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Abstract—The multilevel fast multipole algorithm (MLFMA) is used
in computing acoustic and electromagnetic fields with integral equation
methods. The traditional MLFMA, however, suffers from a low-
frequency breakdown that effectively limits the minimum division
cube side length to approximately one wavelength. To overcome
this low-frequency breakdown and get a broadband MLFMA, we
propose an efficient and relatively straightforward implementation
of the field translations based on the spectral representation of the
Green’s function. As an alternative we also consider the so called
uniform MLFMA, which has a lower computational cost but limited
accuracy. We consider the essential implementation details and finally
provide numerical examples to demonstrate the error controllability of
the translations.
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1. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) [1, 2] is used in
computing acoustic and electromagnetic fields with integral equation
methods. More specifically, assuming that we are solving an integral
equation using an iterative solver, we can use the MLFMA to compute
the needed matrix-vector products efficiently without assembling the
system matrix. In the matrix-vector product we essentially compute
the field due to N weighted basis functions or sources. By grouping the
sources in O(logN) levels in a tree-like manner, and always computing
the interactions between the groups at the coarsest possible level,
the number of interactions can be reduced from O(N2) to O(N).
We still need to compute nearby interactions in the normal direct
way, but most of the interactions are computed faster, and for high-
frequency applications the computational cost of the matrix-vector
product decreases from O(N2) to O(N logN).

To implement the MLFMA, we begin by enclosing the
computational domain in a large cube, which is then recursively
divided into eight sub-cubes until the smallest division cubes contain
a small number of sources each. Only the non-empty cubes are stored
in a tree-like data-structure. Then we compute the matrix-vector
product in two sweeps. First, in the aggregation steps we combine
the outgoing field representations from smaller division cubes to larger
ones. Then, in the disaggregation steps we distribute the incoming or
local field representations from larger division cubes to smaller ones.
The interactions are also computed in the disaggregation steps by
transforming outgoing representations into incoming representations
in non-nearby division cubes.

The key procedures in a 3-D MLFMA are the field translations.
In the aggregation steps the outgoing fields from smaller division cubes
are interpolated and shifted to outgoing fields in a larger parental cube;
this is the outer-to-outer translation. In the disaggregation steps the
incoming field in a parental division cube is anterpolated and shifted
to incoming fields in the sub-cubes; this the inner-to-inner translation.
In the outer-to-inner translation an outgoing field in a division cube is
transformed to an incoming field in a well-separated cube of the same
level.

We assume that the reader is familiar with the traditional
MLFMA, as described in detail in the book by Chew et al. [2]. In this
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paper we mainly consider the needed translation procedures, and point
out the essential implementation details, when replacing the traditional
translation procedures with broadband ones. We only treat the scalar
case, but all results are easily carried over to the vector case, too.

In this paper we number the levels relative to the wavelength
instead of relative to the entire object under consideration, although
the latter convention seems more common. In particular, the division
cubes at level l have side length al = 2la0, with a chosen a0 and
a suitable range of integers l. Thus, by higher levels or larger l we
always mean larger division cubes compared with the wavelength.

Efficient MLFMA methods are based on plane-wave expansions of
the Green’s function

G(r − r′) =
eik|r−r′|

4π |r − r′| . (1)

In the original high-frequency MLFMA such a presentation is given by
Rokhlin’s translation formula [3, 4], which, however, has the drawback
that the resulting outer-to-inner translation looses its accuracy if the
side length of the division cube is essentially less than the wavelength.
This is the well-known low-frequency breakdown. To avoid this problem
and to get a broadband MLFMA, which is valid for all division levels and
frequencies, one has to use outer-to-inner translation methods based
on the spectral representation, also called the inhomogeneous plane-
wave expansion, of the Green’s function [5–8]. This representation is
direction-dependent and can be split into two parts: a propagating part
and an evanescent part. The spectral representation avoids the low-
frequency breakdown but has the drawback that six expansions must
be used to cover all translation directions for the evanescent part.

The need to develop an efficient broadband MLFMA has given
arise to much of recent research on that problem. In the approach
of Greengard, Huang, Rokhlin and Wadzura [6] the outer-to-inner
translation is based on the spectral representation of the Green’s
function and on an efficient generalized Gaussian quadrature rule
for the evanescent part by Yarvin and Rokhlin [9]; they perform
other translations by multipole series, which, however, become rather
elaborate with non-static fields. Additionally, the multipole series
representations become inefficient for large division cubes with respect
to the wavelength, and thus one needs to switch to the traditional
MLFMA, or some other representation, at higher levels to get a
broadband method.

Jiang and Chew [7] present a broadband MLFMA, where the
outer-to-inner translation is performed by the spectral representation
of the Green’s function, but the sampling of the evanescent part is
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based on a less efficient quadrature than the generalized Gaussian
one; other translations are performed by an polynomial interpolation
method. To improve the efficiency at higher levels, they also partially
extrapolate the evanescent part from the propagating part, and
eventually when the division cube side length is large enough compared
with the wavelength they extrapolate the evanescent part completely
from the propagating part.

The approach of Darve and Havé [8] is similar to that of
Greengard et al. but they improve the efficiency by using the
spectral representation also for the outer-to-outer and inner-to-inner
translations. For the propagating part, they embed the direction-
dependency into the propagating translation function and smooth the
translation function using spherical harmonics. For the evanescent part
they represent the fields using truncated series of singular functions
arising from the singular value decomposition of the evanescent
exponential translation function. The resulting method is rather
elaborate.

Xuan, Zhu, Adams and Gedney [10] propose a broadband method,
called the uniform MLFMA (UMLFMA), which is essentially different
from the above ones; the outer-to-inner translation is performed by a
modification of the Rokhlin translation formula and other translations
are carried out efficiently by interpolation matrices. The method is,
unlike the previous approaches, direction-independent and, therefore,
of low cost. However, its accuracy is limited.

In this paper we propose a broadband method, which is based on
the spectral representation of the Green’s function and is designed to
combine the best features of the above approaches. For the propagating
part (real θ) we use an entirely FFT-based approach, and embed the
direction dependency into the translation function, thus needing only
one far-field pattern and plane-wave expansion per division cube. For
the evanescent part we need six expansions to cover all directions,
and we use a highly efficient generalized Gaussian quadrature rule for
the complex θ-direction. A novel feature is the use of a simple least-
squares interpolation procedure in the complex θ-direction leading
to efficient interpolation and anterpolation matrices. Our method is
error controllable but at low accuracy levels it is more costly than the
UMLFMA.

