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PEC GROUND PLANE

A. G. Tyzhnenko

Department of Mathematics
Kharkiv National Economic University
Prospect Lenina 9A, 61059, Kharkiv, Ukraine

Abstract—A rigorous solution to the Neumann boundary value
problem (BVP) for semicircular trough in a perfectly electrically
conducting (PEC) ground plane is presented. The known Rayleigh’s
method expansion of a solution by eigensolutions of the Helmholtz
equation in cylindrical coordinates coupled with partial orthogonality
of trigonometric functions is used. In contrast to previous works on this
theme, a Fredholm 2nd kind matrix equation for modal coefficients is
obtained, which permits one to derive very fast convergent approximate
solution for any incidence angle and trough dimension. The method
solution permits one to consider a dielectric loading as well. A strong
broadband fall-off of backscattering from apertures loaded with lossy
dielectric is theoretically revealed.
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1. INTRODUCTION

Scattering from a trough in a conducting ground plane is one of the
most formidable problems in computational electromagnetics (CEM)
if we want to obtain a unique solution to the Helmholtz equation
that satisfies both the boundary condition on the whole infinite
interface and Sommerfeld condition. The first and widely used method,
the generalized network formulation proposed by Harrington and
Mautz [1], is relatively simple to compute and implement, but it
suffers from the problem of spurious resonances at eigenfrequences of
indentation [2]. Theoretically, a unique solution to this problem can
be obtained making use of the electric field integral equation (EFIE)
or the magnetic field integral equation (MFIE) on the whole infinite
interface. However, any numerical realization of such methods needs
for truncation of integral equation’s domain that, in turn, leads to
inadequacy of a numerical solution, which increases with grazing angle
diminishing. To weaken this inadequacy, one needs to enlarge the flat
pieces from both sides of a roughness. This one leads to dramatic
increasing in computational burden. To avoid this, one can apply
resistive cards, as in [3], or some version of resistive tapering, as in [4].
Such simulations are very useful in CEM, but they need for testing
with the aid of some rigorous method. As such a test method, one
could use a solution for scattering from semicircular trough. Many
authors treated this problem. In [5–7], this one has been reduced to
a 1st kind integral equation. In [8, 9], both the Rayleigh’s method
expansion of a solution by eigensolutions of the Helmholtz equation
in cylindrical coordinates and partial orthogonality of trigonometric
functions has been used. However, authors do not overcome the ill-
posedness of matrix equation obtained and then their solution, as well
as all others obtained in [5–7], may be correct in the low-frequency
range only. The most general case of EM wave scattering by dielectric-
loaded slots and semicircular troughs with the aid of singular integro-
integrodifferential equations has been considered in [10]. The range of
correctness of numerical solution of such equations was not specified
in the cited paper, other than the numerical results exhibited can be
regarded to the low-frequency case only. In [11], an analytic solution
to the mentioned problem has been obtained in the low-frequency case
as well.

A rigorous solution to this BVP for the TE case (transverse
electric to the plane of incidence) was obtained by the author in
[12]. In this work, as in [8, 9], the Rayleigh’s method coupled with
partial orthogonality of trigonometric functions was used. However, in
contrast to [8, 9], the additional equation found for modal coefficients
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permits one to obtain a Fredholm 2nd kind matrix equation for Fourier
coefficients, which in turn permits one to obtain a convergent numerical
solution for any scatterer size and incidence angle.

In this paper, see also [13], the analogous method is applied for
solving the TM scattering problem. A Fredholm 2nd kind matrix
equation for Fourier coefficients is also obtained, which yields a
unique solution to the mentioned BVP for any grazing angle and
scatterer size. An approximate solution of truncated matrix equation
converges exponentially fast to an exact solution with truncation
number increasing. This issue permits one to obtain an approximate
solution with preset accuracy in a very economical way. The simple
algorithm obtained permits one to consider a set of semicircular
troughs loaded with dielectric cylinders of any dimensions of them in
contrast to those considered in [14] for low-frequency case only.

Summarizing, one can define the obtained solution as “semi-
analytical”: that in which the discretization of the domain is not
used but, in contrast to purely analytical procedure, for obtaining an
approximate solution one have to solve a Fredholm matrix equation.

