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Abstract—The present paper concerns the design, numerical analysis,
and measurement for simple metal-plate lens structures. The power
of electromagnetic waves can be concentrated by arranging flat strips
parallel to one another and adjusting the transverse and longitudinal
length of the waveguide regions. The simple designing procedures
are described for the lenses with plane, concave, and convex profiles.
These steps are practically applied to construct the lenses for the X
band. In order to discuss the dependence of focusing properties on the
lens and source types, we numerically analyze the scattering problems
using the integral equations combined with the moment method. The
lenses are made up by aluminum plates, and the field amplitude in
the transmission region is measured. We confirm the formation of the
focus near the design point.
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1. INTRODUCTION

Concentration of the power of electromagnetic waves can be realized
by using appropriately shaped dielectric body, natural or artificial,
in which the phase velocity is different from that of the free space.
One of the means is to take advantage of the property of waveguide
modes between parallel metallic plates: the phase is controlled by the
transverse and longitudinal length of the guiding regions. The shaping
and zoning techniques in such metallic lenses have been developed for
several decades [1–3]. This structure was recently attracted attention
as an element attached to scanning antennas for anticollision radars [4].
Furthermore the lens may be conveniently used for measuring dielectric
constants based on the free space method [5].

In the present paper, we perform the design, numerical analysis,
and measurement of metal-plate lens structures. The entire system is
theoretically treated as a two-dimensional scattering problem. This
simplification is convenient to make metal-plate lenses easily for
experimental use unless high efficiency of concentration is required.
In the regions between two adjacent plates, only the TE10/TEM mode
propagates in the E-/H-wave case for a proper choice of plate spacing.
We can design the lens by the condition that the electrical length from
the source to the focal point is a constant.

We first describe the simple designing procedures for three kinds
of lens profiles, i.e., the plane, concave, and convex ones. Based
on this, the examples of practical design in the X band are shown.
We next discuss the numerical analysis using the integral equations
combined with the moment method. This technique is excellent in
view of the accuracy and efficiency in numerical processings, since the
edge condition is taken into account in the basis functions and the
singularity in kernel functions is extracted and analytically treated.
The same scheme was successfully applied for a single curved scatterer
[6, 7], a finite number of conducting flat strips on a plane [8], and
periodic resistive strip gratings [9]. From the numerical results we
discuss the dependence of focusing properties on the lens and source
types. Furthermore we make up the lenses by using aluminum plates
and measure the field amplitude in the transmission region. The
formation of the focus is verified near the design point.
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2. STRUCTURE OF METAL-PLATE LENSES

2.1. Formulation of the Problem

As shown in Fig. 1, we place an odd number of metallic plates,
numbered as n = 1, 2, · · · , N , in the free space with the permittivity
ε0 and permeability µ0. The plates are assumed to have infinite
conductivity, infinite length along the z axis, and negligible thickness.

Figure 1(a) shows a set of plates having a fixed width w and
unequal spacings. The contour in the xy plane is expressed by
|x| ≤ w/2, y = bn. Figure 1(b) is a set of plates having a fixed spacing
s and unequal widths. The contour is written as −w/2 − p0n ≤ x ≤

Figure 1. Geometry of the problem. (a) Plane type for E-wave with
fixed width w. (b) Concave type for E-wave with fixed spacing s. (c)
Convex type for H-wave with fixed spacing s.
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w/2 + p1n, y = bn ≡ (2n − N − 1)s/2, where p0n and p1n are the
increments in the −x and +x sides, respectively, with regard to the
width of central plate w. Besides in Fig. 1(c), the plates having unequal
width are allocated with the spacing s and inclined angle θ with respect
to the x axis. They cross the y axis at y = bn ≡ (2n−N−1)s/(2 cos θ).
Let us call these three sets, in accordance with the outlines, the plane,
concave, and convex types.

We consider the two-dimensional problem of the E- and H-waves,
where the respective electric and magnetic fields have only the z
component. The structures of Fig. 1(a), (b) work as electromagnetic
wave lenses for E-wave, and so does Fig. 1(c) for H-wave. Representing
Ez or Hz by the letter u, we have the relation ut(P ) = ui(P ) + us(P ),
where the superscripts i, s, t denote the incident, scattered, and total
fields, respectively. Here, P is an observation point (x, y), and the time
factor exp(jωt) = exp(j2πft) is omitted throughout.

