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Abstract—This paper presents an innovative inverse scattering
approach based on a fuzzy-logic strategy aimed at fully exploiting
the information content of the scattered data in a microwave imaging
system. The effectiveness of the proposed method is assessed through
the results of a numerical analysis concerned with the reconstruction
of single as well as multiple dielectric targets in various noisy
environments. For comparison purposes, the obtained performance are
compared with those of a standard method in terms of reconstruction
accuracy and computational load to point out the improvement
induced by the proposed approach.
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1. INTRODUCTION

Microwave imaging is a technique aimed at investigating and
reconstructing the electromagnetic properties of an inaccessible area
(for a general overview see [1–3] and the reference therein). Towards
this aim, the investigation domain is probed by means of a set of
incident electromagnetic fields and the scattering interactions with the
structure under test are detected through a set of sensors placed outside
the inaccessible area.

In such a framework, the collection of the scattering information
is a key point of the imaging process, but severe obstacles prevent
the acquisition of a completely reliable set of measurements since
unavoidable sources of error operate. For instance, the electromagnetic
interferences contribute to the corruption of the data together with
systematic errors caused by the inaccurate mechanical positioning of
experimental acquisition arrangement.

The impact of such “disturbances” is further emphasized by the
intrinsic instability of every inverse scattering problem [4]. To limit
such effects, the retrieval problem is usually regularized by defining
a suitable cost function and searching for the estimation of the
scenario under test that best matches the available scattering data.
Although such a countermeasure circumscribes the ill-conditioning,
the presence of noise could lead the reconstruction algorithm towards
a false solution. To avoid this event, a reliable estimation of the
information content in the measured data (i.e., distinguishing between
the contribute of the scattering and of the noise in the measured data)
is very appealing.

Since a “direct” evaluation would be complex and very expensive
from an experimental point of view, the authors propose in this work
an unsupervised technique. Towards this aim, the potentialities of a
fuzzy-logic [5] based strategy are exploited in the retrieval process to
obtain a degree of reliability of each noisy measure.

The paper is organized as follows. In Sect. 2, the fuzzy-logic
system is described then the results of a preliminary assessment are
presented and analyzed by considering a selected set of synthetic
scenarios (Sect. 3). Finally, some conclusions are drawn (Sect. 4).

2. MATHEMATICAL FORMULATION AND
FUZZY-LOGIC BASED APPROACH

Let us consider a two-dimensional geometry where an investigation
domain Dinv is illuminated by a set of V known incident fields
(Einc

v (r) = Einc
v (x, y)ẑ, v = 1, ..., V ) to determine its electromagnetic
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characteristics modeled in terms of the object function τ(x, y) =
[εr(x, y) − 1]− j σ(x,y)

2πf , εr(x, y) and σ(x, y) being the relative dielectric
permittivity and the electric conductivity, respectively; f is the
working frequency. Such an imaging process is carried out starting
from the scattered field collected in an observation domain Dobs

external to Dinv.
The physical relationship between the object function τ(x, y)

and the field scattered in the observation domain, LDobs
(xm, ym),

(xm, ym) ∈ Dobs, is mathematically described by mans of the Integral
Data Equation [6]

Lv
Dobs

(xm, ym) = k2
∫

Dinv

Gext(xm, ym|x′, y′)τ(x′, y′)Etot
v (x′, y′)dx′dy′

(xm, ym) ∈ Dobs (1)

where G(x, y |x′, y′) = − j
4H

(2)
0

(
k0

√
(x− x′)2 + (y − y′)2

)
, k being

the free-space wavenumber, and H
(2)
0 is the Hankel function of 0-th

order and second kind; Etot
v (x, y) is the electric field corresponding to

the v-th illumination.
Moreover, the scattering phenomena in Dinv can be suitably

represented in terms of the Integral State Equation [6]

Lv
Dinv

(xn, yn) = Etot
v (xn, yn) − k2∫
Dinv

Gint(xn, yn |x′, y′)τ(x′, y′)Etot
v (x′, y′)dx′dy′

(xn, yn) ∈ Dinv (2)