The paper is organized as follows. In Section 2, the main principles
of the solution are described. In Section 3, the numerical features are
given. In Section 4, some numerical results are presented. Here, the
comparison with the solution in [7, 9] for TM case is done for the low-
frequency case and good agreement is demonstrated. Besides, loading
of mentioned trough with lossy dielectric is considered and strong fall-
off of backscattering is theoretically revealed for some losses. This
fall-off we find for all investigated magnitudes of electric size of the
trough (ka ≤ 100).

2. TM-SCATTERING PROBLEM SOLVING

Consider a problem of H-scattering from a dielectric-loaded semicircu-
lar trough in a PEC plane, illuminated by a TM-plane wave (trans-
verse magnetic to the plane of incidence), as is shown in Fig. 1. With a
suppressed time dependence of exp(jωt), the z-component of incident
magnetic field can be written as

H0(ρ, ϕ, t) = e−jkρ sin(i0−ϕ), (1)

where k = ω/c is a free space wavenumber. An incident angle, i0, is
counted counterclockwise from the positive OY axis. The dielectric
constant is considered as any complex quantity, ε = ε′ − jε′′ (ε′′ ≥ 0).
We assume the total magnetic field in D− to be consist of the incident,
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Figure 1. Geometry of the BVP.

reflected, and scattered fields

H−(ρ, ϕ) = e−jkρ sin(i0−ϕ)+e−jkρ sin(i0+ϕ)+
∞∑

n=0

anH
(2)
n (kρ) cosnϕ. (2)

The total field in D+ is represented as

H+(ρ, ϕ) =
∞∑

n=1

bnJn(k1ρ) sinnϕ+
∞∑

n=0

cnJn(k1ρ) cosnϕ, (3)

where k1 = k
√
ε1 is the wavenumber inside the dielectric cylinder. The

enforcement of the electric and magnetic fields continuity at ρ = a
yields the equations

∞∑
n=0

anHn cosnϕ−
∞∑

n=1

bnJn sinnϕ−
∞∑

n=0

cnJn cosnϕ =

−e−jka sin(i0−ϕ) − e−jka sin(i0+ϕ) (4a)
∞∑

n=0

anH
′
n cosnϕ− ε−0.5

1

∞∑
n=1

bnJ
′
n sinnϕ− ε−0.5

1

∞∑
n=0

cnJ
′
n cosnϕ =

j sin(i0 − ϕ)e−jka sin(i0−ϕ) + j sin(i0 + ϕ)e−jka sin(i0+ϕ) (4b)

for 0 < ϕ < π, and
∞∑

n=1

bnJ
′
n sinnϕ+

∞∑
n=0

cnJ
′
n cosnϕ = 0 (4c)

for π < ϕ < 2π. We use here the following notation for the Bessel
functions and their derivatives with respect to the whole argument:

Hn = H(2)
n (ka), H ′

n = H(2)
n

′
(ka), Jn = Jn(k1a), J ′n = J ′n(k1a). (5)
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Multiplying the equations (4) by cosmϕ and integrating both sides
with respect to ϕ upon the corresponding intervals, and using the
notation

γnm =

{
0, m = n

(1 − (−1)n−m)n/(n2 −m2), m �= n ,

we obtain the following equations for modal coefficients:

amHm − νm
π

∞∑
n=1

bnJnγnm − cmJm = F (1)
m , (6a)

amH
′
m − νm

π
ε−0.5
1

∞∑
n=1

bnJ
′
nγnm − ε−0.5

1 cmJ
′
m = F (2)

m , (6b)

νm
π

∞∑
n=1

bnJ
′
nγnm − cmJ ′m = 0 (6c)

with

F (1)
m = −2νmjm cosm(i0 + π/2)Jm(ka), (7)

F (2)
m = −2νmjm cosm(i0 + π/2)J ′m(ka), (8)

and
νm =

{
1, m = 0
2, m > 0 . (9)

Multiplying the equation (4c) by sinmϕ and integrating it with respect
to ϕ from π to 2π, we obtain an additional equation that is equivalent
to (6c):

2
π

∞∑
n=0

cnJ
′
nγmn − bmJ ′m = 0. (10)