Let the incident field be a cylindrical wave emerged from a line
source placed at the point S(−r0, 0) (r0 > 0). It is written as

ui(P ) = Φi(P )
exp(−jk|SP |)√

k|SP |
(1)

where |SP | =
√

(x+ r0)2 + y2 is the distance, k = ω
√
ε0µ0 is the

wavenumber, and λ = 2π/k is the wavelength in the free space. The
normalized radiation pattern function is given as follows [10].

• Isotropic, i.e., Φi(P ) = 1.
• Pattern for H-plane horn (E-wave), i.e., Φi(P ) = cos η/[1 −

(2η/π)2]. Here, η = (πa/λ) · (y/|SP |) with a being the aperture
width of a horn.

• Pattern for E-plane horn (H-wave), i.e., Φi(P ) = sin η/η, where η
was defined previously.

2.2. Design of Lenses

2.2.1. Refractive Index and Velocity

In the case of E-wave, only the TE10 mode can propagate in the parallel
plate waveguide regions if λ/2 < s < λ. The phase velocity of this
mode is the same as that in the medium with the refractive index
ν =

√
1 − [λ/(2s)]2 (< 1) and is greater than that of the free space [11].

Therefore we can concentrate the fields by decreasing s or increasing
w with the distance from the x axis.

On the other hand, in the H-wave case, only the TEM mode can
propagate if s < λ/2. Because its phase velocity is the same as that in
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the free space, the inclination of the plates makes the velocity smaller
in the x direction. The metal set is thereby regarded as an equivalent
medium with the refractive index ν = 1/ cos θ (> 1), so that we can
apply the same principle as conventional dielectric lenses.

Figure 2 shows the principle of focusing, where AL/AR denotes
the contour of waveguide apertures in the left/right hand side, and the
focal point F is located at (r1, 0). In designing lenses, we disregard the
shift of phase reference at the aperture terminals [12] and the multiple
reflections of the waveguide modes.

Figure 2. Principle of focusing. (a) Plane type. (b) Concave type.
(c) Convex type.

2.2.2. Plane Type Lens for E-wave

Although the refractive index ν is a discrete value determined by
each spacing s, we tentatively regard it as a continuous function of
y. Referring to Fig. 2(a), we have the condition that the electrical
length from S to F is independent of the path:

r0 + r1 + [ν(0) − 1]w =
√

(r20 − w/2) + y2

+
√

(r21 − w/2) + y2 + ν(y)w (1)

This leads

ν(y) = ν(0) − 1 − 1
w

[√(
r20 −

w

2

)
+ y2

+

√(
r21 −

w

2

)
+ y2 − r0 − r1

]
(2)
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In order to facilitate the coupling between the free space and wave-
guides, we fix s(0) at its maximum λ and substitute the corresponding
value ν(0) =

√
3/2 into the right hand side of (3). We then draw

the monotonically decreasing curve with the abscissa and ordinate
being y and s(y) = (λ/2)/

√
1 − [ν(y)]2 (Equation (3) is used for ν(y)),

respectively. The positions bn are determined by applying the step
approximation to the above curve. The following steps are convenient.
1: Put the central plate at y = 0.
2: Once bn−1 is determined, the position of the nearest upper plate

is given by bn = bn−1 + s(bn−1). However this formula yields
the step approximation curve always upper than that of s(y).
Such errors are reduced by the iterative computation using bn =
bn−1 + s(bn−1 + s(bn−1)/2) instead of the above formula.

3: Repeat Step 2 while ν(y) > 0.
4: Arrange the plates symmetrically in the region y < 0.

According to these steps, the lens named ML1 is designed at f =
10.525 GHz, λ = 28.5 mm, w = 100 mm, r0 = r1 = 350 mm. The
number of plates N is 19, and their position, from b19 to b10, is (in
millimeters) {

168.1 153.8 139.3 124.3 108.6
91.7 73.1 52.1 27.8 0.0

}
(ML1)

The maximum of spacing b11 − b10 = 27.8 mm is a little less than λ,
whereas the minimum b19− b18 = 14.3 mm is slightly greater than λ/2.