In order to reconstruct τ(x, y) and Etot
v (x, y) in the investigation

domain, preventing the ill-posedness of the problem, a widely adopted
technique consists in defining a suitable cost function [7] proportional
to the fitting between measured and reconstructed scattering data

Φ
{
τ(xn, yn), Etot

v (xn, yn)
}

= ΦData

{
τ(xn, yn), Etot

v (xn, yn)
}

+ΦState

{
τ(xn, yn), Etot

v (xn, yn)
}

n = 1, ..., N v = 1, ..., V (3)
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ΦData

{
τ(xn, yn), Etot

v (xn, yn)
}

=

V∑
v=1

M∑
m=1

{
γm

v

∣∣∣Escatt
v (xm, ym)−Lv

Dobs
(xm, ym)

∣∣∣2}
V∑

v=1

M∑
m=1

{∣∣∣Escatt
v (xm, ym)

∣∣∣2}
(Data Term) (4)

ΦState

{
τ(xn, yn), Etot

v (xn, yn)
}

=

V∑
v=1

N∑
n=1

{
Ψn

v

∣∣∣Einc
v (xn, yn) − Lv

Dinv
(xn, yn)

∣∣∣2}
V∑

v=1

N∑
n=1

{∣∣∣Einc
v (xn, yn)

∣∣∣2}
(State Term) (5)

M (or N) being the numbers of positions in Dobs (or in Dinv) where
the scattered field (or the incident field) is collected. γm

v and Ψn
v are

reliability coefficients for Lv
Dobs

(xm, ym) and Lv
Dinv

(xn, yn), respectively,
which allow to take into account the presence of noise in the collected
data. Such reliability indexes are computed in an unsupervised way
by means of the fuzzy-logic system shown in Fig. 1.

More in detail, the inputs of the fuzzifier (the first block in Fig. 1)
are two sequences (νv

m and υv
n) concerning the collected data according

v=1,.. V
m=1,.. M
n=1,.. N

RULES DATABASE
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υ n
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Figure 1. Block-diagram of the fuzzy system.
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to the following expressions

νv
m =

∣∣∣∣∣E
scatt
v (xm, ym)
Etot

v (xm, ym)

∣∣∣∣∣
maxv

{
maxm

∣∣∣∣∣E
scatt
v (xm, ym)
Etot

v (xm, ym)

∣∣∣∣∣
} ,

υn
v =

∣∣∣Einc
v (xn, yn)

∣∣∣
maxv

{
maxn

∣∣∣Einc
v (xn, yn)

∣∣∣}

v = 1, ..., V
m = 1, ...,M
n = 1, ..., N

. (6)

Then, a fuzzy counterpart, represented by a Gaussian membership
function g(νv

m) [or g(υv
m)] [5] centered in νv

m (or υv
m) and characterized

by a variance χ = 10−4, is associated to each input value of the fuzzifier.
The membership function interacts with an a-priori heuristically-
defined “Dataset of Rules” composed by a set of Antecedents and
related Consequences [Fig. 2(a)]. During the fuzzy inference phase,
the system determines an activation value µ(νv

m) [or µ(υv
m)] for each

Antecedent, obtained by computing the intersection between g(νv
m) [or

g(υv
m)] and the Antecedent itself.
As far as the “Rule 4” is concerned, such a procedure is shown

on the left side of Fig. 2(a). The same figure displays the definition of
the “degree of truth” of the associated Consequence (“Cons4”) starting
from the activation value.

The process is repeated for each rule (i.e., for each couple of
Antecedent-Consequence) to obtain the composition of the final degree
of truth as indicated in Fig. 2(b) by the shadowed region (called “truth
region”).

The last step (called defuzzification) of the unsupervised data-
processing consists in computing the reliability index γm

v (or Ψn
v ), which

is defined as the center of the truth region [Fig. 2(b)].
Successively, starting from such a set of coefficients (γm

v , Ψn
v ; n =

1, ..., N , m = 1, ...,M , v = 1, ..., V ), whatever reconstruction algorithm
is used to minimize the arising cost function (3), it could usefully
exploit the scattering data according to their degree of reliability.