Note that namely this equation permits one to obtain a well-
conditioned system for modal coefficients. In mentioned work [9], the
authors solved the equations (6), which yield a very ill-conditioned
system after truncating procedure. Condition number of this system
increases drastically with truncation order that prevents for obtaining
an adequate solution in high-frequency range. Let us prove now
that the use of additional equation (10) permits one to obtain a
Fredholm 2nd kind matrix equation for modal coefficients. Really,
using equations (6b) and (6c), we can obtain the equation without bn

amH
′
m − 2ε−0.5

1 cmJ
′
m = F (2)

m . (11a)
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Further, deriving bmJ ′m from additional equation (10) and substituting
it into (6a), we obtain the second equation without bn

amHm − cmJm − 2νm
π2

∞∑
n=1

Jn

J ′n

∞∑
n=0

ckJ
′
kγnk = F (1)

m . (11b)

We consider here that

J ′n = J ′n(k1a) �= 0. (12)

It is really so for complex k1a. Worth noting that condition (12) fulfils
for any real rational value of k1a, other than J ′n(k1a) may be very close
to zero. However, the ratio Jn/J

′
n in (11b) does not approach close to

zero that ensures the stability of a solution for any reasonable value of
k1a. We change further the summation order in (11b) supposing the
absolute convergence of series. After obtaining the unknowns ck, we
will prove that it is really so. Noting new unknowns

ãm = amHm, b̃m = bmJ ′m, c̃m = cmJm, (13)

we obtain the following system for only one unknown, c̃k:

c̃m +
∞∑

k=0

Tmk c̃k = Fm, (14)

where

Tmk = − 2νm
π2∆m

J ′k
Jk

∞∑
n=1

Jn

J ′n
γnkγnm, (15)

Fm =
1

∆m

(
F (1)

m − Hm

H ′
m

F (2)
m

)
, (16)

∆m = 2ε−0.5
1

HmJ
′
m

H ′
mJm

− 1. (17)

Deriving c̃k from (14), we can then obtain the rest of unknowns from
the formulas:

ãm = (∆m + 1)c̃m +
Hm

H ′
m

F (2)
m , (18a)

b̃m =
νm
π

∞∑
n=1

c̃n
J ′n
Jn
γmn. (18b)

Consider now the existence of the obtained solution. According to
[15], the matrix equation (14) has a unique solution in the Hilbert
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space of sequences (l2) if and only if the matrix T and the right
hand side (RHS) are square summable and the determinant of the
system is nonzero. The existence of matrix elements Tmn is ensured
by asymptotic behavior of series elements in (15) versus m, n, and k:

Jn

J ′n
γnkγnm = O(n−3k−2m−2) (19)

that follows from
Jn

J ′n
= O(n−1), γnk = O(n−1k−2), ∆k = O(k0). (20)

Accounting for (19), we see that series in (15) is absolutely convergent
and its sum behaves asymptotically as follows:

∞∑
n=1

Jn

J ′n
γnkγnm = O(k−2m−2).

Accounting for such behavior of the sum and J ′k/Jk = O(k), we easily
obtain that

Tmk = O(k−1m−2), (21)
and namely this issue insures the square summability of T that in turn
ensures existence of infinite determinant in (14). As to the RHS, we
can see that Fm decays exponentially fast if we account for (7), (8).
Because of that, F is square summable as well. More than that, the
exponentially fast decay of the RHS ensures the same diminishing rate
of the solution, viz.,

ãm, c̃m = O((k1a)m2−m/m!). (22)

At the same time, bm only decays as m−1. This one increases
significantly the computational time when deriving the inward
magnetic field, but does not enlarge the computational cost for the
scattered field. Finally, because of the main equation (14) is Fredholm,
the condition number of truncated system does not increase with
truncation number in contrast to [8, 9].

Now, having the solution to the main equation (14), we can prove
the correctness of its deriving. To obtain this equation, we changed
the order of summation in (11b). This procedure is correct if and
only if the both series converge absolutely. Let us prove that it is so.
Accounting for (22), we can see that the inner series in (11b) converges
exponentially fast and hence absolutely. Accounting further for (20),
we can see that for large n

Jn

J ′n

∞∑
k=0

c̃k
J ′k
Jk
γnk = O(n−2),
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and then the outer series in (11b) converges absolutely as well. This
one proves the correctness of deriving of the main equation (14).