In the proposed form, the UMLFMA appears not to include the
static case with k = 0. In this paper we also fill that gap by presenting
a modification of the UMLFMA which more explicitly includes the
static case. We complete the paper by presenting numerical examples
where we test and compare the accuracy and error controllability of
our method with those of the UMLFMA.
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2. REPRESENTATIONS FOR THE GREEN’S FUNCTION

The high-frequency fast multipole method (FMM) [3, 4] and the
original multilevel fast multipole algorithm (MLFMA) [1, 2] are based
on Rokhlin’s translation formula, representing the Green’s function (1)
as a plane-wave expansion

G(D + d) ≈ ik

(4π)2

π∫
−π

π∫
0

TL(θ, ϕ)eik(θ,ϕ)·d sin θ dθ dϕ, D > d, (2)

where k is the wave-vector

k(θ, ϕ) = k
(
(x̂ cosϕ+ ŷ sinϕ) sin θ + ẑ cos θ

)
(3)

and

TL(θ, ϕ) = TL

(
k̂ · D̂

)
=

L∑
n=0

in(2n+ 1)h(1)
n (kD)Pn

(
k̂ · D̂

)
(4)

is the Rokhlin translation function. Here, we use the notation k̂ = k/k
and k = |k| for k and other vectors. The truncation order or degree L
controls the error in the representation (2). For d0 digits of accuracy
the usual choice is [2]

L ≈ kd+ 1.8(d0)2/3(kd)1/3, for L < kD. (5)

At low frequencies, or equivalently with small kD, the error is, however,
not controllable. By increasing the number of buffer boxes, i.e.,
by increasing D, one could improve the accuracy, but at the same
time the computational cost is increasing because more outer-to-inner
translations need to be performed, and more nearby interactions need
to be calculated directly. The error control can be improved somewhat
at lower frequencies or levels by choosing a more optimal truncation
order L, as described in [11], but ultimately this so called low-frequency
breakdown limits the minimum division cube side length to about
λ/10 . . . λ depending on the desired accuracy.

To completely avoid the low-frequency breakdown, we have to
use another representation of the Green’s function. In this paper
we study the following two approaches. The first one is based
on the spectral representation of the Green’s function, also called
the inhomogeneous plane-wave expansion [5–8], while the second
one, called the uniform MLFMA (UMLFMA) [10], is based on a
modification of the representation (2) of the Green’s function.
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The spectral representation of the Green’s function can be written
as

G(r) =
ik

8π2

π∫
−π

∫
Γ

eik(θ,ϕ)·r sin θ dθ dϕ, z = ẑ · r > 0 (6)

where k(θ, ϕ) is defined as before (3), but now the angle θ is integrated
over the path Γ = Γp + Γe in the complex plane shown in Fig. 1.
The wave-vector k is real for the propagating part Γp, while k is
imaginary for the evanescent part Γe. The propagating part Gp and
the evanescent part Ge of the Green’s function are obtained from (6)
by restricting the integration to Γp or Γe, respectively.

° p
° e

-----

Re θ

Im θ

Γp
Γe

π
2

Figure 1. The integration path Γ = Γp + Γe in the complex plane.

The representation (6) is valid only for z > 0, and therefore, we
need to split the translation into six directions: +z, −z, +x, −x,
+y and −y, and consider each direction separately. Otherwise, the
formula is fairly similar to (2) used in the original MLFMA; instead of
the Rokhlin translation function (4) we just have a simpler exponential
translation function eik·D, but on the other hand, the integration path
is now more complicated.

The recently proposed UMLFMA [10] is based on the representa-
tion

G(D + d) ≈ ik

(4π)2

π∫
−π

π−iα∫
−π−iα

T (θ, ϕ)eik(θ,ϕ)·d sin θ dθ dϕ, (7)

where the parameter α is related to the division cube side length a as

α = max
(
− ln

(
ka

√
3
)
, 0

)
. (8)

This representation is direction-independent as far as the related
far-field and incoming wave patterns are concerned, but we have
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to numerically find a different translation function T (θ, ϕ) for each
different translation-vector D at each level. Note also that the
parameter α in (8) varies from one level to another because a does
that.

3. IMPLEMENTATION OF THE TRANSLATION
PROCEDURES

All the above representations for the Green’s function can be expressed
in the general form

G(D + d) =
∫

S
T (k,D) eik·d dS(k). (9)

Let F be a field due to a source distribution q(r′) in a division cube
Q1, and consider F(r) as an incoming field in a well-separated cube Q2

of the same division level, see Fig. 2. Using (9), we can express F(r)
as

F (r) =
∫

Q1

G(D + r − r′) q(r′) dV ′

=
∫

S

(∫
Q1

e−ik·r′q(r′) dV ′
)
T (k,D) eik·r dS(k),

(10)

where D is the translation vector from the origin of Q1 to that of Q2. If
we represent the outgoing field from the cube Q1 by using the far-field
pattern

F∞(k) =
∫

Q1

e−ik·r′q(r′) dV ′, (11)

Q1

Q2

r′
D

r

Figure 2. Outer-to-inner translation from cube Q1 to cube Q2. The
cube Q1 contains a source q(r′) and we want to compute the incoming
field F (r) inside the cube Q2. The cubes are assumed to be separated
by at least one empty cube in each direction.
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we get the local incoming field inside Q2 as a plane-wave expansion

F (r) =
∫

S
V (k) eik·r dS(k), (12)

where

V (k) = F∞(k)T (k,D) (13)

is the incoming wave pattern. The translation function T (k,D) is
diagonal in the sense that it only depends on the translation vector D
but not on r or r′.

The most straightforward way to implement the translation
procedures in the MLFMA is to choose an appropriate quadrature
rule for the field integral (10) and use the sample points kn of the
quadrature when representing the far-field patterns and incoming wave
patterns in terms of sample matrices. A shift of origin is particularly
simple for this representation; we just multiply the far-field or incoming
wave pattern samples point-wise with eikn·p, where p is a vector from
the old origin to the new one.

In the MLFMA the grid of sample points kn of the far-field and
incoming wave patterns must usually vary from one level to another in
order to maintain the wanted representation accuracy using a minimal
number of sample points. Therefore, in the aggregation steps the far-
field sample matrices must be interpolated from a lower level sampling
grid to a higher level one, and similarly, in the disaggregation steps,
the incoming wave pattern sample matrices must be anterpolated from
a higher level to a lower level.

In the following subsections we in detail present the various
translation procedures. We first consider the translations of the
propagating and evanescent parts of the fields in the MLFMA based
on the spectral representation (6), and thereafter, the translations in
the UMLFMA. Finally, we summarize the different combinations that
can be used to implement a broadband MLFMA.

3.1. Propagating Part of the Field

The propagating part of the spectral representation (6) of the Green’s
function

Gp(D + d) =
ik

8π2

π∫
−π

π/2∫
0

eik(θ,ϕ)·(D+d) sin θ dθ dϕ, (14)

is almost of the same form as Rokhlin’s translation formula (2). The
translations of the propagating part of the field can therefore be
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handled almost in the same way as in the original MLFMA. The main
difference is that the integration in (14) is over only one half of the
unit sphere. However, the interpolations and anterpolations between
levels are much more efficient if we sample the far-field and incoming
wave patterns on the entire sphere. Furthermore, for all six directions
we anyway need the samples on the entire sphere.

