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Abstract—The problem of studying modal characteristics of metallic
waveguides filled with lossless inhomogeneous and/or anisotropic
media, is one of studying properties of the propagation constant
of the guiding structure. It is shown that modal behavior in the
neighborhood of critical frequencies such as cutoff frequencies and
frequencies marking the onset of complex wave mode intervals, can
be modeled through approximation of the propagation constant by a
root of an algebraic equation. The particular form of the algebraic
function approximating the propagation constant is discussed in the
neighborhood of a singularity. A numerical example is included to
stress the viability of the technique.
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1. INTRODUCTION

Backward wave systems are used as generators and amplifiers in
microwaves. In a paper published recently [1] an attempt was made to
apply algebraic function theory to backward wave problems in metallic
waveguides.

The purpose of this work is to continue to develop an approach
for employing algebraic function theory concepts in eigenvalue
problems of metallic lossless waveguides loaded inhomogeneously
and/or anisotropically. The first part of this effort was previously
published in [1], where the algebraic function approximation approach
was established for backward wave modes of the above mentioned
type of closed waveguides. In this work we shall treat the complex
wave mode problem, along with exposing the modal behavior in the
neighborhood of a cutoff frequency, both for the above mentioned
guiding structures and both with a view to apply algebraic function
theory concepts to assess the propagation constant function.

Application of operator theory to electromagnetic field problems
of waveguides is extensively covered in the literature, e.g., in [2].
But to the author’s knowledge, properties of the eigenvalues, i.e., the
propagation constants as functions, are not discussed in a formalism
reduced for electromagnetics. In this respect, the proposed method is
original.

In this work, as the tool to obtain an approximate solution of
Maxwell’s equations, and to apply our method on the results thereof,
we use the Method of Moments. This converts Maxwell’s partial
differential equations into a linear algebraic equation system of finite
order. In particular, as expansion functions utilizing the modes of
the same investigated closed waveguide when its loading is removed,
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one arrives at the transmission line representation, wherein the entries
of the coefficient matrices of the linear algebraic equations can be
interpreted as the parameters of a system of coupled transmission lines
[1, 3, 4].

Restricting ourselves to the class of inhomogeneous loadings which
do not induce coupling between transverse and longitudinal field
components, the system of linear algebraic equations which is the
product of the Moment Method, can be expressed as [1, 3, 4]:[

γ(p)v(p)
γ(p)i(p)

]
=

[
0 Z(p)

Y (p) 0

] [
v(p)
i(p)

]
. (1)

Here p = σ + jω is the complex frequency, γ(p) is the propagation
constant, and v and i are the vectors of transmission line voltages
and currents. Z(p) and Y (p) are the series impedance and the shunt
admittance coupling matrices, per unit length.

For the lossless guides with the above described type of loading,
and when constituent ε̂ and µ̂ matrices are rational functions of p, Z(p)
and Y (p) are positive real, lossless and rational matrices and hence
they are Foster matrices. Foster matrices are analytic in Re{p} > 0
real where p is real, and paraskew Hermitian, i.e., −ZT (−jω) = Z(jω),
where (·)T denotes the transpose [1, 3].

For the actual physical problem, corresponding to the closed
guide with the above prescribed loading, Z(p) and Y (p) are infinite
in order. However in line with the Moment Method, we use only finite
truncations of the matrices Z(p) and Y (p) in our approximation of the
physical problem. Therefore, by (1), γ2(p) in our notation stands for
the eigenvalue of the matrix product Z(p)Y (p) or of Y (p)Z(p) which
share the same eigenvalues and where Z(p) and Y (p) are above defined,
truncated, finite dimensional (m ×m) square matrices. v(p) and i(p)
are the associated eigenvectors of Z(p)Y (p) and Y (p)Z(p) respectively.

