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Abstract—In the past, coupling capacitances between conductors was
extracted using charge distributions directly. In this paper a set of
new generalized variational formulas are derived. They are complete
since they are valid not only for self-capacitances, but also for mutual
capacitances. As for the realistic numerical implementation, elastance
matrices become asymmetrical because of numerical method used.
Then a more general variational formula is derived to account for
the asymmetrical elastance matrix case. By these novel formulas the
computational accuracy can be significantly improved compared to the
conventional capacitance extraction method.

1. INTRODUCTION

Finding the capacitance of a metallic structure has been a problem
of historical interest. The capacitance of a sphere can be easily
found in closed form, while the closed-form capacitance of two spheres
can be found by the image method [1]. When the object is of odd
shape, usually no closed-form solution exists. For two-dimensional
problems, the conformal mapping method can be used to solve
Laplace’s equation, and hence yielding the capacitance of complex two-
dimensional structures [2].

When the structure is three dimensional, finding analytic solution
is even more difficult. Kirchhoff first gave the asymptotic formula for
the capacitance of two circular discs with small separation in 1877 [3].
Since then, formulas for the capacitance of this structure has been
derived by others [4–8].
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When microwave integrated circuits became important, it was
then useful to find the capacitance of two circular disks separated by a
dielectric slab [9–14]. This geometry is encountered in the microstrip
capacitance which forms an important component of microwave
integrated circuits.

Recently, the increasing clock frequency of computer chip design
has rekindled the interest in capacitance extraction of complex
structures as found in computer chips. The mutual capacitive
coupling between conductors causes cross-talk that can degrade the
performance of high-speed circuits. Hence, capacitance extraction, and
the understanding of cross-talk effect have been an important part of
these circuit designs.

When the wavelength is very long compared to the circuit size,
Laplace’s equation can be solved to obtain the mutual capacitance
between conductors. Because of complex circuit structures for which no
closed form exists, and the large number of unknowns needed to model
these complex structures, computational electromagnetics (CEM) with
fast algorithms have been widely used to solve these problems [15–21].

A traditional way to extract capacitances is to discretize the
conductors into small patches and use the Galerkin’s method or the
method of moments (MoM) to solve for the charge distribution from
a resultant linear system. The mutual and self-capacitances can then
be obtained from them directly [1, 22, 23].

The most popular way to model coupling capacitances was to use
the elastance matrix [1]. Consider N initially uncharged conductors
of fixed positions and shapes. The ratio of the rise in potential Vr

of conductor r due to the charge Qs placed on conductor s (with
zero charges on all other conductors) to produce this rise is called
the coefficient of potential or mutual elastance srs. A superposition of
potentials for charges over all conductors gives

V1 = s11Q1 + s12Q2 + · · · + s1NQN

V2 = s21Q1 + s22Q2 + · · · + s2NQN

· · · = · · ·
VN = sN1Q1 + sN2Q2 + · · · + sNNQN (1)

Once the elastance matrix is known, we may solve this set of equations
to obtain the charge on each conductor in terms of the potentials of
neighboring conductors. The solutions are

Q1 = c11V1 + c12V2 + · · · + c1NVN

Q2 = c21V1 + c22V2 + · · · + c2NVN

· · · = · · ·
QN = cN1V1 + cN2V2 + · · · + cNNVN (2)
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The quantity crr is the self-capacitance, while crs is the mutual
capacitance. The matrix formed by cij is known as the capacitance
matrix. Suppose Vr is set to be a nonzero constant while all other
conductors are grounded to zero potential. Then the elements of the
capacitance matrix are simply written as

c1r = Qr
1/Vr

c2r = Qr
2/Vr

· · · = · · ·
cNr = Qr

N/Vr (3)

where Qr
s refers to the net charge on the sth conductor while the rth

conductor is set to a nonzero voltage Vr.
Usually, Qr

s cannot be exactly determined, and is sought by some
approximate numerical method. For the self-capacitance, there is a
variational formula that can improve its accuracy compared to the
method using Equation (3). It states that under the above assumption,
the self-capacitance is written as the variational formula [24, p. 53], [25,
p. 277]

c−1
rr [σ] =

∮
sr

dr

∮
sr

dr′σ(r)G(r, r′ )σ(r′ )
[∮

sr

drσ(r)
]2 (4)

where σ(r) refers to the charge distribution on the rth conductor,
G(r, r′ ) is the static Green’s function, and sr denotes the surface of
the rth conductor. Reference [24] has stipulated this Green’s function
to be one that will produce the potential due to a point charge in the
presence of all the conductors except for the rth conductor.