2.2.3. Concave Type Lens for E-wave

Since the refractive index ν is fixed, the condition of constant electrical
length in Fig. 2(b) is

rj −
w

2
=

√(
rj −

w

2
− pj

)2

+ y2 + pjν (j = 0, 1) (4)

This leads the design formula for the increment

pj =
rj − w/2

1 + ν


1 −

√√√√1 − 1 + ν
1 − ν

(
y

rj − w/2

)2

 (5)

The lens structure becomes symmetrical if r0 = r1.
Based on the above, the lens named ML2 is designed at f =

10.525 GHz, λ = 28.5 mm, s = 18.5 mm, ν = 0.638, the guide
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wavelength λg = λ/ν = 44.6 mm, r0 = r1 = 300 mm + w/2. The
number of plates N is 15, and the increment, from pj1 to pj8 is (in
millimeters)

{ 110.7 70.2 44.9 27.3 14.8 6.4 1.6 0.0 } (ML2)

It is enough to choose the minimum width w ≈ 2λg so that the
waveguide mode may be formed. Here we set w = 100 mm.

2.2.4. Convex Type Lens for H-wave

In Fig. 2(c), the lens profile is given by the hyperbola
(
x+

r0 + νp0
ν + 1

)2

(
r0 − p0
ν + 1

)2 − y2

ν − 1
ν + 1

(r0 − p0)2
= 1 (6)

for −p0 < x < 0 (AL), whereas for 0 < x < p1 (AR) the symbols r0
and p0 are replaced with −r1 and −p1, respectively. We first set the
spacing s, the refractive index ν, and the transverse size q, and then
go through the following steps.

1: Compute p0 and p1 by pi = (
√
r2i + q2 − ri)/(ν − 1).

2: Determine y = b1, b2, · · · , bN within the interval −q < y < q.
3: Obtain the edge position of the plates as an intersection of the

line y = x
√
ν2 − 1 + bn and (6). For example, the x coordinate of

the left side edge is

x(0)
n = −1

2
·
[2r0 + (ν − 1)p0] p0 −

b2n
ν − 1

r0 + νp0 −
√
ν + 1
ν − 1

bn

(7)

For the right side edge we follow the same replacement as was
stated just after (6). From these values we can also get the y
coordinate of the edges and the plate widths.

According to these steps, the lens named ML3 is designed at
f = 10.525 GHz, λ = 28.5 mm, s = 10.0 mm, ν = 1.743, θ = 55◦,
q = 130 mm, p0 = p1 = 31.4 mm, r0 = r1 = 350 mm. The number of
plates N is 15, and the x coordinate of the left edge, from x

(0)
1 to x(0)

15 ,
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and the width, from w1 to w15, are (in millimeters){ −2.1 −6.6 −10.9 −15.0 −18.9 −22.4 −25.5 −28.1
−30.1 −31.2 −31.3 −29.9 −26.4 −19.7 −7.9

}
{

17.5 45.8 65.0 78.3 87.4 93.4 96.8 97.9
96.8 93.4 87.4 78.3 65.0 45.8 17.5

}
(ML3)

3. INTEGRAL EQUATION ANALYSIS

3.1. E-Wave Case

Let us express the contour of the metallic plates in the xy-plane by
C =

∑N
n=1Cn and specify a point on Cn by (x(0)

n + (t/k) cos θn, y
(0)
n +

(t/k) sin θn). Here, the parameter t = k
√

(x− x(0)
n )2 + (y − y(0)

n )2
(0 ≤ t ≤ kwn) is an electrical length from one edge to an observation
point, and θn is an inclined angle with respect to the x axis.

The integral equation is written as∫
C
G(P,Q)f(Q) dtQ = g(P ) (P ∈ C) (8)

where {
G(P,Q) = (4j)−1H

(2)
0 (k|PQ|)

f(Q) = −jZKz(Q), g(P ) = −ui(P )
(9)

In the above definition, H(2)
0 is the zero order Hankel function of the

second kind, Z =
√
µ0/ε0 is the intrinsic impedance, and Kz is the

current density induced on the plates. Using the solution of (8), we
can express the scattered field us(P ) = Es

z(P ) by

us(P ) =
∫

C
G(P,Q)f(Q) dtQ (P /∈ C) (10)

Let us solve (8) by the moment method. First the unknown
function is approximated as

f(Q) ≈
Ln∑
l=0

fnl τnl(Q) (Q ∈ Cn; n = 1, 2, · · · , N) (11)

where the basis function is chosen, by taking account of the edge
condition [14], as