It has been shown that for each p and for each eigenvalue γ2
phy(p)

of the physical system (i.e., of Z(p)Y (p) where Z(p) and Y (p) are
not truncated), there always exist finite truncations of Z(p) and Y (p)
such that Z(p)Y (p) has at least one eigenvalue arbitrarily close to
γ2

phy(p) [4]. This fact is the motivation to use Moment Method as the
background setting for the derivation of properties of the propagation
constant function.

In this context we notice that the characteristic equation for the
matrix Z(p)Y (p) in the finite (m × m) system, which the square
of the (approximate) propagation constant must satisfy because of
(1), transforms into an algebraic equation of degree m in γ2(p) with
coefficients that are polynomials in p. The emergence of the algebraic
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equation from this characteristic equation can be seen as follows.
Expand the expression,

det[γ2(p)I − Z(p)Y (p)] = g(γ2, p), (2)

where det denotes the determinant, and I the identity matrix. When
the monic polynomial in γ2 thus obtained is set equal to zero, the
characteristic equation of Z(p)Y (p) is found. If we then multiply
both sides of this equation by the common denominator of the
coefficients on the left hand side, we shall obtain a new form of the
characteristic equation, in powers of γ2 again, but with coefficients
that are polynomials of p. Call the left hand side of this last equation
G(γ2, p), and the coefficient of the ith power of γ2 in it, am−i(p). We
then have

G(γ2, p) = a0(p)γ2m + a1(p)γ2m−2 + · · · + am(p) = 0, (3)

which is the sought after algebraic equation.
The correspondence between the characteristic equation of

Z(p)Y (p) resulting from the Moment Method and an algebraic
equation G(γ2, p) = 0, is the crux of the proposed idea of implementing
algebraic function theory in our eigenvalue problems. Hence our
unknown, the square of the propagation constant, is a solution of an
algebraic equation. One then simply recovers the singular points of
this solution from poles of Z(p)Y (p) and zeroes of the discriminant of
G(γ2, p) = 0. Because as discussed in [1], according to the theory of
algebraic functions, singular points of the roots of G(γ2, p) = 0 are
either zeroes of a0(p) in (3), which must be poles of Z(p)Y (p) due to
(2), or zeroes of the discriminant of (3). This is a major gain, which
may shed light on any design problem that involves these singular
points of the dispersion characteristics.

The correspondence between the characteristic equation of
truncated Z(p)Y (p) of a guiding system and an algebraic equation
was recognized early in [4]. But no attempt was made to exploit it
in a function theory sense. Even though [5] refers to the concept of
an algebraic function, the term algebraic singularity is not mentioned
in it. Hence what the sources of such singularities are, e.g., that they
can be traced to poles of Z(p)Y (p) and zeroes of discriminant of the
associated algebraic equation, is not discussed. I.e., some important
features of algebraic function theory applied to guiding systems are not
observed.

Throughout this work a reference to “the algebraic equation
associated with Z(p)Y (p)” will be meant to imply a reference to “the
mth degree algebraic equation in γ2(p) obtained as above from the
characteristic equation of Z(p)Y (p)”. This equation will be denoted by
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G(γ2, p) = 0. In this work we shall assume that G(γ2, p) is irreducible.
After this point by the term propagation constant we shall mean the
approximate propagation constant of the truncated system.

The organization of the paper is as follows. In Section 2 properties
of critical points, namely end points of a frequency interval in which a
mode has a complex propagation constant γ(jω), are discussed. First
it is shown that transition from a complex to a non-complex (i.e., pure
real or pure imaginary) propagation constant can not take place at
a point jωB where γ2(p) is regular. In fact this property applies to
any functional dependence of γ2(p) on p. I.e., γ2(p) may or may not
be the root of an algebraic equation. This proposition is analogous
to the similar fact touched upon in [1], for the transition between
backward and forward wave modes. In fact the statement in [1] is also
a result mentioned in [2] and it prohibits backward wave-forward wave
transition at a point jωB, at which γ2(p) is regular. Again because
the underlying proof uses only conditions of existence for a Taylor
expansion of γ2(p) about p = jωB, this statement is applicable for any
functional dependence of γ2(p) on p, as well.