However, there is no variational formula for mutual capacitances.
Hence, the variational method is not complete and has been rarely
used for capacitance extractions. In this paper, new variational
formulas for capacitance extractions are derived. They are complete
because they are valid not only for self-capacitances but also for
mutual capacitances. Furthermore, during numerical computations,
an approximate matrix equation is usually derived by the projection
method such as the Galerkin’s method or the method of moments
to solve for the capacitance matrix. The projection method may
cause the elastance matrix to be asymmetrical. A formula for the
asymmetric case is specially derived to give the variational property
of the capacitance computation. They provide higher accuracy for the
capacitance compared to the conventional method.
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2. VARIATIONAL FORMULAS FOR CAPACITANCE
EXTRACTIONS

The capacitance matrix is often obtained via a numerical procedure
described below. Suppose that there are N conductors arbitrarily
placed in an isotropic inhomogeneous medium environment. The
pertinent integral equation is∮

s
dr′G(r, r′ )σ(r′ ) = Vi, r ∈ si, i = 1, · · · , N (5)

where si is the surface of the ith conductor, s = ∪N
i=1si, σ(r′ ) is the

surface charge density on all the conductors, and Vi is the potential of
the ith conductor. The Green’s function here is one that will produce
the potential due to a point charge in the presence of an inhomogeneous
medium (e.g., see reference [20]), and hence, is somewhat different from
that defined in [24]. We can generalize the above to∮

s
dr′G(r, r′ )σ(r′ ) = Φ(r), r ∈ s (6)

A popular way to convert this integral equation into a matrix equation
is to use Galerkin’s method, or the method of weighted residuals, also
known as the method of moments. To this end, we let

σ(r) =
N∑

n=1

qnfn(r) (7)

where fn(r) is the basis function. Substituting the above into (6), and
multiplying by wm(r) where m = 1, · · · , N , and integrate over s, we
have

S · q = Φ (8)

where

[S]mn =
∮

s
dr

∮
s
dr′wm(r)G(r, r′ )fn(r′ ) (9)

[q]n = qn (10)

[Φ]m =
∮

s
drwm(r)Φ(r). (11)

Since Laplace’s equation is self-adjoint, the corresponding Green’s
function is also self-adjoint, and we expect the ensuing matrix equation
via the above projection method to be symmetric. However, the
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above represents a general nonsymmetric system unless wm = fm, the
Galerkin’s method case. When the basis functions fn(r) are normalized
such that they hold unit charges, namely

∮
s drfn(r) = 1, then qn above

represents the charge belonging to each basis function. Without loss
of generality, we can also assume that wm(r) is similarly normalized.

Usually, to obtain an accurate solution and to provide versatility
for geometry modeling, a subdomain method is used where the surfaces
of all conductors are discretized into M small patches. One or more
unknown functions is assigned to approximate the charge on each
patch. The S matrix above is the generalized elastance matrix whose
value depends on the geometry, the Green’s function, as well as the
choice of expansion and weighting functions.

For capacitance computation, usually, the ith of the N conductors
is set to a nonzero voltage Vi, while all the other conductors are set
to zero volt. Hence, all patches that belong to the ith conductor will
share the same potential Vi while the rest of the patches have zero volt.
We denote such a matrix system as:

S · qi = Φi (12)

The vector Φi is such that

[Φi]m =

{
Vi, when support of wm ∈ si;
0, when support of wm �∈ si;

(13)

We can solve the above for qi
n. For a given qi, by summing

over qi
n that belongs to the jth conductor to obtain the charge on it,

namely, Qi
j , we can use (3) to find the capacitance cji for j = 1, · · · , N .

Repeating this for i = 1, · · · , N , we can find the self and mutual
capacitances needed in (2) to obtain the capacitance matrix C for
which the following holds:

C · V = Q (14)

where V is the potential vector and Q is the charge vector of all
conductors. The above relationship holds true for an arbitrary vector
V as well. In the following discussion, we will specialize it to the case
where only the ith element in V is nonzero.

The component Qi
j of Q is defined as the net charge on the jth

conductor while the ith conductor is assigned nonzero volt, and can be
expressed as

Qi
j =

∑
n∈Gj

qi
n Gj = {n : support of fn∈sj , surface of jth conductor}

(15)
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where n = 1, 2, · · · , M and i, j = 1, 2, · · · , N . Since only the ith
conductor is set to Vi and all others set to zero, it can be seen that

CjiVi = Qi
j (16)

This formula actually corresponds to the conventional direct
capacitance computation method. It can be seen that the charge Qi

j

can be written in another form

Qi
j =

Φjt · qi

Vj
(17)

Putting Equation (12), (16) and (17) together, we get

Cji =
Φjt · qi

ViVj
=

Φjt · S−1 · Φi

ViVj
(18)

Considering Equation (12) and assuming that Galerkin’s method has
been used to ensure the symmetry of S, we have

C−1
ji =

qjt · S−1 · qi

Qi
jQ

j
i

(19)

It can be seen that if i = j, Equation (19) changes into the self-
capacitance formula similar but not identical to (4). The charge qi in
(19) represents the charge on all the conductors, whereas the charge in
(4) represents the charge on the pertinent conductor only. When i �= j,
Equation (19) gives the mutual capacitance formula. Furthermore, it
is a variational formula as shall be proven.