The fact that the integral is over only a half-sphere can be treated
in the translations from one cube to another in the following two ways.
We can sample the translation function using a suitable quadrature
rule over the half-sphere and then interpolate to the sample points over
the entire unit sphere. This approach is used by Jiang and Chew [7].
Another approach is to multiply the translation function by a a suitably
smoothed characteristic function, as outlined by Darve and Havé [8],
after which the integrals again can be taken over the entire sphere.
Here, we will use the second approach, based on 2-D trigonometric
polynomials and Fourier-interpolation, essentially in the same way as
in the FFT-based MLFMA of Sarvas [12].

First, we rewrite the integral in (14) over the entire sphere and
get

Gp(D + d) =
ik

8π2

π∫
−π

π∫
0

eik(θ,ϕ)·(D+d)χ[0, π
2 ](θ) sin θ dθ dϕ, (15)

where χ[a,b] is the characteristic function of an interval [a, b] defined by

χ[a,b](x) =
{

1, a ≤ x ≤ b

0, otherwise.
(16)

Then, to be able to use the FFT method, as described in detail in [12],
we extend all functions U(θ, ϕ), defined on the unit sphere and 2π-
periodic in ϕ, in the θ-variable from 0 ≤ θ ≤ π to −π ≤ θ ≤ π in the
natural way by setting

U(−θ, ϕ) = U(θ, ϕ+ π), for 0 ≤ θ ≤ π, (17)

which makes them 2π-periodic also in θ. After this extension we can
write the integral (15) as

Gp(D + d) =

π∫
−π

π∫
−π

Tp(θ, ϕ) eik(θ,ϕ)·d dθ dϕ, (18)
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where Tp is the translation function in the +z-direction

Tp(θ, ϕ) =
ik

(4π)2
eik(θ,ϕ)·D S(θ), where (19)

S(θ) = χ[−π
2
, π
2 ](θ) |sin θ| . (20)

For translations in other directions, we also need characteristic
functions in ϕ so that the integration is over the appropriate half-
sphere. For instance, for the translation in the +y-direction, χ[0, π

2 ](θ)
in the integral (15) must be replaced by χ[0,π](ϕ), and after the
extension the translation function in the +y-direction is of the form
(19) where S(θ) is replaced by

S(θ, ϕ) =
[
χ[0,π](θ)χ[0,π](ϕ) − χ[−π,0](θ)χ[−π,0](ϕ)

]
sin θ. (21)

Now, the representation (18) is of the form (9) and we can
efficiently compute the integrals using a 2D-trapezoidal rule if we
use the orthogonality properties of the trigonometric polynomials,
as we describe next, instead of directly sampling the translation
function (19). Except for the outer-to-inner translation, which is
not a simple point-wise multiplication, the implementation follows the
general outline above in Section 3. In particular, we represent the
outgoing field from a cube Q due to the source q(r′) using the usual
far-field pattern

F∞(θ, ϕ) =
∫

Q
e−ik(θ,ϕ)·r′q(r′) dV ′, (22)

which is a smooth 2π × 2π-periodic function after the extension (17),
and we represent the propagating part Fp of the incoming or local field
using the incoming wave pattern V of the plane-wave expansion

Fp(r) =

π∫
−π

π∫
−π

V (θ, ϕ) eik(θ,ϕ)·r dθ dϕ. (23)

Smooth 2π×2π-periodic functions can be efficiently approximated
by truncated Fourier series, or trigonometric polynomials, and in
particular, for the far-field pattern F∞ we get,

F∞(θ, ϕ) ≈
M∑

m=−M

N−1∑
n=−N

am,ne
i(mθ+nϕ). (24)
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In storing F∞, instead of the above coefficients am,n, we store the
samples

F∞
m,n = F∞

(
2π

2M + 1
m,

π

N
n

)
, (25)

where only the (M + 1) × 2N samples with 0 ≤ m ≤ M and
−N ≤ n < N need to be stored. For notational convenience, we
assume that M = N and call N the degree of the trigonometric
polynomial (24). The sampling rate is also N .

The far-field pattern F∞ has an effective spatial bandwidth of
approximately kd/2, e.g., see [13], where d = a

√
3 is the diameter of

the cube. Therefore, the trigonometric polynomial representation can
be made arbitrarily accurate by choosing N > kd/2. The choice

N =
kd

2
+ 1.8(d0)2/3

(
kd

2

)1/3

, (26)

which is approximately half of the sampling rate of the original
MLFMA, seems to be sufficient for d0 digits of accuracy.

To perform the outer-to-inner translation, we make use of the
orthogonality of the trigonometric polynomials so that we can evaluate
the field integral (23) accurately using the trapezoidal rule.

First, we observe that the function eik·r in (23) is of the
same degree N as the far-field pattern F∞. Therefore, due to the
orthogonality of the terms ei(mθ+nϕ) over the integration domain
−π ≤ θ, ϕ ≤ π, it is sufficient to anterpolate the incoming wave
pattern V = F∞Tp to the same degree N . This anterpolated Ṽ is
the wanted end-product of the outer-to-inner translation. To achieve
this, as shown in [12], we need to interpolate the far-field pattern F∞

to degree 2N and smooth, or anterpolate, the translation function Tp

to degree 2N . Thereafter, we multiply the samples point-wise and
anterpolate the product to degree N .

To form the smoothed translation function T̃p, we note that a
sufficient degree for representing the function eik·D is

N ′ = kD + 1.8(d0)2/3 (kD)1/3 , (27)

while the degree of the function S(θ) or S(θ, ϕ) is infinite. Therefore,
we sample the function eik·D at degree 2N + N ′ and anterpolate
the function S to degree 2N + N ′ by truncating its Fourier
series representation. After multiplying the samples point-wise we
anterpolate the product to degree 2N to obtain the samples of T̃p.
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N N 0 1

2N + N 0 2N + N 0

m ultiply

2N + N 0

2N 2N

m ultiply

2N

N

interpolate

sam ple truncate

anter olate

anterpolate

eTp

eV

N N ′ ∞

2N +N ′ 2N +N ′

multiply

2N +N ′

2N 2N

multiply

2N

N

F∞ eik·D S

T̃p

Ṽ

anterpolate

anterpolate

interpolate

sample truncate

Figure 3. Outer-to-inner translation procedure to form the
anterpolated incoming wave pattern Ṽ . The values in the boxes are
the degrees or sample rates of the relevant quantities. The scalar factor
ik(4π)−2 is omitted for brevity.

For a flowchart for the translation procedure, see Fig. 3. The
needed intermediate degree 2N + N ′ can be quite large, and thus it
may be preferable to precompute T̃p to speed up the outer-to-inner
translations.