Also in Section 2 the particular form of the eigenvalue of
Z(jω)Y (jω) (square of the propagation constant) is given in the light
of Appendix A.

In Section 3 which is on application of algebraic function theory
concepts to cutoff frequencies of modes of our class of guiding structures
mentioned above, it is found that a cutoff frequency on the jω axis, is
always an algebraic branch point of the solution γ(p) of the algebraic
equation associated with Z(p)Y (p). About this singular point the
Puiseux series has no negative power terms. It is further shown that
γ2(p) is always regular at jωC , if ωC is the cutoff frequency of the
mode represented by γ2(jω). In this section it is also found that at
end points of complex wave mode frequency intervals, both real and
imaginary parts of the propagation constant γ(jω) can not vanish at
the same frequency point.

Section 4 includes comments on some facts used in [1] and gives
corrections on several misstatements that took place in [1].

Appendices A and B contain a development which constrains the
nature of the square of the propagation constant γ2(p), at an algebraic
singularity.

The Glossary at the end is intended to serve to making the article
complete in itself.
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2. COMPLEX WAVE MODES AND SOME CONCEPTS
OF ALGEBRAIC FUNCTION THEORY

In the beginning of this section the reader’s attention is called for the
equivalence of the two statements;
1) γ2(jω) is non-real (i.e., γ2(jω) is complex or pure imaginary).
2) γ(jω) is complex.

This equivalence will be used in the development.
Another convention in the paper is that reference to the range

ω > ωB and ω > ωC or ω < ωB and ω < ωC is meant to imply
a reference to the immediate vicinity of the point ωB or ωC on the
side of the point indicated by the inequality sign. This reference never
implies the whole interval (ωC ,∞) or (−∞, ωC), for example.

2.1. Transition between Complex and Non-Complex Modes

We start this section by showing that a complex wave mode frequency
interval on the frequency axis can not end on a point ωB, if γ2(p)
is regular at jωB. Suppose it can, i.e., there exists a neighborhood
|p − jωB| < R of jωB such that γ2(p) is regular in it, but γ2(jω) is
non-real for one of the regions ω > ωB, or ω < ωB, while it is real for
the other. Assume 0 < ρ < R. Then one has,

γ2(p) =
∞∑

n=0

1
n!

dn(γ2(jωB))
dpn

(p− jωB)n (4)

uniformly in |p − jωB| ≤ ρ. I.e., γ2(p) is represented uniformly by its
Taylor series in |p−jωB| ≤ ρ. On the p = jω axis this series transforms
into

γ2(jω) = γ2(jωB)+
dγ2(jωB)

dω
(ω−ωB)+

1
2
d2γ2(jωB)

dω2
(ω−ωB)2 + · · · .

(5)
Suppose γ2(jω) is real for ω > ωB as per our hypothesis. The

series in (5) can be real for all ω such that ωB < ω ≤ ρ if and only if
(dn(γ2(jω))

dωn )ω=ωB are real for n = 0, 1, 2, . . . , since the (ω−ωB)n factors
are linearly independent. But this condition prohibits the mode for
which γ2(jω) is determined to be real for ω > ωB to have complex
values for ω < ωB, as can be seen by inspection of the series in (5).
Therefore transition from a complex to non-complex (i.e., pure real or
pure imaginary) propagation constant can not take place at a point
jωB where γ2(p) is regular. Furthermore since at jωB, γ2(jωB) is a
finite and multiple root (in fact a double root by Appendix A) of the
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algebraic equation G(γ2, p) = 0, jωB is a root of the discriminant of
G(γ2, p) = 0.