Consider now the existence of the BVP solution in D− and D+.
Prove that the scattered field in D−

H−
s =

∞∑
n=0

ãn
H

(2)
n (kρ)

H
(2)
n (ka)

cosnϕ, (23)

and the whole field in D+

H+(ρ, ϕ) =
∞∑

n=1

b̃n
Jn(k1ρ)
J ′n(k1a)

sinnϕ+
∞∑

n=0

c̃n
Jn(k1ρ)
Jn(k1a)

cosnϕ (24)

exists for any ρ and ϕ. Really, in D− we have ρ > a and

lim
n→∞

H(2)
n (kρ)/H(2)

n (ka) = 0.

Because of that, the series in (23) converges exponentially for any ρ ≥ a
and ϕ if we account for (22). In D+, ρ < a and for large n we have
asymptotic behaviors

Jn(k1ρ)/Jn(k1a) = O((ρ/a)n),
Jn(k1ρ)/J ′n(k1a) = O(n−1(ρ/a)n)

that prove the absolute convergence in (24) for any ρ < a and ϕ. On the
boundary ρ = a, the first series in (24) converges as n−2, if we account
for (18b) and (20), and the second series converges exponentially fast.
Summarizing, we can affirm that proposed BVP solution exists in any
point of upper half-space and on the whole infinite interface.

3. NUMERICAL FEATURES

The main issue of infinite system solving is the behavior of a truncated
system solution with the truncated number (M) increasing. Fig. 2a
shows the solution to the matrix equation (14) for ka = 20, ε = 1, and
normal incidence. We compare herein two solutions forM = 50 (dotted
curve) and M = 100 (solid curve) harmonics and demonstrate the
exponentially fast decay of Fourier coefficients c̃m. The coefficients ãm
have analogous decay rate. Both these coefficients derive the scattered
field and ensure desirably low computational burden of numerical
solution. In contrast to these two coefficients the third one, b̃m,
decays more slowly. Its decay rate is demonstrated in Fig. 2b. These
figures show numerically the stability of a solution and its tendency
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Figure 2. Solutions, c̃m and b̃m, of truncated system for M = 50 and
M = 100 harmonics.

to some limit, as it must be for any Fredholm-like equation. As far as
the existence and uniqueness of 2-D Neumann problem considered is
already proved theoretically, the adequacy of an approximate solution
{ãm, b̃m, c̃m} of a truncated system of Mth order can be confirmed
only if the fields matching error on the boundary tends to zero with
M increasing. The numerical confirmation that the matrix equation
(14) is Fredholm is collected in Table 1 for i0 = 89◦, ε = 1, and
different electric sizes (ka) of the trough. For mentioned scatterers,
the following quantities are given in the table versus the truncation
number (M): the relative boundary condition error on the metal semi-
circle (ρ = a, π < ϕ < 2π)

e(M) =

∥∥∥∥∥∥
M ′∑
n=1

b̃(M
′)

n sinnϕ+
M∑

n=0

c̃(M)
m

J ′n
Jn

cosnϕ

∥∥∥∥∥∥
2

/ ∥∥∥∥∥∥
M ′∑
n=1

b̃(M
′)

n sinnϕ

∥∥∥∥∥∥
2

,

(25)
where M ′ � M, ‖ ◦ ‖2 is the Frobenius vector-norm and c̃m is
derived from (14); the Frobenius norm n(M) of truncated Mth-order
matrix T ; the condition number of truncated algebraic system c(M),
and the dimensionless monostatic radar cross section (MRCS) for
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Table 1. The main characteristics of obtained solution for i0 = 89◦
and ε = 1.

M 50 100 150 200
)(Me 5.2657 410- 8.0790 510- 3.2912 510- 1.7835 510-

)(Mn 1.4891 310 1.4898 310 1.4898 310 1.4899 310
)(Mc 2.1455 310⋅ 2.1701 310⋅ 2.1809 310 2.1877 310

)(M
bσ , dB 12.6996 12.7495 12.7562 12.7579

ka=20

t, s 1.0 2.6 6.5 12.5
M 100 150 200 250

)(Me 8.5970 410-⋅ 2.0526 410-⋅ 8.4931 510-⋅ 4.5414 510-⋅
)(Mn 278.3191 278.5644 278.7110 278.8311
)(Mc 405 408 410 411

)(M
bσ , dB 16.6367 16.6598 16.6631 16.6632

ka=50

t, s 2.8 6.3 17.0 21.6
M 150 200 250 300

)(Me 0.0015 4.3313 410-⋅ 1.8489 410-⋅ 9.6561 510-⋅
)(Mn 1.0108 310⋅ 1.0111 310⋅ 1.0111 310⋅ 1.0112 310⋅
)(Mc 1.4940 310⋅ 1.4993 310⋅ 1.5039 310⋅ 1.5076 310⋅

)(M
bσ , dB 20.4754 20.5381 20.5635 20.5764

ka=100

t, s 7.3 13.4 23.0 36.1

. . . .