In forming the smoothed T̃p for different translation directions, as
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(20) and (21) indicate, we need the Fourier series

S(θ) = χ[−π
2
, π
2 ](θ) |sin θ| =

∞∑
n=−∞

ane
inθ, (28)

u(θ) = χ[0,π](θ) sin θ =
∞∑

n=−∞
bne

inθ and (29)

v(ϕ) = χ[0,π](ϕ) =
∞∑

n=−∞
cne

inϕ, (30)

where the coefficients are

a−1 = a1 =
1
2π

, an =
2 + n in+1 (1 − (−1)n)

2π (1 − n2)
, (31)

b−1 =
i

4
, b1 =

−i
4
, bn =

1 + (−1)n

2π (1 − n2)
and (32)

c0 =
1
2
, cn =

i ((−1)n − 1)
2πn

. (33)

Other needed Fourier series are those of the functions S(θ+π), u(−θ),
v(−ϕ) and v(ϕ±π/2), which are easily obtained from the above series.

The outer-to-outer and inner-to-inner translations can be
performed in the same way as in the original MLFMA, using shifts and
interpolations or anterpolations as appropriate. For the propagating
part, we perform all interpolations and anterpolations using FFT as
described in [12].

Finally, we observe that at higher levels, i.e., when the division
cube side length is larger than about one wavelength, we can represent
the whole field using the above defined far-field and incoming wave
patterns. Then, we can simply omit the evanescent representations
and replace the propagating translation function (19) with the function

T (θ, ϕ) =
ik

32π2
TL(θ, ϕ) |sin θ| , (34)

where TL is the Rokhlin translation function (4) of the appropriate
degree L ≈ 2N . This translation function for the whole field can then
be handled in the same way as the propagating translation function
above, or slightly differently as described in detail in [12].
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3.2. Evanescent Part of the Field

We make the substitution σ = −ik cos θ in the integral (6) and get the
evanescent part of the Green’s function as the integral

Ge(D + d) =

π∫
−π

∞∫
0

Te(σ, ϕ) eik(σ,ϕ)·d dσ dϕ, (35)

where Te is the evanescent translation function

Te(σ, ϕ) =
1

8π2
eik(σ,ϕ)·D (36)

and k(σ, ϕ) is the complex wave-vector

k(σ, ϕ) =
√
σ2 + k2 (x̂ cosϕ+ ŷ sinϕ) + iσẑ. (37)

Furthermore, we assume that ẑ · (D + d) > 0, i.e., we only consider
translations in the +z-direction. Other directions follow in a similar
fashion by simply rotating the coordinate system: e.g., for translations
in the +x-direction, the wave-vector is

k+x(σ, ϕ) =
√
σ2 + k2 (−ẑ cosϕ+ ŷ sinϕ) + iσx̂. (38)

This representation (35) is exactly of the form (9), and so we
immediately get the formulas needed for the outer-to-inner translation
shown in Fig. 2. The evanescent part of the outgoing field from the
cube Q1 due to the source q(r′) is represented using the evanescent
far-field pattern

F e
∞(σ, ϕ) =

∫
Q1

e−ik(σ,ϕ)·r′q(r′) dV ′, (39)

while the evanescent part Fe of the local incoming field inside the cube
Q2 due to the source inside Q1 is expressed as an inhomogeneous plane-
wave expansion

Fe(r) =

π∫
−π

∞∫
o

Ve(σ, ϕ) eik(σ,ϕ)·r dσ dϕ, (40)

where

Ve(σ, ϕ) = F e
∞(σ, ϕ)Te(σ, ϕ) (41)
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is the evanescent incoming wave pattern and Te is the translation
function (36).

To implement the MLFMA we need an efficient quadrature rule
for the integral (40), or equivalently for the integral (35), and also
interpolation and anterpolation schemes for the far-field patterns and
incoming wave patterns between the different levels.

3.2.1. Quadrature Rules and Outer-to-Inner Translation

The integrand in (35) is a smooth 2π-periodic function in ϕ and so we
can use a trapezoidal rule for the ϕ integral, and the interpolation and
anterpolation in ϕ can be done using FFT as for the propagating part.
We use 2N quadrature points

ϕn =
π

N
n, −N ≤ n ≤ N − 1, (42)

and the weights are π/N . An optimal degree N can be found
numerically once the σ quadrature points are known.

The difficult part is the σ integration, for which we find a
generalized Gaussian quadrature by using the algorithm of Yarvin
and Rokhlin [9]. We start by transforming (35) using the integral
representation

J0(x) =
1
π

π∫
0

cos(x cosα) dα =
1
2π

π∫
−π

eix cos α dα, (43)

for the Bessel function of the first kind and the substitution s = σa,
where a is the division cube side length, and get

Ge(D + d) =
1

4πa

∞∫
0

e−
z
a
sJ0

(ρ
a

√
s2 + (ka)2

)
ds, (44)

where ρ =
√
x2 + y2 with (x, y, z) = D + d.

This is the integral for which we want to find an efficient
quadrature. For ka → 0, this reduces to the same integral as in [9,
section 6.3], and so we could use the quadrature for k = 0 available
at http://www.netlib.org/pdes/multipole/vwts.f, which is rather
good also for small ka. However, for ka ≈ 1 or larger it is more efficient
to find new quadrature rules.

The algorithm for finding the quadrature points and weights is
described in detail in the article by Yarvin and Rokhlin [9], and thus
we here only provide some comments on the implementation. First we
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Figure 4. The region Ω.

observe that due to (43) the kernel whose singular functions are to be
computed can be taken to be

K(s; ρ′, z′) = e−z′s cos
(
ρ′

√
s2 + (ka)2

)
, (45)

with (ρ′, z′) varying over the boundary ∂Ω of the region Ω in Fig. 4;
this domain covers all the points (x, y, z) = D + d where d = r − r′
and r ∈ Q1, r′ ∈ Q2, while Q1, Q2 run through all pairs in the
interaction list in any of the six directions. (Note, however, that this
requires us to split the interaction list in six approximately equal length
lists, somewhat differently than in e.g. [6].) For the approximate SVD
of (45) we use a high order Gauss-Legendre quadrature for s ∈ [0, smax],
smax ≈ 36, while we discretize ∂Ω piecewise using six high order Gauss-
Legendre quadratures.

After deriving the quadrature points and weights of different
orders for different levels (i.e., different ka), we test the accuracy
against the actual integral (44) for (ρ/a, z/a) in the whole region
Ω to verify that the quadrature rules work as expected. Somewhat
surprisingly, no problems due to the possibility of interior Helmholtz
resonances of Ω were met by the authors when testing the algorithm
for ka = 2lπ with l = −10, . . . , 10.