2.2. Some Properties of Complex Wave Frequency Interval
End Points

In Appendix A we have examined the conditions for the termination
of complex wave mode intervals on algebraic branch points of the
eigenvalues (or of the squares of the propagation constants ) which
have no negative power terms in their Puiseux expansion about the
algebraic branch point. One result of Appendix A is that, if jωB is
an algebraic branch point of γ2(p) at which γ2(p) is finite, γ2(jωB)
is a defective eigenvalue, implying that the derivative of γ2(jω) at
ωB is infinite. Furthermore for at least one side of jωB on the jω
axis, i.e., either for ω > ωB, or for ω < ωB there always exist two
real solutions γ2(jω). This last statement follows from the bifurcation
property introduced in Appendix A and which holds for a non-zero
defective eigenvalue. These two real solutions converge to a common
real eigenvalue γ2(jωB) of multiplicity q = 2, as ω approaches ωB.
If at ωB, the upper end point of the complex propagation constant
frequency interval,

γ2(jωB) = −β2(jωB) 	= 0, (6)

holds, where β(ωB) is the imaginary part of γ(jωB), the configuration
of the dispersion curve in the neighborhood of ωB must be as depicted
in Figure 1.

An example to guiding structures with a branch point jωB at
which the discriminant of G(γ2, p) = 0 vanishes, and about which
the propagation constant behaves as in Figure 1, is the cylindrical
waveguide loaded with a coaxial, lossless dielectric rod and investigated
in [3, 6].

Let us examine the behavior of the real and imaginary parts of
the propagation constants at the terminal frequency point ωB of the
complex wave mode interval when jωB is such a branch point. Hence
we have about this algebraic branch point [7]:

γ2(jω) = γ2(jωB) + jA1

√
ωB − ω −A2(ωB − ω) + · · ·

+(−1)n/2An(ωB − ω)n/2 + · · · . (7)

Suppose the coefficients An are real for all n, to insure reality of γ2(jω)
for ω > ωB. In this case we have complex wave modes for ω < ωB.
Separating real and imaginary parts of γ(jω) as Re{γ(jω)} = α(jω)
and Im{γ(jω)} = β(jω), and differentiating them with respect to
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Figure 1. Dispersion characteristics about an algebraic branch point
jωB at which γ2(jωB) is finite.

ω we find the following results. 1) γ2(jωB) < 0 case. In this case∣∣∣ lim
ω→ωB−

(dα(jω)
dω )

∣∣∣ = ∞, whereas
∣∣∣ lim
ω→ωB−

(dβ(jω)
dω )

∣∣∣ < ∞. Here the limit

ω → ωB is taken from the left side, i.e., from the side of ωB where γ(jω)
is complex. This direction is denoted by the minus sign in ω → ωB−.
2) γ2(jωB) > 0 case. In this case

∣∣∣ lim
ω→ωB−

(dα(jω)
dω )

∣∣∣ < ∞, whereas∣∣∣ lim
ω→ωB−

(dβ(jω)
dω )

∣∣∣ = ∞. Again ω approaches ωB from the side where

γ(jω) is complex. 3) γ2(jωB) = 0 case. This is when ωB is a cutoff
frequency at the same time. In this case both derivatives approach
infinity. But as concluded in Section 3 this is not a permissible case.

Examples to guiding structures with the γ(jω) vs. frequency
characteristics of the first two cases are provided by the biaxial
waveguide. This is a rectangular wave guide filled with a dielectric
whose permittivity matrix is given by

ε̂ =


 εx 0 0

0 εy 0
0 0 εz


 .

Structures for the two cases can be obtained when the relationship
between εx, εy, εz is changed [4].
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3. PROPAGATION CONSTANT BEHAVIOR NEAR A
CUTOFF FREQUENCY USING ALGEBRAIC
FUNCTION THEORY CONCEPTS

If ωC is a cutoff frequency, we have γ(jωC) = γ2(jωC) = 0 by
definition. Consider additionally the following two possibilities which
will go along and which we will examine. 1) γ2(p) is regular at jωC .
2) γ2(p) is not regular at jωC .