. . . .
..

backscattering

σ
(M)
b = lim

ρ→∞

2πρk
∣∣∣H(M)

s

∣∣∣2
|H0|2

. (26)

With the goal of comparison with [7, 9], we also calculate the
backscattering width (BW)

σ(M)
w = lim

ρ→∞

2πρ
∣∣∣H(M)

s

∣∣∣2
|H0|2

(27)

and the far-zone scattered field amplitude

Ph(ϕ) = lim
ρ→∞

√
0.5πkρ|Hs(ρ, ϕ)|. (28)

Finally, we note that all calculations were done in the MATLAB
programming area using a PC Pentium Pro 200 MHz. While evaluating
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the Bessel functions of high order, we used the MATLAB codes. The
correctness of these codes was controlled using the recurrent formulas
giving in [16]. The MATLAB codes for Bessel functions revealed
their high accuracy for any order of them. It is also confirmed
by monotonous decreasing of the boundary condition error with the
truncation number increasing.

4. NUMERICAL RESULTS

Despite the presented method is numerically rigorous and applicable
for scatterers of any size, we compare in this section the results
obtained in this paper with that of [7, 9] valid for low frequencies only
with the goal of verifying our numerical algorithm. Fig. 3a shows
excellent agreement of results for vacant trough of ka = 2π (a = λ)
for normal incidence (i0 = 0◦). For lossless dielectric loading with
ε = 3, the agreement is rather good as well, but worse than for
abovementioned vacant trough as we can see in Fig. 3b. This is due to
strong resonances in dielectric cylinder that make worse the accuracy of
a solution to ill-conditioned system treated in [9]. This paper solutions
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a)                                                                           ka

P
h
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b)                                                                           ka

P
h

ε=1, i0=0o 

asterisked - [7, 9]    
solid - this paper     

asterisked - [9]   
solid - this paper 

ε=3, i0=0o  

Figure 3. Far-zone scattered field amplitude, Ph, versus ka for
the vacant trough, (a), and dielectric loaded trough, (b), for normal
incidence (i0 = 0◦).
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Figure 4. Backscattering width for empty and dielectric loaded
grooves versus grazing angle, g, for some ε′ and ε′′ in the low-frequency
range (ka = 2π). Circled curves correspond to [9], solid curves — to
this paper.

exhibited in Fig. 3 are obtained with relative error e(M) < 10−4.
The accuracy of solutions in [9] was not specified. Comparison of
backscattering (BW) obtained by means of two methods, [9] and this
paper, in the whole range of grazing angle g = 90◦ − i0 is shown in
Fig. 4a as circled and solid curves respectively for vacant and loaded
troughs of ka = 2π (a = λ). Excellent agreement can be noted herein as
well. We can also see the enhanced backscattering for lossless dielectric
loading of mentioned trough noted in [9]. However, it is worthwhile to
point out that, as to author’s knowledge, there are no investigations of
backscatter from troughs loaded with lossy dielectric. Here, in contrast
to lossless loading, the backscatter falls rapidly with increasing from
zero. Its behavior for ε′′ = 0.4 is shown in Fig. 4a (curve 2) for example
considered in [9]. Strong fall-off of backscatter we can see here for any
oblique incidence. Such fall-off performances depend strongly on both
and as we can see in Fig. 4b for ε′ = 1.3. The detailed investigation of
this problem shows that backscatter decreases with ε′′ for any ε′ but
to a certain value only, and then increases monotonously. The BW
dependencies via are shown in Fig. 5a and 5b for the above considered



Progress In Electromagnetics Research, PIER 54, 2005 315

0 0.5 1
-15

-10

-5

0

5

10

15

a)                           ε"
0 0.5 1

-60

-50

-40

-30

-20

-10

0

10

b)                             ε"

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 ε = 3-jε" 

ε = 1.3-jε" 

B
ac

ks
ca

tte
rin

g 
W

id
th

, d
B

B
ac

ks
ca

tte
rin

g 
W

id
th

, d
B

Figure 5. Extremum behavior of backscattering width versus ε′′ for
ε′ = 3 and ε′ = 1.3 in the low-frequency range.