3. NUMERICAL RESULTS

In this Section, a selected set of numerical results will be shown to
give some indications on the improvement over a standard approach
when pre-processing the input data by means of the fuzzy-system.
Such results will be concerned with three different scattering scenarios
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Figure 2. Dataset of Rules employed for processing the input data of
the fuzzy system.

depicted in Fig. 3†. They refer to scatterers located in a square
investigation domain of side λ0 (λ0 being the free-space wavelength)
probed by a set of monochromatic plane waves and partitioned in
N = 225 equal square sub-domains according to the Richmond’s
procedure [8]. The “Test Case 1” consists of a square λ0

5 -sided
homogeneous (τ = 1.5) cylinder sensed by V = 4 different directions
(θv

inc = 2π
V (v − 1), v = 1, ..., V ), while in the second one (Test Case

2 ) is a similar profile but larger (L = λ0
3 in side) and probed with

V = 8 different incident fields. In the “Test Case 3”, two scatterers
are located d = λ0

3 far the one from the other (L1 = L2 = λ0
5 and

τ1 = τ2 = 1.5). The scattering data have been numerically computed
† Please note that the black pixel in the lower right border of the image is used for reference.
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Figure 3. Numerical validation - Actual profiles: (a) Test Case 1, (b)
Test Case 2, and (c) Test Case 3.
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Figure 4. Test Case 1 - Average values of the error figures versus
SNRs: (a) total error ζtot, (b) internal error ζint, and (c) external
error ζext.

in M = 10 sampling points by adding a random Gaussian noise with
a fixed signal-to-noise ratio (SNR) to simulate realistic environmental
conditions.

As far as the minimization procedure is concerned, since the focus
is on the comparison between the fuzzy-logic-based technique and
the reference one (the “bare” approach), a simple iterative conjugate-
gradient optimizer [9] has been used. Our more recent advances on
the minimization of the inverse scattering cost function have been
described elsewhere [10] and it will be used in the near future to fully
exploit the effectiveness of an integrated strategy based on the fuzzy-
logic data processing.

In order to quantitatively estimate the improvement in the
quantitative imaging allowed by the fuzzy-logic-based processing, the
following error figures are defined

ζj =
1

N (j)

N(j)∑
n=1

{
τ(xn, yn) − τ ref (xn, yn)

τ ref (xn, yn)

}
× 100 (7)

where N (j) ranges over the whole investigation domain (N (j) = N ,
j ⇒ tot), or over the area occupied by the actual scatter (j ⇒ int), or
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Figure 5. Test Case 1 - Samples of the dielectric profiles reconstructed
by using the standard approach (a)–(c) and the fuzzy-logic-based
strategy (b)-(d) when SNR = 10 dB (a)–(b) and SNR = 5 dB (c)–
(d).
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Figure 6. Test Case 1 - Behavior of the cost function during the
minimization process when (a) SNR = 10 dB and (b) SNR = 5 dB.
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Figure 7. Test Case 1 - Average number of iterations needed to reach
the convergence versus the signal-to-noise ratio.

over the background (j ⇒ ext).
Then, let us analyze the results of the numerical assessment

starting from the first experiment. As expected, the fuzzy-logic
data processing, acting before the minimization process, significantly
impacts when SNR ≤ 20 dB, that is in those situations where the
measured data are seriously corrupted by the noise. Such an event
can be noticed in Figs. 4(a)–(c) where it is pointed out that the fuzzy-
based strategy achieves smaller values of the error figures‡ than those
of the standard method. Pictorially, such an improvement can be
appreciated by comparing the images of the reconstructed contrasts
when SNR = 10 dB [Fig. 5(a) vs. Fig. 5(b)] and SNR = 5 dB [Fig. 5(c)
vs. Fig. 5(d)]. Such a behavior is due to the better fitting with the
scattering data allowed by the proposed methodology.

