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Abstract—Scattering by pulsating objects is discussed. In the case
of the pulsating cylinder, its surface vibrates time-harmonically in the
radial direction. The formalism is based on first-order v/c relativistic
approximations, and on the assumption that the ambient media are not
affected by the mechanical motion of the interface. This is conducive
to simpler and amenable approximations.

The cases analyzed display the modulation effect due to the
mechanical motion at frequency Ω, creating new spectral components
in the scattered wave, peaking at the sideband frequencies ωex ± nΩ
around the excitation frequency. To put such phenomena in a quasi-
relativistic and electromagnetic context, and account for the boundary-
condition problem and the representation of the scattered wave is the
subject of the present investigation.

Such effects can be used to remotely sense the properties of the
scatterer, especially its motion.
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1. INTRODUCTION

In a series of articles [1–4], the non-relativistic, or quasi-relativistic,
theory for scattering by moving objects and media has been developed.
Insofar as for some simple cases the results can be compared to
exact special-relativistic results [5, 6], the new model is consistent with
Special Relativity within the first-order approximation in v/c.

Presently the problem of harmonically pulsating surfaces is
investigated. It was mentioned before [4, 7], that because of the varying
velocity, the classical Special-Relativistic Lorentz transformation [5, 6]
becomes inadequate for cases involving varying velocity, hence an
appropriate generalization is needed. We use a quasi-Lorentzian
transformation that takes into account the velocity-dependent
kinematics in question

r
T

= r −
∫ R

R0

v(R)dt

t
T

= t− c−2
∫ R

R0

v(R) · dr
(1)

where in (1) superscript T denotes the reference-frame attached to the
boundary, R = (r, ict) is a quadruplet of spatiotemporal coordinates
indicating a so-called event in the Minkowski space. The bar indicates
the integration variable, which is subsequently suppressed, assuming
that the integration variable can be identified from the context. In (1)
we have path-independent line integrals in the Minkowski space, the
velocity field is laminar, i.e., ∂r × v = 0 [4], hence the differentials of
(1) yield

dr
T

= dr − v(R)dt

dt
T

= dt− v(R) · dr/c2
(2)

which is immediately recognized as the first-order in v/c differential
form of the global Lorentz transformation [5, 6].

The non-relativistic model also requires a relation between the
spectral components

k
T

= k − v(R)ω/c2

ω
T

= ω − v(R) · k
(3)

which is recognized as the first-order approximation in v/c for the
relativistic Doppler effect and the Fresnel drag effect formula [1–4].

To the first-order in v/c manipulation of (3) yields

k
T
· k

T
= k · k − 2v · kω/c2, k

T
= k − v · k̂ω/c2
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v
(1)
ph,T = ω

T
/k

T
= v

(1)
ph

(
1 + β

(1)
k (A(1) − 1)

)

v
(1)
ph = ω/k, β

(1)
k = β(1)k̂ · v̂, β(1) = v/v

(1)
ph , A(1)(v(1)

ph /c)
2

(4)

where in (4) superscript (1) correspond to medium {1}, the phase
velocity v

(1)
ph is associated with a plane wave observed in medium {1}

at-rest, and it is displayed how the phase velocity is modified in the
presence of a moving medium.

For a plane wave propagating in the direction parallel to the
velocity we have k̂ · v̂ = 1, β

(1)
k = β(1). For propagation directions

normal to the velocity, the effect vanishes. In free space v
(1)
ph,T = v

(1)
ph ,

hence A(1) = 1 and once again the effect vanishes. Formula (4) will be
heuristically exploited below for varying velocities as well.

Boundary conditions corresponding to the relativistically exact
relations, appropriate for this class of problems, have been introduced
before [1–4]

n̂ ×
(
E

(1)
eff − E(2)

)
= 0, n̂ ×

(
H

(1)
eff − H(2)

)
= 0

E
(1)
eff = E(1) + v × B(1), H

(1)
eff = H(1) − v × D(1)

(5)

where in (5) superscripts (1), (2), correspond to media {1}, {2}
respectively, and E

(1)
eff , H

(1)
eff are the effective fields due to motion

of medium {1} when observed at the boundary, which is at-rest with
respect to medium {2}. The unit vector n̂ is normal to the boundary,
and to the first-order in v/c is not affected by the motion.

Unlike previous problems analyzed by this method, here we
encounter local spatiotemporally-dependent velocities, e.g., radial in
the case of a pulsating cylinder, rather than a uniform lineal motion.
This introduces more complexity because a different quasi-Lorentz
transformation must be assigned at each point on the scatterer.