ε′ = 3 and ε′ = 1.3 respectively, and for different grazing angles
(0◦, 20◦, 40◦, 60◦, and 80◦). These graphics show that we can pick
out the parameters of loading so that a trough will be almost invisible
under oblique illumination of HH radar.

Above, we consider the same trough as in [9], namely, of ka =
2π (a = λ). In contrast to [9], we can consider troughs of any size
and loading. So that, we investigate in this section the mentioned fall-
off of backscattering for troughs of middle size, ka = 100 (a ≈ 16λ)
with different lossy loading. The BW behaviors for troughs loaded
with dielectric of ε = 1.3 and ε = 1.3 − 0.01j are shown in Fig. 6a,
curve 1 and 2 respectively, in comparison with vacant trough (thick
curve). The analogous behaviors are shown in Fig. 6b for ε = 1.1 and
ε = 1.1 − 0.02j, curve 1 and 2 respectively. Here, in contrast to the
low-frequency case, we can see more uniform fall-off of backscattering
in the whole range of grazing angle for oblique incidence. Again, we
can sort out parameters of loading so that the aperture may be almost
non-scattering in back direction under oblique illumination as we can
conclude from Fig. 6b (curve 2).

It is of practical interest to investigate the behavior of mentioned
fall-off of backscattering versus incident field frequency or, what is
the same, the electric size (ka) of a loaded trough. Corresponding
backscattering characteristics are shown in Fig. 7(a)–(d) for loading
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Figure 6. Backscattering width versus grazing angle for empty and
dielectric loaded grooves for some ε′ and ε′′ in the microwave range
(ka = 100). Fall-off of backscattering is occurred for lossy loading
(curves 2) compared to lossless one (curves 1) and empty groove (thick
curve).

with for grazing angles 0◦, 20◦, 40◦, and 60◦ respectively (curve 2 in all
figures) in comparison with backscattering from vacant trough (curve
1 in all figures). We do not show here the backscattering for (ε = 1.1)-
loaded trough because its behavior is almost the same as that for
vacant trough. These graphics show that for chosen dielectric loading
the backscattering decreases significantly with frequency growth, in
contrast to vacant trough, in the whole range of oblique incidence,
and this effect becomes larger for larger frequencies. That is, this
effect gives, theoretically, the possibility of reducing drastically the
backscattering from an aperture making use of appropriate dielectric
loading. More realistically, this is the first step only towards its
practical implementation. Further, we plan to apply a more general
method solution for scattering from rough surface with the goal of
solving the mentioned problem for non-canonical geometries. The
solution presented here will play, as to our opinion, a fundamental
role in testing of methods that are more general.
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Figure 7. Backscattering width versus ka for some grazing angles
(0◦, 20◦, 40◦, 60◦) for lossy loading (curves 2) compared to the vacant
trough (curves 1).

5. CONCLUSION

A new solution to the known two-dimensional canonical boundary
value problem has been provided here in a rigorous manner for H-case.
Coupled with analogous work for E-case [13], this paper finishes the
long-time efforts to overcome this problem. Primarily, the considered
BVP problem can be used for testing methods that are more general.
However, some interesting scattering features have also been found
from this canonical problem itself. Example is the enhanced E-
scattering at low grazing for ice-loaded trough, which has been revealed
in [13]. This enhanced backscattering gives a theoretical possibility of
detecting an iceberg with the aid of an HH-radar at low grazing. The
problem that has been solved in this paper permits one to investigate
the backscattering from ice-loaded trough as well. Such investigation
has been provided and revealed this opportunity to be not possible
for VV remote sensing. Because of that, these results were not
demonstrated in this paper for brevity. On the other hand, a strong
fall-off of backscattering from lossy loaded trough has been found in
this paper for V-illumination in a large range of scatterer size for
oblique incidence. This effect gives a theoretical possibility to decrease
drastically the backscattering from semicircular apertures under V-pol
illumination.
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