3.1. Case When γ2(p) Is Regular at p = jωC (ωC : Cutoff
Frequency)

Suppose γ2(p) is regular at jωC . Then we have the following expansion
in a neighborhood of jωC .

γ2(p) = C1(p− jωC) + C2(p− jωC)2 + · · ·Cn(p− jωC)n + · · · (8)

This expansion for a propagating mode can have C1 = 0 but not
C2 = 0 at the same time. Because, then we have ( dβ

dω )ω=ωC = 0 and
this means infinite group velocity, which is not physical.

On the other hand γ(p) has a branch point at jωC , because from
(4) we have

γ(p) = ∓
√
C1(p− jωC) + C2(p− jωC)2 + · · · + Cn(p− jωC)n + · · ·,

(9)
and (dγ

dp )p=jωC = ∞ follows. Now since γ(jωC) = 0 < ∞, hence
γ(jωC) is finite, jωC is an algebraic branch point for γ(p), which sets
the discriminant of the algebraic equation associated with the matrix
product Z(p)Y (p), and denoted by G(γ2, p) = 0, equal to zero. Hence
we have the following expansion for γ(p) in the neighborhood of jωC

[7].

γ(p) = C1(p− jωC)1/q +C2(p− jωC)2/q + · · ·+Cn(p− jωC)n/q + · · · .
(10)

Now from (9) we have the two γ, equal to negative of each other.
Therefore the expansion (10) must also yield these same two solutions
for γ. This is possible only if i) Ck for even k, vanish in (10), and ii)
q = 2.

Hence in the neighborhood of a cutoff frequency ωC , we must have
the following expansion for the propagation constant:

γ(p) =
∞∑
i=1

C(2i−1)[p− jωC ](2i−1)/2. (11)
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Note that even though γ2(p) is not singular at jωC , γ(p), is singular.
Setting p = jω in (8) we have

γ2(jω) = C1j(ω−ωC)+C2(j)2(ω−ωC)2 + · · ·+Cn(j)n(ω−ωC)n + · · · .
(12)

First consider the ω < ωC side of ωC , on the jω axis. Suppose there
exist terms for which powers of (ω − ωC) have non-real coefficients.
I.e., the two branches of γ(p) yield complex γ(jω) on the jω axis for
ω < ωC . γ2(p) is regular at p = jωC . According to the result of Section
2, transition between complex and non-complex modes can not take
place at regular points of γ2(p). Therefore in this case we shall continue
to have complex wave modes for ω > ωC .

If γ2(jω) is real for ω < ωC (or for ω > ωC), then by the same
reasoning, it is real for ω > ωC (or for ω < ωC).

Let us concentrate on the case when γ2(jω) is real and negative
in a neighborhood of ωC . One possibility is C1 = 0. Since γ2(jω)
is additionally real, this corresponds to degenerate cutoff and the
dispersion curve in the neighborhood of ωC , is as in Figure 2a. In
this case (dβ(jω)

dω )ω=ωC is finite as can be seen by differentiating (12).
If C1 	= 0, while γ2(jω) is real, we have an ‘ordinary’ cutoff frequency
either for a single forward wave mode or a single backward wave mode
as in Figure 2b.

C

)()(  −   γ ω = β

ω ω

j j ωj

Figure 2a. Dispersion characteristics about a degenerate cutoff
frequency.
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)()(  γ ω = αj ωj

Figure 2b. Dispersion characteristics about an ‘ordinary’ cutoff
frequency.

3.2. Proof of Regularity of γ2(p) at p = jωC (ωC : Cutoff
Frequency)

Suppose γ2(p) is not regular at jωC . This may be because i) a0(jωC) =
0. Here a0(p) is the coefficient of the leading term in the algebraic
equation associated with Z(p)Y (p). Please see (3). This implies
infinite γ2(jωC) value [7] and is ruled out because γ2(jωC) = 0. ii)
At p = jωC discriminant of the equation G(γ2, p) = 0 vanishes [7].