Similarly to other problems tackled by this model [2–4], the
objects are considered to move through the ambient medium without
disturbing its mechanical flow, thus violating mechanical fluid-
continuity. Consider for example a pulsating cylinder. It will be
assumed that in spite of the boundary motion, both the external and
the internal media are not compressed or rarified. Admittedly, taking
into account the mechanical continuity at the boundary would improve
the physical model, but at this stage we cannot solve such problems in
general. Some interaction problems of this kind have been considered
before [8, 9]. In a limited sense, we can imagine cases where the
boundary is porous, thus allowing the continuity of the flow, and yet
electromagnetically acting as if we are dealing with a smooth surface.
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Generally speaking, we have to some extent sacrificed physical
reality for mathematical feasibility. The model is still correct for
objects in free space (vacuum), and is expected to yield good
approximations in the presence of very transparent ambient media,
e.g., atmospheric gases.

2. PULSATING PLANE INTERFACE

By way of introducing the present model and the notation used
throughout, the problem of the pulsating plane interface with normal
incidence is briefly summarized. In this case we are dealing with global
lineal motion, as done before [4].

The excitation plane wave, propagating in the ambient medium
{1}, is characterized by material parameters ε(1), µ(1)

Eex = x̂Eexe
iθex , Hex = ŷHexe

iθex , Eex/Hex = (µ(1)/ε(1))1/2 = ζ(1)

θex = kexz − ωext, kex/ωex = (µ(1)ε(1))1/2 = 1/v(1)
ph (6)

The pulsating medium is terminated by a plane interface moving
through medium {1} according to

z
T

= z − z0SΩt, SΩt = sin Ωt (7)

where in (7) z
T

denotes the local coordinate system in which the
boundary is at-rest. The interface is located at z

T
= Z. The local

origin moves according to z
T

= 0. For any point z
T

= const., in
particular z

T
= 0, the associated velocity as observed from the original

reference-frame of {1} follows from (7) as

v(t) = dz/dt = v0CΩt, v0 = z0Ω, CΩt = cos Ωt (8)

Substituting z = z0SΩt in (6) yields the phase at z
T

= 0

θex0 = θex
∣∣∣
z
T

=0
= kexz0SΩt − ωext, eiθex0 = ΣnIne

−iωnt

ωn = ωex − nΩ, In = Jn(kexz0), Σn = Σn=∞
n=−∞

(9)

In (9) it is assumed that we have an array of instruments, at-rest
in medium {1}, in which we read off the results at positions z = z0SΩt,
as a function of time t. From (2) it is clear that to the first-order in v/c
we have dt

T
/dt = 1, i.e., the exact relativistic time dilatation, which is

known to be a second-order effect in v/c vanishes here. Therefore the
same phase θex0 in (9) is also measured in terms of the native time t

T
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by an observer attached to the position z
T

= 0. Also note in (9) the
representation of the exponential in terms of a series of Bessel functions
(e.g., see [10], p. 372).

Now we compute for each frequency ωn in (9) the phase shift from
z
T

= 0 to the scatterer location z
T

= Z, using for each ω
T

= ωn the

appropriate phase velocity v
(1)
ph,T given in (4). This yields

θn = knTZ − ωnt

knT = ωn/v
(1)
ph,T � kn

(
1 − β

(1)
0 (A(1) − 1)CΩt

)
(10)

kn = ωn/v
(1)
ph , β

(1)
0 = v0/v

(1)
ph

Furthermore, we have to include the amplitude effect prescribed
by (5), amounting in the present case to a factor 1 − β

(1)
0 CΩt. Also

note that the Fresnel drag effect in (10) is of first-order in v/c, and
the exponential can be approximated by its leading terms of the
appropriate Taylor series expansion. Thus we obtain at the boundary

EexT = x̂EexT , HexT = ŷHexT = ŷEexT /ζ
(1)

EexT = EexΣnIne
iKn(1−β(1)

0 (A(1)−1)CΩt)−iωnt
(
1 − β

(1)
0 CΩt

)

= ΣnEex;ne
−iωnt (11)

Eex;n = Eex
(
Ine

iKn + β
(1)
0

(
Bn−1In−1e

iKn−1 + Bn+1In+1e
iKn+1

))

Bn =
(
iKn(1 −A(1)) − 1

)
/2, Kn = knZ

where in (11) indices have been judiciously raised and lowered in order
to end up with a spectrum of sidebands with frequencies ωn. As a
check on (11) consider the free-space case A(1) = 1, for which the
Fresnel drag effect vanishes and we get plane waves in free space in the
excitation wave direction.