THEOREM 1 The direct capacitance extraction method using
Equation (16) is not variational. The formula in Equation (19) is
variational.

Proof It is obvious that Equation (16) is not stationary since the
capacitance has the first order error caused by the charge error. As
for the second statement, we take the first variation of Equation (19)
about qi and qj which are exact solutions to (12). Then, we have

δC−1
ji Qi

jQ
j
i + C−1

ji δQi
jQ

j
i + C−1

ji Qi
jδQ

j
i = δqjt · S · qi + qjt · S · δqi(20)

From Equation (12), the right hand side (RHS) of the above equation
is

RHS = δqjt · Φi + Φjt · δqi = δQj
iVi + δQi

jVj
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From Equation (16), the left hand side (LHS) is

LHS = δC−1
ji Qi

jQ
j
i + VjδQ

i
j + ViδQ

j
i

Comparing both sides, it can be seen that δC−1
ji = 0.

It is to be noted that if Equation (12) is solved exactly for qi and
qj , there is no difference between Equation (16) and Equation (19)
to within machine precision of the exact computation. However, in
many numerical computations, Equation (12) is not solved exactly.
For example, it could have been solved by the conjugate gradient
method or other iterative method for which a residual error in the
solution remains. Alternatively, it could have been solved by some fast
algorithms for which additional errors accrued due to the factorization
of the Green’s function. However, Equation (19) yields second order
error in the capacitance when first order error is committed in the
charge, and hence, is more accurate than Equation (16).

To arrive at the above result, we have assumed that Equation (12)
is actually the equation constructed using Galerkin’s method. Hence,
the S matrix is strictly symmetrical. Had the method of collocation
or point matching method been used as in the method of weighted
residuals, S would have become asymmetrical. The asymmetry is
caused by the choice of numerical methods. Then the important
relation S = St does not hold for Equation (19). However, another
variational formula for capacitance extractions can still be constructed.

THEOREM 2 Suppose that there are N conductors arbitrarily placed
in an isotropic inhomogeneous medium environment. If the elastance
matrix Equation (12) is asymmetrical, the mutual capacitance Cji will
be determined by the following variational formula

C−1
ji =

q̃jt · S · qi

Qi
jQ̃

j
i

(21)

where qi and q̃j are the charge vectors of all patches when only the ith
or only the jth conductor is assigned nonzero potential. They satisfy

S · qi = Φi (22)

S̃ · q̃j = Φ̃
j

(23)

where

S̃ = St
. (24)
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and Φi and Φ̃
j

are the potential vectors of all patches. Qi
j is the

net charge on the jth conductor based on Equation (22) when the
ith conductor has nonzero potential. Q̃j

i is the net charge on the ith
conductor based on Equation (23) when the jth conductor has nonzero
potential.

Proof From Equations (22) and (23), assuming that qi and q̃j solve
them exactly, we have from (21) that

CjiVj = Qj
i

CjiṼj = Q̃j
i

Using the same procedure for Equation (19) and the assumption
of Equation (24), Equation (21) can be easily proved.

Then rewriting Equation (21) and taking the first order variation
on both sides, we have

δC−1
ji Qi

jQ̃
j
i + C−1

ji δQi
jQ̃

j
i + C−1

ji Qi
jδQ̃

j
i = δq̃jt · S · qi + q̃jt · S · δqi

The right hand side can be simplified by Equation (22) and (23) to

RHS = δq̃jt · Φi + Φ̃
jt · δqi = δQ̃j

iVi + δQi
j Ṽj

while the left hand side is

LHS = δC−1
ji Qi

jQ̃
j
i + ṼjδQ

i
j + ViδQ̃

j
i

then δC−1
ji = 0.

Although it seems that THEOREM 1 is a special case of
THEOREM 2 when S̃ = S, THEOREM 1 agrees better with the
original integral equation which is self-adjoint. THEOREM 2 is only
a modified version of THEOREM 1 to deal with artifacts caused by
numerical methods which destroy the symmetry of the system.

Hence the variational computation of mutual capacitances is
always possible even when numerical artifacts are involved. However,
the asymmetric form given by (21) requires the solving of the original
and adjoint problem as given in (22) and (23). Therefore, its use is
more costly than the symmetric form as given in (12).