In this way, quadrature rules can be obtained for any ka and
accuracies up to at least 10 significant digits if needed. For practical
purposes, however, it is more convenient to tabulate the points and
weights once and for all. Numerical tests suggest that a quadrature rule
derived for some ka actually works at the same accuracy for any larger
ka. On the other hand, for increasing ka, we need fewer quadrature
points to obtain the same accuracy if we derive new quadrature rules.
A limited number of precomputed quadrature rules is thus sufficient
to cover all frequencies and levels for a specific accuracy.
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Table 1. Quadrature points sm and weights wm for the integral (44)
for ka = π and four digits accuracy.

m sm wm

1 0.1177386084 0.3030688291
2 0.6238529768 0.7048731895
3 1.4869765464 0.9868793874
4 2.5383212196 1.0993614501
5 3.6732075130 1.1691224893
6 4.8755665557 1.2349243363
7 6.1416349409 1.2967438942
8 7.4677829649 1.3567820556
9 8.8522946903 1.4218293927

The points and weights for one representative quadrature rule is
shown in Table 1, while the points and weights for other quadrature
rules covering all frequencies or levels and at least two or four digits
accuracy are available at http://www.hut.fi/~kwallen/equad/. The
needed number of sample points are also found in Table 2 in Section 4.

Finally, the M quadrature points and weights for the σ-integral
in (35) are

σm =
sm

a
, wm =

vm

a
, 1 ≤ m ≤ M, (46)

where (sm, vm) are the quadrature points and weights for the
integral (44) with respect to s.

We now have efficient quadratures for the field integral (40) both
in ϕ and σ, which also yield efficient sampling points for the far-field
patterns and incoming wave patterns. Accordingly, for the integral (40)
we get

Fe(r) 
M∑

m=1

N−1∑
n=−N

π

N
wm Ve(σm, ϕn) eik(σm,ϕn)·r (47)

where the incoming wave pattern Ve is stored as a M × 2N sample
matrix, with elements (Ve)m,n = Ve(σm, ϕn). Similarly, the far-field
pattern is stored as a M × 2N sample matrix F e

∞, and the outer-to-
inner translation is computed as a point-wise multiplication

(Ve)m,n = (F e
∞)m,n (Te)m,n, (48)

where (Te)m,n = Te(σm, ϕn) is the discretized translation function.
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We finish this section by noting that the field integral (40) is
convergent in σ, since ẑ ·(D+r−r′) > 0, but the far-field F e

∞(σ, ϕ) and
the function eik(σ,ϕ)·r are not bounded as σ → ∞. This is, however,
not a problem in practise as the σ sample points are small enough
so that the needed samples do not become too large. We could add
and subtract a suitably defined shift-vector, as in [8], to make the
functions bounded, but this is unnecessary in a sample point based
implementation.

3.2.2. Interpolation and Anterpolation

As we represent the evanescent far-field patterns and incoming wave
patterns using their sample points, the needed shifts of origins are
simple: essentially a point-wise multiplication with an exponential
function. The needed interpolation and anterpolation operations are,
however, less obvious. The problematic part is the σ-direction. The
number of sample points does not change rapidly between levels, but
due to the change in scaling, the sample points are approximately
scaled by a factor of two between levels. At lower levels, the normalized
sample points sm = aσm are nearly the same for adjacent levels, but
the division cube side length a = al is changing by a factor of two from
level to level.

Since we have derived the sample points for the field integral (40),
the far-field patterns and incoming wave patterns become oversampled,
and it turns out that the following straightforward interpolation
scheme works sufficiently well.

The interpolation from level l to level l+ 1 in the ϕ-direction can
be handled using FFT as for the propagating part, and we may assume
that the number of sample points in the ϕ-direction is the same 2N at
both level l and level l + 1. Otherwise, we can first interpolate in the
ϕ-direction and make them the same.

For the interpolation in the σ-direction let F l and F l+1 be the
level l and l + 1 evanescent far-field sample matrices representing the
same far-field, due to a source in a level l division cube Q, and with
matrix elements

F l
mn = F e

∞
(
σl

m, ϕn

)
, m = 1, . . . ,M l, n = −N, . . . , N − 1. (49)

We want to find an M l+1 ×M l interpolation matrix El so that

F l+1 = ElF l. (50)

It suffices to find El which is valid for all point sources at points r in
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Q. The far-field due to a point source at r = (x, y, z) is of the form

F = exp(−i
√
σ2 + k2(x cosϕ+ y sinϕ) + σ z), (51)

and we easily see that if El satisfies (50) for all point sources in Q,
then it is independent of ϕ. Therefore, we can integrate away the ϕ-
dependence from (50) using (43), and enforce the resulting equation
at a sufficient number of test-points (xn, yn, zn). We get a matrix-
equation

F̃ l+1 = ElF̃ l, (52)

F̃ j
mn = eznσj

mJ0

(
ρn

√(
σj

m

)2
+ k2

)
, j = l, l + 1, (53)

where ρn =
√
x2

n + y2
n. The test points are chosen inside the level l

division cube Q, of side length al, i.e.

0 ≤ ρn ≤ al√
2
, −al

2
≤ zn ≤ al

2
. (54)

Using enough test points, we get an over-determined linear system with
full rank, which we solve for El in the least squares sense.

Numerical tests show that the accuracy of this interpolation
scheme is more than sufficient for levels with al ≤ 2λ, i.e., that
the error in the σ-interpolation is much smaller that the error in
the corresponding quadrature rule. At higher levels the accuracy
degrades somewhat due to the small number of sample points Ml.
Also, when increasing the number of sample points in σ, the accuracy
of the quadrature rule increases faster than the accuracy of the
interpolation scheme. However, for up to at least four digits precision
the interpolation scheme works well.

The σ-anterpolation can be carried out using the transpose of the
interpolation matrix as in the original MLFMA. The anterpolation
from level l + 1 to level l can be done using a M l ×M l+1 -matrix H l

defined by

H l =
(
W l

)−1 (
El

)T
W l+1, (55)

where the diagonal matrices W l and W l+1 contains the σ-quadrature
weights for the respective level.

We need to compute and store only one interpolation-matrix El for
each pair of adjacent levels, so the setup time and memory consumption
is negligible compared to the rest of the computations. Furthermore,
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since the interpolation and anterpolation matrices are small, these
operations are efficient. For instance, for 4 digits of accuracy, Ml ≤ 11.

Finally, we note that, when storing the far-field patterns and
incoming wave patterns, the oversampling in the ϕ-direction is
unnecessary. We can significantly reduce the memory-consumption by
using a smaller sampling rate N ′ < N in the ϕ-direction when storing
the far-field and incoming wave patterns, and only when translating
a far-field pattern to an incoming wave pattern increase the sampling
rate to N by interpolating in the ϕ-direction, and finally anterpolate
back to the rate N ′ after the translation. Actually, it appears that
we could also perform the outer-to-inner translations using the smaller
number of samples, M × 2N ′, if we numerically compute a suitable
translation function T̃e in a similar fashion as in the UMLFMA.

3.3. UMLFMA

When the division cubes are small compared with the wavelength, the
evanescent part of the spectral representation (6) is dominant. Based
on this fact Xuan et al. [10] proposed the UMLFMA representation
where the θ-integral is shifted a distance α away from the real axis
at lower levels. However, as k → 0, the parameter α → ∞, and the
representation appears not to reach the static case k = 0 as a limit.