The internal medium {2} is assumed to be at-rest with respect to
the interface, i.e., the medium and the interface are moving together.
Of course, this implies that the medium is accelerated, but this aspect
of the problem is considered negligible for practical examples. It follows
that the internal field is a solution of the wave equation and must
possess the same frequencies prescribed by (11)

Ein = x̂Ein, H in = ŷHin = ŷEin/ζ
(2), ζ(2) = (µ(2)/ε(2))1/2

Ein = ΣnEin;ne
κnzT

−iωnt, κn/ωn = (µ(2)ε(2))1/2 = 1/v(2)
ph

(12)

where the coefficients Ein;n in (12) have to be determined by the
boundary conditions at z

T
= Z.
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The scattered (reflected) wave propagating in medium {1} at-rest
must be stipulated with the same spectral structure, hence we choose

Esc = x̂Esc, Hsc = −ŷHsc = −ŷEsc/ζ
(1)

Esc = ΣνEsc;νe
−iksc;νz−iωsc;νt

ωsc;ν = ωex − νΩ, ksc;ν/ωsc;ν = (µ(1)ε(1))1/2 = 1/v(1)
ph

(13)

Upon substituting z = z0SΩt, (13) becomes at z
T

= 0 a double
sum

Esc
∣∣∣
z
T

=0
= ΣνEsc;νe

−iksc;νz0SΩt−iωsc;νt

= ΣνµEsc;νe
−iωsc;ν−µtJµ(ksc;νz0)

= Σne
−iωntE′

sc;n

E′
sc;n = ΣνEsc;νJν−n(ksc;νz0), ωn = ωsc;ν−µ

(14)

where in (14) we have included a constraint ν − µ = n, so that
frequencies at the boundary must coincide with the same frequencies
ωn prescribed by the excitation wave (11). The constraint amounts to
a Kronecker delta function δµ;ν−n, and the double summation collapses
into a single summation.

Similarly to (11), we include the amplitude effect, expressed now
by a factor 1 + β

(1)
0 CΩt, where the sign change compared to (11) is

due to the reversed direction of HscT in (5). Noting that in (4) now k̂
points in the opposite direction, i.e., compared to the excitation wave,
the scattered wave now propagates in the opposite direction relative
to the velocity, the phase shift from z

T
= 0 to z

T
= Z is modified (cf.

(11)) yielding

EscT = x̂EscT , HscT = −ŷHscT = −ŷEscT /ζ
(1)

EscT = ΣnE
′
sc;ne

−iKn(1+β
(1)
0 (A(1)−1)CΩt)−iωnt

(
1 + β

(1)
0 CΩt

)

= Σne
−iωntEscT ;n (15)

EscT ;n = E′
sc;ne

−iKn +β
(1)
0

(
B′
n−1E

′
sc;n−1e

−iKn−1+B′
n+1E

′
sc;n+1e

−iKn+1

)

B′
n =

(
iKn(1 −A(1)) + 1

)
/2

As a check, once again consider in (15) the free-space case A(1) =
1, which shows that the Fresnel drag effect vanishes and we get simple
reflected waves propagating in the reflection direction.

In a similar manner the associated magnetic fields are derived,
and the coefficients are computed from the boundary conditions
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EexT + EscT − EinT = 0|Z , HexT + HscT − H inT = 0|Z . Thus the
boundary-value problem is considered as solved.

From the above analysis the characteristics of this class of
problems emerge: We start with an excitation wave and derive its
time-dependent phase at an arbitrary point, at-rest with respect to the
boundary. The time signal in question is recast in a series (or in general
that would lead to an integral) of harmonic spectral components.
Then the phase shifts to points on the boundary are computed. The
field amplitudes at the boundary are derived from the Lorentz force
formulas or quasi-relativistic relations for the effective fields observed
in the presence of motion (5). In the cases discussed here, first-order
in v/c approximations further simplify the results, facilitating the
computation of the pertinent scattering and transmission coefficients.
As in (15), all results of such problems contain terms of first-order
in v/c, in which coefficients can be exploited from the zero-order
approximation, i.e., from the velocity-independent solution of the
scattering problem, for the frequencies in question. Finally as in (15)
it is typical for such problems to show interaction of terms of various
orders. This has been observed for cases of uniform motion as well
[1, 3], even in free space [11].

3. PULSATING CYLINDER: THE BOUNDARY-VALUE
PROBLEM

In this example we consider a medium {1} with given parameters
ε(1), µ(1), in which a circular cylinder, characterized by medium {2}
with parameters ε(2), µ(2), is pulsating. Similarly to the plane interface
problem, it is assumed that the motion does not disturb medium {1},
and the internal medium {2} remains at-rest relative to the boundary.

The scatterer is chosen as a circular cylinder of quiescent radius
r
T

= 	. We choose the center of the cylinder r
T

= 0 as the origin of
the ensemble of local coordinate systems, relevant to various points on
the boundary.

The interface moves radially through medium {1} according to

r
T

= r − r0SΩt, Cϕ = cosϕ, Sϕ = sinϕ

y
T

= −(r − r0SΩt)Sϕ = y − y0SΩt

z
T

= (r − r0SΩt)Cϕ = z − z0SΩt (16)
r
T

= y
T

+ z
T

= ŷ(y − y0SΩt) + ẑ(z − z0SΩt) = r − r0SΩt

where the vector expression in (16) is very simple, due to the choice
of the origin. The angle ϕ is measured off the z-axis in a right
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handed screw direction towards the negative direction of the y-axis.
Inasmuch as the motion is radial the angles ϕ = ϕ

T
are identical,

whether observed in the initial reference-frame r, or from the boundary
reference-frame r

T
. It is obvious from (16) that for each angle ϕ we

have to use a different Cartesian coordinate transformation similar to
(1), (7).