In fact, the minimization of the cost function benefits of the
action of the reliability coefficients γm

v and Ψn
v as shown in Fig. 6

where two representative samples of the behavior of the cost function
during the iterative minimization are given [Fig. 6(a) - SNR =
10 dB; Fig. 6(b) - SNR = 5 dB]. As can be observed, the total
‡ Because of the statistical nature of the noise, each situation characterized by a different
SNR has been executed several times to assess the quality of the solution. Therefore, the
reported results are the averages of the execution of the imaging process for 50 independent
realizations of the data-generation process given a fixed value of the signal-to-noise ratio.
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Figure 8. Test Case 2 - Average values of the error figures versus
SNRs: (a) total error ζtot, (b) internal error ζint, and (c) external
error ζext.

number of iterations needed to reach the convergence (Φ(k) ≤ η,
η = 10−3; k being the iteration index) or a stationary condition

(
∣∣KwindowΦ(k)−

∑Kwindow
h=1

Φ(h)
∣∣

Φ(k) ≤ γst, Kwindow = 20 and γst = 10−2).
Moreover, as far as the standard approach is concerned, such a number
increases and the rate of convergence reduces when the noise level
grows, while it keeps an almost constant value (∼ 700) when the fuzzy-
based strategy is adopted.

This behavior is also pointed out in Fig. 7 where the mean values
of the total number of iteration needed to minimize the cost function
is reported. Such a value turns out to be more insensitive to the
SNR value when the new method is applied. On the contrary, large
variations occur when the reference approach is used.

Similar conclusions, in terms of convergence rate and reconstruc-
tion accuracy, hold true for the Test Case 2 (Fig. 8) and the multiple-
scatterers configuration (Test Case 3 - Fig. 9). As far as the two-
objects configuration is concerned, the obtained results confirm the ef-
fectiveness of the fuzzy-based approach in dealing with complex scenar-
ios, as well. According to the indications carried out from the behaviors
of the error figures in Fig. 9, the reconstructed profiles [Figs. 10(b)–(c)]
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Figure 9. Test Case 3 - Average values of the error figures versus
SNRs: (a) total error ζtot, (b) internal error ζint, and (c) external
error ζext.

better approximate the actual ones and the presence of artifacts in the
final image is avoided.

For completeness, Figure 11 shows the plots of the cost function
for a realization of the reconstruction process when SNR = 10 dB and
SNR = 5 dB, respectively.

4. CONCLUSIONS

In this paper, an innovative fuzzy-logic-based methodology aimed
at exploiting the information content of noisy data by means of an
unsupervised procedure has been presented. Such a strategy allows
to take into account the reliability of the measurements through a
set of weighting coefficients in the cost function to be minimized.
The effectiveness of the proposed approach has been analyzed by
means of some synthetic experiments concerning various scattering
configurations as well as noisy environments. The achieved results
have shown a noticeable reduction of the required computational load
as well as an improvement in the reconstruction of the scenario under
test.
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Figure 10. Test Case 3 - Samples of the dielectric profiles
reconstructed by using the standard approach (a)–(c) and the fuzzy-
logic-based strategy (b)–(d) when SNR = 10 dB (a)–(b) and SNR =
5 dB (c)–(d).



300 Azaro et al.

 0.001

 0.01

 0.1

 1

 0  500  1000  1500  2000

A
rb

itr
ar

y 
U

ni
t

Iteration Number, k

ΦRef

ΦFuzzy

ΦRef Data Term
ΦFuzzy Data Term

 0.001

 0.01

 0.1

 1

 0  500  1000  1500  2000

A
rb

itr
ar

y 
U

ni
t

Iteration Number, k

ΦRef

ΦFuzzy

ΦRef Data Term
ΦFuzzy Data Term

(a)

(b)

Figure 11. Test Case 3 - Behavior of the cost function during the
minimization process when (a) SNR = 10 dB and (b) SNR = 5 dB.
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