We here present a modification of the UMLFMA, which more
explicitly contains the static case. We start by embedding the term
ik(4π)−2 sin θ into the translation function T (θ, φ) in (7). Using the
substitution θ = t− iα we get an equivalent representation

G(D + d) =

π∫
−π

π∫
−π

T (t, ϕ) eik(t,ϕ)·r dtdϕ, (56)

where

k(t, ϕ) = (x̂ cosϕ+ ŷ sinϕ) k sin(t− iα) + ẑ k cos(t− iα). (57)

As a further modification, we express α using a new parameter γ as

α = max
(
− ln (ka/γ) , 0

)
, (58)

where a is the division cube side length. The choice γ = 1/
√

3 gives (8),
which is the value of α used in [10]. However, it seems that a larger γ
is needed to improve the accuracy, as we will see below.
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For ka < γ, the choice of α = − ln(ka/γ) gives

k sin(t− iα) =
γ

2ia
(
eit − (ka/γ)2e−it

)
and (59)

k cos(t− iα) =
γ

2a
(
eit + (ka/γ)2e−it

)
. (60)

Substituting these equations into (57) we get

k(t, ϕ) =
γ

2ia

((
eit − (ka/γ)2e−it

)
(x̂ cosϕ+ ŷ sinϕ)

+i
(
eit + (ka/γ)2e−it

)
ẑ
)
. (61)

We see that with this form of the wave-vector k(t, ϕ) the
representation (56) is valid even in the static case k = 0.

On the other hand, for ka ≥ γ, we get α = 0 or equivalently
t = θ, and the representation (56) takes exactly the same form as the
propagating part of the spectral representation (18). Then, we can
use (34) as the translation function and perform the translations as
described above for the propagating part of the field. In the following
we, therefore, mainly consider the case ka < γ.

Again, the representation (56) is of the form (9), and thus the
implementation follows the same general outline as described above in
Section 3. In particular, for the outer-to-inner translation in Fig. 2,
we represent the outgoing field from the cube Q1 due to the source q
using the far-field pattern

F∞(t, ϕ) =
∫

Q1

e−ik(t,ϕ)·r′q(r′) dV ′, (62)

while the local incoming field is expressed as a plane-wave expansion

F (r) =

π∫
−π

π∫
−π

V (t, ϕ) eik(t,ϕ)·r dtdϕ (63)

using the incoming wave pattern V . For discretizing the integral (63),
we use a 2D-trapezoidal rule with N = Nt ×Nϕ points in the t and ϕ
directions. The outer-to-inner translations we perform using a point-
wise multiplication V (t, ϕ) = T (t, ϕ)F∞(t, ϕ).

However, the UMLFMA has two characteristic new features
compared with the original MLFMA. First of all, the translation
function T (t, ϕ) is unknown and must be solved numerically from an
ill-posed integral equation. The second new feature is that the wave-
vector k is different for each level, except for ka ≥ γ, and we need to
extrapolate the far-field and incoming wave patterns from one level to
another.
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3.3.1. Integral Equation for the Translation Function

We assume that D is fixed, i.e. we compute a separate translation
function T (t, ϕ) for each of the 73 − 33 = 316 different translation
vectors D at each level. Due to (56) the translation function T (t, ϕ) is
a solution of the integral equation

π∫
−π

π∫
−π

K(d, t, ϕ)T (t, ϕ) dtdϕ = G(D + d) for all d ∈ Q̃, (64)

where

K(d, t, ϕ) = eik(t,ϕ)·d (65)

is the kernel, G is the Green’s function (1) and Q̃ is a cube with side
length 2a and center at the origin. Now, the trouble is that (64) is an
integral equation of the first kind with a compact operator, and so it
is an ill-posed problem, see e.g. [14]. Therefore, we cannot expect to be
able to solve the translation function T (t, ϕ) with arbitrary accuracy.

To solve the integral Equation (64), we begin by discretizing
the integrals using a two-dimensional trapezoidal rule with N sample
points (tn, ϕn) with n = 1, . . . , N , giving

(2π)2

N

N∑
n=1

K(d, tn, ϕn)T (tn, ϕn) ≈ G(D + d). (66)

Next, we enforce the equation at M > N points dm ∈ Q̃, to get an
over-determined matrix equation AT = F , where

Amn =
(2π)2

N
K(dm, tn, ϕn), (67)

Tn = T (tn, ϕn) and (68)
Fm = G(D + dm). (69)

Finally we solve the equation in the least squares sense using the
singular value decomposition A = USV H of A and get

T ≈ V S−1UHF, (70)

where we regularize the solution T by a singular-value truncation.
More specifically, we retain the singular values σn for which σn > τσ1,
where σ1 is the largest singular value of A and τ is the chosen
regularization parameter.
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The above solution scheme is straightforward and the computa-
tional cost is negligible, since the matrix A does not depend on the
vector D and it thus suffices to compute one singular value decom-
position per level. However, the question of choosing the appropriate
sampling rate N and also the parameters γ and τ remains to be an-
swered.

Studying (61), we see that the parameter γ adjusts the oscillation
of the kernel K. By increasing γ, we increase the oscillation of K and
thereby need to increase the sampling rate N , and at the same time
we get more degrees of freedom to find a more accurate translation
function T . On the other hand, we would like to keep the sampling
rate as low as possible. We also note that the interpolations and
anterpolations between levels become less accurate if γ is large. Finally,
we need to choose τ large enough so that |T | is not too large.

Numerical tests suggest that N = 9 × 15, γ = 3 and τ = 10−5

are suitable for ka < γ and two digits accuracy in the outer-to-inner
translations, if we do not take into account the possible errors induced
by the interpolations and anterpolations in the outer-to-outer and
inner-to-inner translations. By increasing N and γ while decreasing
τ , the accuracy in (64) will be improved, but eventually the errors in
the interpolations and anterpolations become too large.

3.3.2. Interpolation and Anterpolation

For higher levels, i.e. for ka ≥ γ, the parameter α is zero and all
translations can be handled in the same way as for the propagating
part of the Green’s function. Furthermore, the possible interpolations
and anterpolations in the ϕ-direction can be performed efficiently using
FFT at any level. Thus, we need to derive an interpolation scheme from
level l to level l + 1 in the t-direction, and we may assume that the
number of samples in the ϕ-direction is the same Nϕ for both levels,
and further that αl > αl+1 ≥ 0.

To derive the interpolation matrix El from level l to level l+1, we
proceed as in Section 3.2.2 for the evanescent σ-interpolation. Let F l

and F l+1 be the level l and l+1 far-field sample matrices representing
the same far-field, due to a source in a level l division cube Q with side
length a, and with matrix elements

F l
mn = F l

∞(tm, ϕn), m = 1, . . . , N l
t , n = 1, . . . , Nϕ. (71)

We want to find an N l+1
t × N l

t interpolation matrix El so that
F l+1 = ElF l. Using the same arguments as in Section 3.2.2, we get a
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matrix-equation F̃ l+1 = ElF̃ l, with

F̃ j = e−iznk cos(tm−iαj)J0 (ρnk sin(tm − iαj)) , j = l, l + 1, (72)

where k sin(t − iα) and k cos(t − iα) should preferably be evaluated
using (59) and (60) if ka � γ. Again, we choose the test points inside
the level l division cube Q with side length a, i.e.