Similarly to (8) we now have at r
T

= 0, for each local coordinate
system

v = r̂dr/dt = r̂v0CΩt, v0 = r0Ω (17)

displaying, for each point on the rim, the velocity of the associated
local origin.

At r
T

= 0 (16) prescribes z = z0SΩt, hence the phase of
the incident wave at this point is given by (9), and in cylindrical
coordinates we have

θex0 = θex
∣∣∣
r
T

=0
= kexr0CϕSΩt − ωext, ϕ′ = ϕ + π/2

eiθex0 = ΣnIne
−iωnt, In = Jn(kexr0Cϕ) = Jn(kexr0Sϕ′)

(18)

Inasmuch as the Bessel functions can be represented in terms of
power series of the argument, it is clear that in (18) In is periodic in
ϕ and ϕ′, with a period of 2π, hence it can be represented in terms of
a Fourier series

In(ϕ′) = ΣmI
′
nme

imϕ′
= ΣmInme

imϕ

Inm = imI ′nm, I ′nm =
1
2π

∫ π

−π
In(ϕ′)e−imϕ

′
dϕ′ (19)

In the present case the coefficients Inm, I
′
nm can be represented

explicitly. We start with the integrals (see [12], referring the reader to
[13])
∫ π

0
sin(2µχ)J2ν(2a sinχ)dχ = π sin(µπ)Jν−µ(a)Jν+µ(a), Re(ν)>−1

∫ π

0
cos(2µχ)J2ν(2a sinχ)dχ = π cos(µπ)Jν−µ(a)Jν+µ(a), Re(ν)>−1/2

(20)
Choosing in (20) the stronger condition Re ν > −1/2, defining

m = 2µ, ϕ′ = χ, n = 2ν, Re(n) > −1, a = kexr0/2, and adding and
subtracting in (20) according to Cγ ± iSγ = e±iγ , yields after some
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manipulation
∫ π

0
eimϕ

′
Jn(2aSϕ′)dϕ′ = πimJ(n−m)/2(a)J(n+m)/2(a)

∫ π

0
e−imϕ

′
Jn(2aSϕ′)dϕ′ = πi−mJ(n−m)/2(a)J(n+m)/2(a)

(21)

We wish to adapt (21) and the integration limits to the Fourier
series format (19), requiring a relation for Bessel functions with
negative arguments and integer order (see for example [14]). This
also requires formulas for negative integer n [15]

Jα(zeiβπ) = eiαβπJα(z), β = 1
Jn(−z) = einπJn(z) = (−1)nJn(z) (22)
J−n(z) = (−1)nJn(z)

Copying the second integral (21) and manipulating the first one
now yields

∫ π

0
e−imϕ

′
Jn(2aSϕ′)dϕ′ = πi−mJ(n−m)/2(a)J(n+m)/2(a)

∫ 0

−π
e−imϕ

′
Jn(2aSϕ′)dϕ′ = (−1)nπimJ(n−m)/2(a)J(n+m)/2(a)

Inm =
1
2π

∫ π

−π
e−imϕ

′
In(ϕ′) =

1
2π

∫ π

−π
e−imϕ

′
Jn(2a sinϕ′)dϕ′

= [(−1)nim + i−m]J(n−m)/2(a)J(n+m)/2(a)/2, a = kexr0/2

(23)

where the second line (23) is obtained from the first line (21) by
inverting the sign of the integration variable and adjusting the sign of
the integral by interchanging the limits. Thus (23) takes into account
positive and negative values of n, m. It can be easily verified that the
last integral in (23) vanishes when n±m is an odd integer, hence for Inm
with n, m integers, we are only dealing with integer order (n ±m)/2
Bessel functions.

Returning to (18), we have to compute the phase at the rim
r
T

= 	 of the cylinder. To that end we have to include the Doppler

effect and Fresnel drag effect (3), and the resulting velocity v
(1)
ph,T (4),

for each frequency ωn included in (11). The motion is radial, and the
excitation wave propagates in the z-direction, therefore like k̂ · v̂ in
(4), we have here β

(1)
0k = β

(1)
0 Cϕ. The analog of (10), including the
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approximation of the exponential as used in (11), is therefore

θexnT = kexnT · r̂	− ωnt = kexnT	Cϕ − ωnt

kexnT = kn
(
1 − β

(1)
0k (A(1) − 1)CΩt

)

θexnT = θexn −Knβ
(1)
0 (A(1) − 1)C2

ϕCΩt (24)

θexn = KnCϕ − ωnt, Kn = kn	, kn = ωn/v
(1)
ph

eiθexnT � eiθexn

(
1 − β

(1)
0 iKn(A(1) − 1)C2

ϕCΩt

)

The technique demonstrated in (24) will be used subsequently for
plane waves propagating in arbitrary directions: First decompose the
velocity into components parallel and normal with respect to direction
of propagation. Then apply (4) with the parallel velocity component.
Finally separate the velocity-dependent term and approximate the
exponential, keeping only terms of first-order in v/c.

