbs
the wave after the time step 150, and it confirms the time invariance of
the measured equation of invariance. In practice, the scattered fields
suffer reflections in the interior of dielectric objects. It is not practical
to simulate these reflections in the no-reflection case, because to avoid
the reflections from the PEC walls to the boundaries (i.e., MEI or
PML) the simulation region should be very large. Therefore after the
time step 250, The MEI-ABC is compared directly with UPML.

Figure 10 shows the absolute difference of the Ez field values at
points M1 and M4 respectively. It is obvious that the results are close
to each other.
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Figure 10. Absolute differences of the Ez field values using the MEI
and UPML ABC’s.

5.2.2. Total Error in the Whole Simulation Region

The total error (global error) is defined the same as (8). Fig. 11 shows
the global error of the self metron MEI and UPML ABC’s. It is
evident that self metron global error is much less than the UPML.
It is worth noting that since in the UPML case a 10 spurious layer is
implemented, and the FDTD technique uses intermediate field values
[8], the simulation time as well as memory requirements is much more
than the MEI case (especially in 3-D case). However unlike the UPML,
the MEI-ABC is structure dependent, so by changing the structure we
have to recalculate the MEI coefficients.

Figure 11. Self metron MEI and UPML global errors.
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6. CONCLUSION

A novel technique to find MEI coefficients in the time domain was
introduced. Since the original problem has been used, there is no need
to more pre-processing calculations to find the measuring functions.
Therefore the MEI coefficients can be calculated using this method very
easier than the traditional MEI. It is known that the MEI coefficients
are invariant to the excitation. But it is also well known that the MEI
error is dependent to the mesh size (h) as O(h2). So, by changing
the spectrum of the excitation, the actual mesh size (h) will be
changed and hence, the error may increase. So it is better to find
the MEI coefficients using the actual excitation. Unlike the traditional
MEI, we do not need to find the complicated time domain Green’s
function of the structure under consideration. Because the simulation
is terminated very close to the object surface, and the simulation region
is smaller than the other methods, the numeric dispersion error, as well
as the time and memory requirements in self metron MEI method, is
much less than the other methods.
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