0 ≤ ρn ≤ a√
2
, −a

2
≤ zn ≤ a

2
. (73)

Using enough test points, we get an over-determined linear system with
full rank, which we solve for El in the least squares sense. Numerical
tests suggest that this interpolation scheme works with good accuracy
if γ is small and ka is small enough compared with γ, say γ<∼1 and
ka<∼γ/10. Increasing γ makes the interpolations less accurate, and we
also observe that for ka close to γ the accuracy is worse than for small
ka.

To better understand why the interpolations and anterpolations
are difficult, it is illuminating also to consider another interpolation
scheme. Looking at the original UMLFMA representation (7), we see
that the interpolations and anterpolations in t or θ are essentially
extrapolations between different horizontal contours in the complex
plane. Thus, after some straightforward manipulations, we see that
the interpolation of a far-field pattern from level l to level l+ 1 can be
expressed as an analytic continuation of the form

F l+1
∞ (t, ϕ) = F l

∞(t+ iβ, ϕ), β =
{

ln 2, 2ka ≤ γ
− ln(ka/γ), ka < γ < 2ka. (74)

Considering the far-field pattern as a trigonometric polynomial in t, we
can easily implement this analytic continuation efficiently using FFT.
However, it turns out that this interpolation scheme is significantly less
accurate than the scheme described above.

The anterpolations needed in the inner-to-inner translations can
be done using the transpose (El)T of the matrix El, as for the
evanescent part of the spectral representation. More specifically, the
anterpolation matrix H l from level l + 1 to level l is

H l =
N l

t

N l+1
t

(
El

)T
. (75)

Finally, we also note that if k = 0, then the translation function
T and the extrapolation matrix E do not depend on the level l, as it
is easily seen. It that case, the interpolations and anterpolations also
avoid the most problematic case ka ≈ γ.
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3.4. Broadband Combinations

For implementing a broadband MLFMA, we have three options using
the above translation procedures. The first option is using the
spectral representation for all levels. The second option is using the
spectral representation for lower levels and switching to the FFT-based
MLFMA for higher levels, i.e., when the division cube side length
is larger than approximately one wavelength. This combination is
very straightforward to implement, as outlined in Section 3.1, since
the FFT-based MLFMA uses the same representations for the far-
field and incoming wave patterns as the propagating part of the
spectral representation, and thus no interpolations between different
representations are needed. Finally, the third option is using the
UMLFMA for lower levels and switching to the FFT-based MLFMA
when ka ≥ γ. This transition is also straightforward to implement, as
outlined in Section 3.3.

4. NUMERICAL TESTS FOR ERROR CONTROL

To compare the different translation procedures, we consider the simple
benchmark problem of calculating the scalar field F (r) for r ∈ Ωf due
to a planar source q(r′), where r′ ∈ Ωq, as shown in Fig. 5.

The source region Ωq is a planar rectangle consisting of the points

≠ q

≠ f

_______

___

_____

_____

_______

Ωq

Ωf

Source cube

Target cube

x̂
ŷ

ẑ

Ωf

Ωq

Figure 5. Geometry of the benchmark problem. The source cube is
centered at the origin and the side length a = 2.



72 Wallén and Sarvas

r′ whose Cartesian coordinates are∣∣x′∣∣ ≤ 1,
∣∣y′∣∣ ≤ 1 and z′ = x′, (76)

while the similar field region Ωf has the coordinates

|x| ≤ 1, y = x and 3 ≤ z ≤ 5, (77)

and the planar source density is constant q = 1. The exact field is

F (r) =
∫
Ωq

G(r − r′)q(r′) dS′, for r ∈ Ωf , (78)

which we take to be the discretized integral over Ωq using a 20×20-point
Gauss-Legendre quadrature rule, i.e., we replace the source q(r′) by the
point sources arising from the quadrature rule. Next we compute the
field F (r) by translation steps as described below, and call the result
the computed field F̃ (r). To measure the errors in this computation
we estimate the relative L2 error√∫

Ωf

∣∣∣F̃ (r) − F (r)
∣∣∣2 dS√∫

Ωf

|F (r)|2 dS
, (79)

by evaluating the fields F and F̃ at the points given by a 20×20-point
Gauss-Legendre quadrature rule.

The computation is carried out as follows. First, we subdivide the
source cube at level l into eight sub-cubes at level l−1, where four of the
cubes contains 100 source points each and the other ones are empty.
Then, we compute the far-field patterns for each of the non-empty
sub-cubes from the point sources. Next, we perform the outer-to-outer
translations from level l − 1 to level l by interpolating the far field
patterns from level l− 1 to level l, and combining them by shifting the
origin to the parent cube. Thereafter, we perform the outer-to-inner
translation from the source cube to the field cube at level l. We also
subdivide the field cube into eight sub-cubes, such that the four non-
empty sub-cubes contain 100 field points each. Then, we perform the
inner-to-inner translations from level l to level l − 1 by shifting the
origin to the level l−1 sub-cubes and then anterpolating the incoming
wave patterns to the level l−1 samples. Finally, we evaluate the exact
field at the points in the level l − 1 sub-cubes and compute the L2

error-estimate.



Progress In Electromagnetics Research, PIER 55, 2005 73

For comparison, we also perform the computation as a one level
variant, without outer-to-outer and inner-to-inner translations, so that
the far-field is computed directly from the sources at level l and the
field is computed using the level l incoming wave patterns. Thus,
we can demonstrate whether the interpolations and anterpolations
introduce any significant additional errors compared to the outer-to-
inner translations.

We choose the level numbering such that ka = 2lπ at level l, i.e.
the division cube side length a is 2l−1 wavelengths. Results for the
levels −5 to 5 are presented below, corresponding to a = λ/64 . . . 16λ.
However, both the spectral representation and the UMLFMA works
down to k = 0 essentially as well as at level −5.

The translations are performed using the spectral representation,
as described above in Sections 3.1 and 3.2, for all levels. For higher
levels, we also perform the translations using the FFT-based MLFMA
as briefly outlined in Section 3.1. Finally, we perform the translations
using the UMLFMA, as described in Section 3.3, for lower levels.

The number of sample points needed for the spectral represen-
tation and the FFT-based MLFMA as well as the degree L of the
Rokhlin translation function used in (34) are presented in Table 2 for
different levels and two different target accuracies. The degree L is
computed using (5) if L < kD, and otherwise numerically chosen to
get the appropriate accuracy for a worst-case translation. The num-

Table 2. The degree L of the Rokhlin translation function TL and the
number of sample points for the propagating part and the evanescent
part, for different levels and two different target precisions.