We also need to include the amplitude effect prescribed by (5),
similarly to what has been done in (11). This amounts here to a factor
(1 − β

(1)
0 CΩtCϕ). Accordingly (cf. (11)) we have

EexT = x̂EexT , HexT = ŷHexT = ŷEexT /ζ
(1)

EexT � EexΣnIne
iθexn

(
1 − β

(1)
0 CΩtCϕ

)(
1−β

(1)
0 iKn(A(1) − 1)C2

ϕCΩt

)

� EexΣnIne
iKnCϕ−iωnt

(
1 − β

(1)
0 Bn(eiΩt + e−iΩt)

)

= EexΣne
−iωnt

(
Ine

iKnCϕ − β
(1)
0 Σσ=n±1IσBσ∂e

iKσCϕ

)
(25)

= EexΣnµe
−iωnteiµϕiµ

(
InJnµ − β

(1)
0 Σσ=n±1IσBσ∂Jσµ

)

= EexΣnmµe
imϕ−iωntiµ

(
In;m−µJnµ−β

(1)
0 Σσ=n±1Iσ;m−µBσ∂Jσµ

)

Jnµ = Jµ(Kn)

Bn =
(
iKn(A(1) − 1)C2

ϕ + Cϕ
)
/2

= −i
(
Kn(A(1) − 1)∂2

Kn
+ ∂Kn

)
/2 = Bn∂

where in (25) Σσ=n±1 means that only expressions with σ = n+1, σ =
n − 1 are considered, and indices have been judiciously raised and
lowered.

In (25) the new differential operator Bn∂ is defined by exploiting
the relation

(Cϕ + i∂Kn)eiKnCϕ = 0 (26)
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We could also replace in (25) In = Jn(kexr0Cϕ) = Jn(−ikexr0∂Kn)
and recast Jn in differential operator power series, but this seems to
complicate the result. The exponentials in (25) are recast in a Bessel
function series, which requires us to add a summation over an index
µ, as shown. Furthermore, in order to deal with constant coefficients,
we substitute from (19), introducing another index. Thus we deal
with triple infinite sums. In (25) indices have been shifted so that the
summation is on a new index m, rather than m + µ. This yields the
same results because for a fixed µ both indices scan the range −∞ to
+∞.

We have demonstrated that (25) is expressible in terms of a
spectral orthogonal series of discrete frequencies ωn, and a discrete
spatial orthogonal series in terms of ϕ, facilitating the computation
of the coefficients prescribed by the boundary conditions. Such forms
will serve us below for the scattered and internal fields as well. The
problem is therefore very complicated, and decisions on truncating the
sums must be based on further investigation.

The internal field is a solution of the wave equation and must
contain the frequencies prescribed by (25). Therefore at the boundary
r
T

= 	 we have

EinT = x̂EinT , EinT = ΣnEin;ne
−iωnt

Ein;n = Σmi
mEin;nmJm(Kn)eimϕ (27)

κn/ωn = (µ(2)ε(2))1/2 = 1/v(2)
ph , Kn = κn	

The corresponding field H inT can be found directly from
Maxwell’s equations

H inT =
(
r̂
T
	−1∂ϕ − ϕ̂∂�

)
ΣnEin;ne

−iωnt/(iωnµ(2)) (28)

For evaluation of the boundary-value problem we need the component
of (28) tangential to the surface, given by

r̂
T
×H inT = −x̂Σnκn∂κn�Ein;n/(iωnµ(2))= x̂Σni∂KnEin;n/ζ

(2)

= x̂Σnmi
m+1Ein;nmJ

′
m(Kn)eimϕ/ζ(2), Kn = κn	

(29)

The coefficients Ein;nm (27), (29) are to be derived from the
solution of the boundary conditions equations at 	, discussed below.

The scattered field is now constructed as a superposition of plane
waves that satisfy the spatiotemporal conditions prescribed by the
incident wave at the boundary. It is anticipated that each constituent
plane wave of this superposition, propagating in an arbitrary direction
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α, will include the new frequencies produced by the scattering at the
pulsating boundary, therefore we choose (cf. (13))

Eα = x̂Eα, Hα = k̂α×x̂Hα = k̂α×x̂Eα/ζ
(1), Eα = ΣνEανe

iθαν

θαν = kαν · r − ωνt = kνrCϕ−α − ωνt (30)

ων = ωex − νΩ, kν/ων = (µ(1)ε(1))1/2 = 1/v(1)
ph

Similarly to (9), (14), (18), we first evaluate the phase of (30) at
r
T

= 0 according to (16) (cf. (9))

θαν0 = θαν
∣∣∣
r
T

=0
= kνr0SΩtCϕ−α − ωνt

eiθαν0 = ΣlJανle
−iων+lt, Jανl = Jl(kνr0Cϕ−α)

(31)

Like In in (18), Jανl in (31) is periodic in ϕ and can be recast in a
Fourier series similarly to (19).