3. FAST MULTIPOLE ALGORITHM

The charge distribution over conductors must be solved from
generalized elastance matrix Equation (12) for capacitance extractions.
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Fast multipole algorithm (FMA), combined with CG method, has
been used as the solver [15, 21]. For multi-layer applications, a
method considering the multi-reflection effects has been developed
[19, 20]. FMA provides an efficient approach for obtaining the charge
distributions on conductor surfaces. After the charge has been
calculated, the variational formula (Equation (19)) or the direction
capacitance formula (Equation (16)) can be used to compute the
mutual and self-capacitances. Details about FMA will not be discussed
in this paper.

4. NUMERICAL RESULTS

The generalized variational formula derived for capacitance extractions
is tested using the FMA algorithm. The capacitance matrix of two
unit perfect electric conducting spheres separated by 2.5 meters is
computed. They are discretized into 6,400 triangles. Galerkin’s
method is applied using single precision, and the relative residual error
limit of CG is 10−6. The conventional method shown in Equation (16)
and the new variational method shown in Equation (19) are tested.
FMA is used to compute charge distributions. The multipole expansion
truncation number p changes from 0 to 6. The capacitance matrix
computed using p = 8 is set to be the reference (it will not be same as
the analytic solution because of the geometrical modelling error due to
the finite discretization of the geometry).

However, it is found that the variational method does not improve
the accuracy if it is directly applied to the resultant charges using FMA
computations (see the “variational form (a)” of Figure 1). The reason
is that in low order FMA (p is small), due to the factorization of the
Green’s function, the equivalent elastance matrix S has some error
(δS). Then the variational formula will become

C−1
ji =

qt
j · S · qi

Qi
jQ

j
i

+
qt

j · δS · qi

Qi
jQ

j
i

(25)

The second term introduces errors which can overwhelm the accuracy
improvement brought by the variational formula. To avoid this
problem, the matrix-vector product, S · qi, used in Equation (19) is
evaluated more accurately by using higher order multipole expansion
to reduce the error in the factorization of the Green’s function. In this
example, if the multipole number used for the charge computation is
p, the matrix-vector product in the variational formula will use p + 3.
Since the variational formula requires only one matrix-vector product
after the iterative solver is used with many iterations to solve for the
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Figure 1. Accuracy enhancement by the variational formula.

charge, there will be no big cost increase. (This problem will not occur
when Gaussian elimination is used to solve the matrix equation.) The
improved result is plotted as “variational form (b)” in Figure 1. It
can be seen that the variational formula brings significant accuracy
improvement over the conventional data.

Another example is to compute the self and mutual capacitances
of two unit spheres using Galerkin’s method and CG. The charge
distributions obtained from different stages of CG iteration are applied
to the conventional direct capacitance formula (3) and the new
variational formula (19). The capacitance error is relative to the
capacitances computed from LU decomposition of (12) first for the
charge qi followed by the direct capacitance formula (3). The
convergence error of the mutual capacitance and the self-capacitance
are plotted in Figure 2. It can be seen that the variational method
converges to 10−5 much faster than the direct method. It means that
the variational method gives rise to faster convergence requiring less
number of iterations.

To apply this method to the interconnect and packaging parasitic
capacitance extraction, a two-signal-line example is studied. The
geometry is shown in Figure 3. The method of moments is used to
compute the capacitance matrix. The variational method is deployed
to improve the accuracy of the results. To demonstrate the advantage
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Figure 2. Accuracy enhancement by the variational formula. The left
plot is for self-capacitance and the right plot is for mutual capacitance.
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Figure 3. The geometry of the two signal lines. The two signal lines
penetrate two isolated ground plates through vertical vias.

of the variational method over the direct method, the relative errors
of the four components in the first row of the capacitance matrix are
compared in Figure 4. The relative error is defined as the relative
capacitance difference between two adjacent iterations:

E =

∣∣∣∣∣
Ck−1

ij − Ck
ij

Ck−1
ij

∣∣∣∣∣ (26)

where Ck−1
ij is the extracted capacitance Cij at the (k−1)-th iteration.

From Figure 4, it is obvious that the variational method provides
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Figure 4. The relative error of four capacitance matrix elements
using direct method and variational method for the two-signal-line
benchmark shown in Figure 3.

a much faster convergence compared to the direct method for all
capacitive couplings.

5. CONCLUSION

In this paper, a set of new variational formulas for capacitance
extractions are derived. They are complete because they are valid
not only for self-capacitances, but also for mutual capacitances. As
for asymmetrical elastance matrix case resulting from the choice of
numerical method, a new variational capacitance formula can still be
derived. They gave higher accuracy compared to the conventional
capacitance extraction methods.

The idea expounded in this paper can also be extended to other
applications in large-scale computing where solution error persists due
to the use of conjugate gradient method combined with fast algorithms.
These methods often trade off accuracy with speed, but the use of
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variational formulas to improve the accuracy of a desired parameter.
In this paper, the parameter is the mutual or the self capacitance,
but for other applications such as radar cross section computation, the
use of variational formulas can accelerate the convergence of the radar
cross section to the desired value.
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