In investigating case ii) we shall first consider the condition when
there exist branches of γ2(p) with both real and non-real γ2(jω), at
least on one side of ωC . We shall prove that this is not possible and
next go on to prove that the case when all branches yield non-real
γ2(jω) on both sides of jωC , is not possible either. In this way we
shall have proved that γ2(p) can not be singular at a cutoff frequency
and hence case ii) is not permitted either.

So, first assume there exist branches of γ2(p) with both real and
non-real γ2(jω), at least on one side of ωC . This requires transition
from a complex wave mode to a non-complex wave mode at jωC . This
is because, if there exists a branch of γ2(p), real on jω, for ω > ωC (or
ω < ωC) and if jωC is a zero of the discriminant of G(γ2, p) = 0, and
hence γ2(p) is multiple at jωC , then from the series development of
γ2(p) about jωC we know the same branch yields necessarily non-real
γ2(jω) on jω axis on the other side of ωC . Proof of this fact is not
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given for brevity.
On the other hand by Section 2, transition from a complex wave

mode to a non-complex wave mode can occur only at singular points
of γ2(p) on the jω axis. Because of this, together with the hypothesis
that γ2(p) is singular at jωC , γ2(p), admits an expansion in the
neighborhood of jωC , in the form [7]:

γ2(jω) = A1(jω−jωC)1/q+A2(jω−jωC)2/q+· · ·+An(jω−jωC)n/q+· · · .
(13)

We are dealing with the case in which at least on one side of jωC on the
jω axis, we have at least one branch of γ2(p) that is real. Choose the
range ω > ωC as the side where γ2(p) has this property. We shall prove
that when q ≥ 2, jωC can not be a branch point with this property.

Suppose q is odd. The q roots occur as complex conjugate pairs
[4] due to Foster matrix properties of Z(p) and Y (p). Because at the
branch point jωC , γ2(jωC) = 0 is true, in the proximity of ωC , one of
the roots γ2(jω) must be real when q is odd. Otherwise requirement
of conjugacy of complex roots will not be satisfied.

When q is odd, having chosen ω > ωC as the region for the real
branch of γ2(p) on the jω axis, we conclude this branch yields non-real
γ2(jω) for ω < ωC , as we stated above without proof for brevity.

The dispersion curve for the transition of this mode from complex
to non-complex character at ωC can either be as in Figure 3a or
Figure 3b, depending on whether the real value assumed by the
considered γ2(jω) for ω > ωC is negative or positive respectively.

Suppose q is even. In this case, according to one of the side results
of Appendix A, the number of real branches of γ2(p) on either side of
ωC on the jω axis, must be two, if there are any real branches, which
is the case for us as per our assumption above for ω > ωC . Each of
these two real branches must be distinct from the other. Furthermore
as noted above again, these non-complex wave modes traverse ωC to
become complex wave modes on the ω < ωC side. Each of these
transitions will be as one of Figure 3a and Figure 3b. If for ω > ωC

we have γ2(jω) < 0, Figure 3a, otherwise Figure 3b will be applicable.
In Figures 3a, 3b, and 3c, the symbol > has been affixed for quantities
on ω > ωC side, whereas the symbol < has been affixed for those on
the opposite side.

Inspection of Figures 3a and 3b reveals that in fact for both q odd
and q even cases, at jωC , the complex wave mode propagation constant
real and imaginary parts which exist for ω < ωC , have bifurcated at ωC

in the transition from ω < ωC side to the ω > ωC side. If bifurcation
at a defective eigenvalue where eigenvalue is also zero, is not allowed,
then the configurations of Figures 3a and 3b are not permitted. This
will exclude both q odd and q even conditions of the case ii when
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Figure 3a. Phase coefficient β vs. frequency about ωC , with real
γ2(jω) on at least one side.
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Figure 3b. Attenuation coefficient α vs. frequency about ωC , with
real γ2(jω) on at least one side.
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Figure 3c. Phase coefficient −β vs. frequency about ωC , with real
γ2(jω) on at least one side. Here phase coefficient is negative of β in
Figure 3a.

investigated for the requirement of at least one real γ2(jω) on at least
one side of ωC .