The time variation of all waves at the boundary must be identical,
hence in (31) a constraint δn;ν+l is prescribed, which for a constant n
collapses the double summation into a single series. When summing
over all n, we have again a double summation

Eα0 = Eα
∣∣∣
r
T

=0
= ΣnνEανe

iθαν0 = ΣνlEανJανle
−iων+lt

= ΣνlEανJανle
−iωnt = Σν;n−νEανJαν;n−νe

−iωnt

= ΣnνEαnνe
−iωnt (32)

Eαnν = EανJαν;n−ν , Jαν;n−ν = Jn−ν(kνr0Cϕ−α)

Another way of looking at it, as in (32), is to realize that if both n and
ν are in the range −∞ to +∞, so does n− ν.

Similarly to (24), the phase at the rim r
T

= 	 is computed for
each frequency ωn, essentially by replacing ϕ by ϕ − α, and with the
appropriate indexing

θαnT = kαnT · r̂	− ωnt = kαnT	Cϕ−α − ωnt

kαnT = kn
(
1 − β

(1)
0 (A(1) − 1)Cϕ−αCΩt

)

θαnT = θαn −Knβ
(1)
0 (A(1) − 1)C2

ϕ−αCΩt (33)

θαn = KnCϕ−α − ωnt, Kn = kn	, kn = ωn/v
(1)
ph

eiθαnT � eiθαn

(
1 − β

(1)
0 iKn(A(1) − 1)C2

ϕ−αCΩt

)
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Including the amplitude effect, we have similarly to (25)

EαT = x̂EαT

EαT = ΣnνE
′
αnνe

iθαnT = ΣnνEαnν
(
1 − β

(1)
0 CΩtCϕ−α

)
eiθαnT

� ΣnνEαnνe
iKnCϕ−α−iωnt

(
1 − β

(1)
0 Bαn

(
eiΩt + e−iΩt

))
(34)

= Σnνe
−iωnt

(
Eαnνe

iKnCϕ−α − β
(1)
0 Σσ=n±1EασνBσ∂e

iKσCϕ−α

)

Bαn =
(
iKn(A(1) − 1)C2

ϕ−α + Cϕ−α
)
/2

=
(
−iKn(A(1) − 1)∂2

Kn
+ ∂Kn

)
/2 = Bn∂

where in (34) it is noted that the differential operator Bn∂ is the same
as in (25), and independent of the index α. Only the coefficients
Eαnν , Eασν are dependent on α, cf. (32). Also note that (34), unlike
(25), is left here in terms of exponential functions.

Now, a superposition (integral) of plane waves is constructed, and
the integration path is chosen such that we get cylindrical functions
associated with outgoing waves

EscT = x̂Σnνe
−iωnt 1

π

∫
E′′
αnνdα

E′′
αnν = Eαnνe

iKnCϕ−α − β
(1)
0 Σσ=n±1EασνBσ∂e

iKσCϕ−α (35)

= Σm′
(
Enνm′eiKnCϕ−α+im′α−β

(1)
0 Σσ=n±1Eσνm′Bσ∂e

iKσCϕ−α+im′α
)

EscT = x̂Σnνm′e−iωntim
′
eim

′ϕ
(
Enνm′Hnm′−β

(1)
0 Σσ=n±1Eσνm′Bσ∂Hσm′

)
∫

=
∫ α=ϕ+(π/2)−i∞

α=ϕ−(π/2)+i∞
, Eαnν = Σm′Enνm′eim

′α, Hnm′ = Hm′(Kn)

In (35) Hm′ denotes the Hankel function of the first kind and
order m′. Due to the fact that for bounded objects Eαnν is periodic
in α, with a period of 2π, it can be represented as a Fourier series
summed over m′ with coefficients Enνm′ independent of α. However, it
must be noted that these coefficients are still dependent on ϕ through
Jαν;n−ν , see (32), hence another Fourier expansion summed over m′′

was effected in (35), yielding

EscT = x̂Σnνm′m′′e−iωntim
′
ei(m

′+m′′)ϕ

·
(
Enνm′m′′Hnm′ − β

(1)
0 Σσ=n±1Eσνm′m′′Bσ∂Hσm′

)

= x̂Σnνmm′eimϕ−iωntim
′

(36)
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·
(
Enνm′;m−m′Hnm′ − β

(1)
0 Σσ=n±1Eσνm′;m−m′Bσ∂Hσm′

)

Enνm′ = Σm′′Enνm′m′′eim
′′ϕ, m′′ = m−m′

A constraint m′ + m′′ = m is necessary in (36) in order to exploit the
orthogonality with respect to eimϕ in (25), (27).