τnl(t) =
Tl

(
2t
kwn

− 1
)

√
t(kwn − t)

(n = 1, 2, · · · , N ; l = 0, 1, · · · , Ln) (12)
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with Tl being the l-th order Chebyshev polynomial of the first kind.
We next substitute (11) into (8), multiply both sides by the testing
functions (defined on P ∈ Cn′)

σn′l′(t) = Tl′

(
2t
kwn′

− 1
)

(n′ = 1, 2, · · · , N ; l′ = 0, 1, · · · , Ln) (13)

and integrate over C. The above procedure leads us to the
simultaneous linear equations

N∑
n=1

Ln∑
l=0

αn′l′,nl fnl = βn′l′ (n′ = 1, 2, · · · , N ; l = 0, 1, · · · , Ln) (14)

where 


αn′l′,nl =
∫

Cn′
unl(P )σn′l′(P ) dtP

βn′l′ =
∫

Cn′
g(P )σn′l′(P ) dtP

unl(P ) =
∫

Cn

G(P,Q) τnl(Q) dtQ

(15)

The coefficients αn′l′,nl and βn′l′ are evaluated by the conventional
quadrature formulas such as midpoint rule. For the function unl(P )
we apply the Gauss-Chebyshev rule [13] by taking into account the
behavior of τnl near the edges. In particular, if the point P is included
in the contour Cn, we extract the singularity of Hankel function as

unl(P0) = − 1
2π

∫ kwn

0
log |t0 − t| τnl(t) dt

+
1
4j

∫ kwn

0

[
H

(2)
0 (|t0 − t|) −

2
jπ

log |t0 − t|
]
τnl(t) dt

(16)

and then evaluate the first and second terms analytically and
numerically, respectively. Here, t0 is the electrical length from one
edge to P0 along Cn.

3.2. H-Wave Case

The integro-differential equation is(
d2

dt2P
+ 1

) ∫
C
G(P,Q)f(Q) dtQ = g(P ) (P ∈ C) (17)

where G(P,Q) is the same as in (9), and the other functions are

f(Q) = −jKt(Q), g(P ) =
j

k
ν̂P · ∇Pu

i
z(P ) (18)
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with the current density Kt, the unit normal vector ν̂P =
(− sin θn, cos θn) (P ∈ Cn), and the two-dimensional differential
operator ∇P . The use of the solution of (17) yields the scattered field
us(P ) = Hs

z(P ) as

u(P ) =
j

k

∫
C
ν̂Q · ∇QG(P,Q)f(Q) dtQ (P /∈ C) (19)

In the context of the moment method, the unknown function is
approximated in the form of (11). However the basis is changed into

τnl(t) =
√
t(kwn − t)Ul

(
2t
kwn

− 1
)

(20)

where Ul is the l-th order Chebyshev polynomial of the second
kind. The testing function is given by (13) with Tl′ replaced by Ul′ .
The simultaneous linear equations are again expressed as (14), (15).
Paying attention to the order of singularity of the kernel function, we
decompose as

unl(P0) =
1
2π

∫ kwn

0

τnl(t)
(t0 − t)2

dt

− 1
4π

∫ kwn

0
log |t0 − t| τnl(t) dt

+
1
4j

∫ kwn

0

[
H

(2)
1 (|t0 − t|)
|t0 − t|

− 2j
π(t0 − t)2

− 1
jπ

log |t0 − t|
]
τnl(t) dt

(21)
The first and second terms in the right hand side above can be
evaluated analytically, and the third term is treated numerically.

4. NUMERICAL RESULTS

By the numerical experiment, we found that it is enough to set the
truncation number Ln in (11) as about 5(wn/λ+ 1), with the number
of division in the quadrature in (15) being 3(Ln + 1). The norm error,
which is defined by the norm of the difference between both sides of
(8), (17) normalized by that of g(P ), is always less than 0.2 %. The
error on the optical theorem at plane wave incidence is the same degree
as or less than the norm error.

Figures 3, 4, and 5 show the near fields for the nominated lenses
ML1, ML2, and ML3, respectively, where the value is normalized by
the incident amplitude at the center of each lens. As described in 2.1,
two kinds of sources, isotropic and beam, are treated. The aperture of
the horn a is 94 mm and 70 mm in the H- and E-planes, respectively.
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Figure 3. Normalized electric field amplitude around the plane type
lens ML1. (a) Isotropic source. (b) Beam source.