Digits d0 = 2 Digits d0 = 4
level L prop. evan. L prop. evan.

5 191 101×200 2×580(164) 200 109×216 4×598(178)
4 100 55×108 2×294(88) 105 61×120 4×308(100)
3 52 31×60 2×152(50) 65 36×70 5×162(58)
2 30 19×36 3×78(30) 42 22×42 6×88(36)
1 20 12×22 3×42(18) 15×28 7×50(24)
0 14 8×14 4×24(14) 11×20 9×40(20)
-1 6×10 5×20(10) 8×14 10×38(18)
-2 5×8 5×18(10) 6×10 11×38(18)
-3 4×6 6×18(10) 5×8 11×36(18)
-4 3×4 6×18(10) 4×6 11×36(18)
-5 3×4 6×18(10) 4×6 11×36(18)
-6 3×4 6×18(10) 3×4 11×36(18)
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ber of sample points for the propagating part, which is the same as
for the FFT-based MLFMA, is N + 1 samples in the θ-direction times
2N samples in the ϕ-direction, with N given by (26). The number
of sample points for the evanescent part is given as M × 2N(2N ′),
with M being the number of sample points in the σ-direction and 2N
the number of sample points in the ϕ-direction for the outer-to-inner
translations. The far-field and incoming wave patterns are, however,
sampled using M × 2N ′ points, and also the outer-to-outer and inner-
to-inner translations are performed using these lower number of points
in the ϕ-direction, as outlined in Section 3.2.

For the UMLFMA we use the same number of sample points and
parameters for all levels: Nt = 9 points in the t-direction, Nϕ = 15
points in the ϕ-direction, and the parameters γ = 3 and τ = 10−5.
These numbers are selected, by numerical experiments, to give two
digits accuracy in the outer-to-inner translations.

Table 3 presents the results for all methods aiming at two digits
accuracy. The level l refers to the level where the outer-to-inner
translation is performed. For the one-level variant this is the only
level, and for the two-level variant this is the upper level. We observe
that all methods give good results for the one-level version, but in the
two-level version we observe significant differences. The accuracy of
the spectral representation decreases slightly at higher levels, mainly
due to the fact that the σ-interpolations and anterpolations become
less accurate. This is probably insignificant, especially since it seems
more optimal to switch over to the FFT-based MLFMA at higher levels

Table 3. Relative L2 errors for the different translation procedures
aiming at two digits accuracy.

Spectral repr. FFT-MLFMA UMLFMA
level 1 level 2 levels 1 level 2 levels 1 level 2 levels

5 4.73e-04 1.14e-03 1.49e-06 2.35e-06
4 4.12e-04 7.72e-04 1.76e-05 2.01e-05
3 1.02e-03 1.38e-03 2.13e-05 2.21e-05
2 5.26e-04 1.86e-03 2.00e-05 2.94e-05
1 2.16e-03 2.11e-03 9.42e-05 1.43e-04
0 2.97e-03 2.92e-03 1.72e-04 1.72e-04
-1 3.17e-03 3.19e-03 1.81e-04 1.24e-02
-2 4.85e-03 4.85e-03 1.26e-04 4.72e-03
-3 6.29e-04 6.34e-04 1.20e-04 3.51e-03
-4 6.31e-04 6.31e-04 1.22e-04 3.43e-03
-5 6.31e-04 6.31e-04 1.23e-04 3.43e-03
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anyway.
The more dramatic decrease in accuracy, when comparing the two-

level version with the one-level version, happens for the UMLFMA.
At lower levels, we loose almost one significant digit and near the
transition region ka ≈ γ the situation is even worse. The accuracy in
the interpolations and anterpolations can be improved by choosing a
smaller γ, but then the accuracy in the outer-to-inner translations
decreases. Furthermore, we then push the problematic transition
region ka ≈ γ to lower levels, making it less straightforward to switch
over to the FFT-based MLFMA.

Table 4. Error controllability of the spectral representation and the
FFT-based MLFMA. The numbers are the relative L2-errors for the
two-level version at different levels and two different target precisions
d0.

Spectral repr. FFT-MLFMA
level d0 = 2 d0 = 4 d0 = 2 d0 = 4

5 1.14e-03 6.41e-06 2.35e-06 1.03e-08
4 7.72e-04 4.88e-06 2.01e-05 1.24e-07
3 1.38e-03 6.76e-06 2.21e-05 2.51e-07
2 1.86e-03 7.05e-06 2.94e-05 4.53e-07
1 2.11e-03 4.92e-05 1.43e-04
0 2.92e-03 3.23e-05 1.72e-04
-1 3.19e-03 1.65e-05
-2 4.85e-03 9.59e-06
-3 6.34e-04 7.28e-06
-4 6.31e-04 9.35e-06
-5 6.31e-04 5.46e-06

Table 4 demonstrates the error controllability of the spectral
representation and the FFT-based MLFMA. By increasing the number
of sample points as given in Table 2 we of course increase the
computational cost, but also the accuracy increases with approximately
two digits as wanted. Here, we compare the relative L2-errors for the
two-level version only. Finally, we note that it appears impossible to
increase the accuracy in the UMLFMA by two digits.

5. CONCLUSIONS

In this paper, we have considered the translation procedures needed to
efficiently implement a broadband MLFMA. To overcome the low-
frequency breakdown, we have considered two representations: the
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spectral representation, also known as the inhomogeneous plane-wave
expansion, and the UMLFMA.

For the spectral representation, we have combined the best parts of
the previously reported implementations [6–8] and also proposed some
new improvements. For the propagating part, the use of an entirely
FFT-based approach, as described in [12] for the traditional MLFMA,
seems to be the best available method. The error controllability is
excellent, a minimal number of sample points needs to be stored and
it is trivial to switch from the spectral representation to the FFT-
based traditional MLFMA at higher levels. Also in [8], an FFT-based
approach is briefly mentioned as an alternative, but apparently not
implemented.

For the evanescent part of the spectral representation, we have
used a generalized Gaussian quadrature rule [9] for the σ-direction as is
also used in [6, 8]. This appears to be the most efficient quadrature rule
available. The most novel feature of our proposed implementation of
the evanescent part is, however, the observation that we can efficiently
perform the interpolations and anterpolations in the σ-direction using
the sample points and interpolation matrices. Compared to [6, 8] this
is much more straightforward and perhaps even more efficient. The
only drawback is that we need a fairly large number of samples, thus
making the computations faster at the cost of an increased memory-
consumption.

For comparison we have also described a somewhat modified
implementation of the UMLFMA [10], and compared the error
controllability of the two different representations. The UMLFMA
is promising, since the computational cost is considerably smaller and
the method is simpler to implement, but the error controllability is
poor. For many applications, the limited accuracy may be sufficient,
but it seems impossible to get significantly higher accuracies without
changing method. The spectral representation, on the other hand, is
error controllable, as we have demonstrated.
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