Thus (25), (27), (36) are all represented as orthogonal series in
terms of ωn, ϕ, facilitating the evaluation of the coefficients in the
equations prescribed by the boundary conditions EexT+EscT−EinT =
0|�.

Associated with the E fields are H fields, whose tangential
component is continuous across the boundary thus prescribing the
boundary condition r̂ × (HexT + HscT − H inT ) = 0|�. From (25)

r̂ × HexT = r̂ × ŷEexT /ζ
(1) = −x̂CϕEexT /ζ

(1)

= x̂EexΣnmµe
imϕ−iωntiµ+1

·
(
In;m−µJ ′

nµ − β
(1)
0 Σσ=n±1Iσ;m−µBσJ

′
σµ

)
/ζ(1)

J ′
nµ = ∂KnJµ(Kn)

(37)

where in (37) we have exploited (26), prescribing here (Cϕ +
i∂Kn)EexT = 0, where only the Bessel functions depend on Kn and
are affected by the differential operator.

The corresponding expression for the internal field is already given
by (29). From (5), (17), (30) we have

r̂×HαT = r̂×(Hα−v×Dα) = r̂×
(
k̂α×x̂Hα − r̂v0CΩt×x̂ε(1)Eα

)

= Eαr̂×
(
k̂α×x̂−r̂β

(1)
0 CΩt×x̂

)
/ζ(1) = −x̂Eα

(
Cϕ−α − β

(1)
0 CΩt

)
/ζ(1)

(38)

The amplitude effect (38) must now replace the corresponding
factor 1 − β

(1)
0 CΩtCϕ−α in (34). This yields

r̂ × HαT = −x̂ΣnνEαnνe
iθαnT

(
Cϕ−α − β

(1)
0 CΩt

)
/ζ(1)

� −x̂ΣnνEαnνe
iθαn

(
Cϕ−α − β

(1)
0 CΩt

)

·
(
1 − β

(1)
0 iKn(A(1) − 1)C2

ϕ−αCΩt

)
/ζ(1)

� −x̂ΣnνEαnνe
iKnCϕ−α−iωnt

·
(
Cϕ−α − β

(1)
0 Pαn

(
eiΩt + e−iΩt

))
(39)
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= x̂Σnνe
−iωnt

(
Eαnνi∂Kne

iKnCϕ−α

+ β
(1)
0 Σσ=n±1EασνPσ∂e

iKσCϕ−α

)

Pαn =
(
1 + iKn(A(1) − 1)C3

ϕ−α
)
/2

=
(
1 −Kn(A(1) − 1)∂3

Kn

)
/2 = Pn∂

As in (35), (36), we construct now r̂ × HscT in the form

r̂ × HscT = x̂Σnνe
−iωnt 1

π

∫
E′′′
αnνdα

E′′′
αnν = Eαnνi∂Kne

iKnCϕ−α + β
(1)
0 Σσ=n±1EασνPσ∂e

iKσCϕ−α

= Σm′
(
Enνm′i∂Kne

iKnCϕ−α+im′α

+ β
(1)
0 Σσ=n±1Eσνm′Pσ∂e

iKσCϕ−α+im′α
)

r̂ × HscT = x̂Σnνm′e−iωntim
′
eim

′ϕ (40)

·
(
Enνm′i∂KnHnm′ + β

(1)
0 Σσ=n±1Eσνm′Pσ∂Hσm′

)

= x̂Σnνmm′eimϕ−iωntim
′ (
Enνm′;m−m′i∂KnHnm′

+ β
(1)
0 Σσ=n±1Eσνm′;m−m′Pσ∂Hσm′

)

As in (36), the last two lines of (40) provide series which are
orthogonal in terms of ωn, ϕ, thus finally facilitating the solution of
the boundary-value equations.

4. PULSATING CYLINDER: THE SCATTERED FIELD

With the boundary-value problem supposedly solved, we turn our
attention to the scattered field in the initial reference-frame, where
medium {1} is at-rest. Let us review what was done: We dealt
with plane waves whose phase was computed for an observer attached
to the boundary, then included the amplitude effect, and finally
constructed first-order approximations. See (11), (15), (25), and
(34). These approximation, adequate for solving the boundary-value
problem, are based on Kn being small, i.e., at small distances from the
boundary. With this proviso, also t and t

T
are interchangeable. These

approximations cannot serve us now when the scattered wave is sought
for arbitrary distances.
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The problem of the pulsating plane interface is straightforward,
because the scattered wave was already stated in (13). Once the
boundary-value problem is solved, EscT ;n in (15) are known, and E′

sc;n

can be computed, e.g., by using the velocity-independent E′
sc;n in all

terms already multiplied by β
(1)
0 . Then from (14) Esc;ν are found, thus

the scattered wave (13) is available.
The problem of the pulsating circular-cylinder interface is more

complicated. Here we started with individual plane waves in (30), and
synthesized a field EscT , (35), (36), (40), at the boundary. Now we
need to express the scattered field as observed in the initial reference-
frame where medium {1} is at-rest.