These yield the first null at ±25 and ±17 degrees. That is, little of
the incident wave enters the several waveguides in the outer parts the
lenses. On the other hand, for the isotropic source, all the waveguides
contribute to the formation of focus, so that the field strength therein
becomes about 2 times compared to the case of beam source. The
focal point for beam incidence is at x = 270, 310, and 290 mm for
the respective figures, which is by 10–20% less than the designed value
350 mm. This is due to the assumption stated in the last few lines
of 2.2.1. Interestingly, the field in Fig. 5 is guided to the upper right
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Figure 4. Normalized electric field amplitude around the concave
type lens ML2. (a) Isotropic source. (b) Beam source.

apertures and distributed unsymmetrically in the transmission region,
but is concentrated around the x axis.

We confirmed that the equiphase lines are almost parallel to
each other within the 3λ × 3λ square region surrounding the focus,
although figures are omitted here. In addition, these lines are nearly
perpendicular to the equiamplitude ones. That is, the equiphase lines
for the lenses ML1 and ML2 are parallel to the y axis, while for ML3
they slant by about 10 degrees clockwise with respect to the y axis.

Figure 6 shows the field amplitude on the lens axis at beam



Progress In Electromagnetics Research, PIER 54, 2005 257

Figure 5. Normalized magnetic field amplitude around the convex
type lens ML3. (a) Isotropic source. (b) Beam source.

incidence for different size and arrangement of the plates. The solid
lines correspond to the lenses ML1, ML2, and ML3, to which the
measured values are attached by filled circles. Here, the lenses were
made up by long rectangular aluminum plates and the experiment was
carried out in a simple anechoic chamber. Taking into account that
the experimental setup includes a pyramidal horn as an excitation and
thereby constitutes a three dimensional system, we compensate the
measured values by multiplying the factor

√
(r0 + x)/r0. Although

the agreement between the theoretical and experimental results is
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Figure 6. Normalized field amplitude on the lens axis with beam
excitation and r0 = r1 = 350 mm. (a) Plane type. (b) Concave type.
(c) Convex type.

not complete because of nonidentical systems, the latter exhibits
the formation of focus relatively well. The other curves are drawn
by changing one of the parameters and repeating the design and
computation. The nominated lenses ML1, ML2, and ML3 have the
highest ability of concentration among all.

It is of interest to observe the stability with the variation of
frequency, since the broad band characteristic is important in pulse
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Figure 7. Normalized field amplitude on the lens axis with beam
excitation and r0 = r1 = 350 mm. (a) Plane type ML1. (b) Concave
type ML2. (c) Convex type ML3.

wave transmission. This is shown in Fig. 7 for the lenses ML1,
ML2, and ML3. As the lenses are designed at the fixed value
f = 10.525 GHz, the field may not be concentrated near x = 350 mm
for other frequencies. For the lenses ML1 and ML2, the focal point
moves toward the incident side and the peak value increases as the
frequency decreases. This is due to the fact that the phase velocity in
the waveguide region is large for low frequencies. Nevertheless we see a
small amount of shift in the four curves for ML3, because the refractive
index for the convex type lens is independent of the frequency.
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5. CONCLUSIONS

We have performed the design, numerical analysis, and measurement
for three types of metal-plate lenses. The focusing properties are
discussed by the numerical results based on the integral equations and
the moment method. By experiments we confirm that the focus is
made up near the design point. The adopted structures are simple but
may be useful in the experiment on electromagnetic wave scatterings
or the measurement of dielectric constants.

It is well known that some additional phase shift occurs at the
interface between the parallel plates and free space. Closer coincidence
between numerical and experimental results might be expected if
the phase shifts found for infinite arrays of parallel plates [15] was
incorporated. This is one of our future problems.

The present paper treated the simplified two dimensional problems
as a starting point. However the practical lenses are mainly composed
of not rectangular but concave shaped metallic plates. This aims at the
improvement of the degree of concentration by forming focuses in both
E- and H-planes simultaneously. Another attempt is to promote the
coupling between the free space and waveguides by inserting matching
diaphragm inside the guides. These subjects deserve further attentions.
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