Returning to (2), (3), it is easy to verify that to the first-order in
v/c the differential phase is conserved

dθ = k · dr − ωdt ∼ dθ
T

= k
T
· dr

T
− ω

T
dt
T

(41)

This so-called principle of the invariance of the phase [4, 16],
(41), becomes exact in Special-Relativity theory which involves inertial
reference-frames moving at constant velocities. Therefore, taking
off the amplitude effect from the waves in question, and avoiding
the approximations of the velocity-dependent exponentials, yields the
waves as measured by an observer at-rest with respect to medium {1},
but expressed in terms of r

T
, t
T

coordinates.
Thusly for the pulsating cylindrical interface we return to (33), but

for arbitrary distances r
T

we obviate the approximation of the β
(1)
0 -

dependent exponential by its Taylor-series leading terms. furthermore
t
T

is now used explicitly, yielding

θαnT = kαnT · r
T
− ωntT = kαnT rTCϕ−α − ωntT

kαnT = kn
(
1 − β

(1)
0 (A(1) − 1)Cϕ−αCΩt

T

)

θαnT = θαn −Knβ
(1)
0 (A(1) − 1)C2

ϕ−αCΩt
T

θαn = KnCϕ−α − ωntT , Kn = knrT , kn = ωn/v
(1)
ph

(42)

where in (42), and according to the phase invariance (41), this is the
same phase for an observer at-rest with respect to medium {1}, given
in (30).

Instead of (34) we now discard the amplitude effect, hence (30)
becomes

Eα = x̂Eα, Eα = ΣnνEαnνe
iθαnT (43)

With the coefficients Eαnν supposedly known from the solution of the
boundary-value problem.
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Similarly to (35), the waves (43) are combined into a Sommerfeld-
type plane-wave integral

Esc = x̂Σnνe
−iωntT

1
π

∫
eiKnCϕ−αEαnνdα (44)

Eαnν = Eαnνe
−iKnβ

(1)
0 (A(1)−1)C2

ϕ−αCΩt
T , Eαnν = Σm′Enνm′eim

′α

where in (44) Enνm′ are already known from the solution of the
boundary-value problem, hence to proceed, recast Eαnν in a Fourier
series and exploit the Sommerfeld integral representation to derive the
solution as a series of Hankel functions

Esc = x̂Σnνe
−iωntT

1
π

∫
eiKnCϕ−αEαnνdα

= x̂ΣnνmEnνme
−iωntT

1
π

∫
eiKnCϕ−αeimαdα

= x̂ΣnνmEnνmi
me

imϕ−iωntTHm(Kn)

Eαnν = Eαnνe
−iKnβ

(1)
0 (A(1)−1)C2

ϕ−αCΩt
T = ΣmEnνme

imα

(45)

where in (45) Enνm are known functions, independent of, but still
dependent on ϕ and t

T
. Inasmuch as we do not seek orthogonal series

and discrete frequency spectra, at this stage this is no impediment.
One can also recast the scattered wave in terms of an inverse-

distance power series and a differential operator acting on α in Eαnν ,
and after the derivatives have been effected replacing α with ϕ.
The details of this technique, based on Twersky’s inverse-distance
differential operators [17, 18], have been discussed before, see [4, 19]
and need not be reiterated here.

Finally, the spatiotemporal transformation (2), (3), in the form
(16) relevant to the present problem can be substituted, in order to
derive the scattered wave in terms of the coordinates of an observer
at-rest with respect to the initial medium {1} at-rest.

5. CONCLUDING REMARKS

The present study is centered on the analysis of scattering of a plane
electromagnetic wave by harmonically pulsating objects. The present
model is based on a first-order in v/c quasi-Lorentzian transformation
of coordinates, which also allows to use Doppler effect and Fresnel drag
effect formulas for non-uniform velocity fields. As expected, the motion
modulates the waves and a spectrum peaking at sideband frequencies
ωex ± nΩ is created.
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Inasmuch as the analysis is very complicated, the discussion is
limited to two examples of harmonically pulsating interfaces moving
through the ambient undisturbed medium: a plane interface with
normally excitation plane wave, and a circular cylinder excited by a
plane wave normal to the cylindrical axis.

The analysis deals with the boundary-value problems and with
the representation of the scattered waves in the initial medium. It is
typical of such problems that they lead to infinite sets of equations
on the coefficients, where coefficients of various indices are involved in
each equation. therefore. The details are quite complicated, leading
to infinite series that will have to be appropriately truncated in order
to derive appropriate expressions for numerical simulations.
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