Suppose bifurcation at a defective eigenvalue where eigenvalue is
also zero is allowed. Then the dispersion curves of a complex wave
mode (i.e., real and imaginary part characteristics of its propagation
constant) on ω < ωC side, bifurcate. In this case the overall non-
complex roots on ω > ωC side will be as pairs of identical γ(jω).
This can be seen by noting that for the imaginary part of the complex
conjugate of the complex propagation constant in Figure 3a depicted
on ω < ωC side, one has the bifurcation diagram in Figure 3c which
is identical with Figure 3a in the ω > ωC part. This implies identical
dispersion curves for pairs of pure imaginary γ(jω) in the ω > ωC

range. This is not admissible because G(γ2, p) is irreducible and hence
the discriminant of G(γ2, p) = 0 can not vanish identically, which
it would have to, when propagation constant square of a mode is
multiple over an interval on the frequency axis. Independently from
this argument on bifurcation of the imaginary part curves, we can state
in the same way that at ωC , bifurcation of the real part curves of γ(jω)
and its conjugate (γ(jω) is complex on ω < ωC side), yields a similar
pair of identical pure real γ(jω) on the ω > ωC side, thus proving
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unfeasibility in like manner.
Therefore regardless of whether bifurcation takes place or not

when γ(jωC) = 0, for both q odd and q even all cutoff frequencies ωC ,
on at least one side of which there exists one branch of γ2(p) which is
real, while γ2(p) has an algebraic branch point at jωC of order greater
than or equal to 1, are excluded.

The only remaining case to be discussed is when there are only
complex wave modes on both sides of the singular point jωC , while the
propagation constant vanishes at ωC . We shall prove below that this
is not permissible either.

For this goal we shall first rule out odd values for the multiplicity
q of γ2(p) at jωC by the same complex conjugate pairs requirement
argument as above. Because an odd q value entails one non-complex
wave mode on both sides of ωC , and this is a violation of our
assumption.

Consider then the q even condition. In this case we have the
following series expansion on jω axis for ω > ωC [7]:

γ2
i (jω) =

∞∑
n=1

Cn exp[j(π/2 + 2πsi)n/q](ω − ωC)n/q,

si = 0,∓1,∓2, . . . ,∓(q − 1). (14)

Here si stands for the index determining the ith branch. If we denote
the argument of Cn by ϕn, and the overall argument of each term in
the series by ψin, then

ψin = ϕn +
(
∓π

2
+ 2πsi

)
n/q. (15)

The (+) in front of π
2 refers to ω > ωC side of ωC whereas (−) refers

to the opposite side.
Whether there exists an ith branch γ2

i (p), which is real on jω axis
for ω > ωC or ω < ωC , is a problem equivalent to existence of an
integer s with 0 ≤ s ≤ q − 1 such that when it is substituted for si in
(15), one gets ψin which are zero or multiples of π for n = 1, 2 . . ..

Complex conjugacy requirement between i = 1 and i = 2, for
ω > ωC on the jω axis implies

ϕn = −1
2
[2(s1 + s2) + 1](πn/q). (16)

To insure (16) to yield same ϕn for all complex conjugate pair choices,
sum of indices su + sv for conjugate pairs γ2

u(jω) and γ2
v(jω) must

remain constant for all such u and v. This implies su + sv = q − 1,
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because the indices of conjugate pairs must then be as (0, q−1), (1, q−
2), (3, q−2), . . .. Since su +sv is odd, it can be shown that there exists
s equal to or different from su and sv, such that −1+[2s−(su+sv)] = 0
holds and for ω < ωC , (15) vanishes for all n when this s is substituted
for si in it.

Together with the same type of arguments for su and sv which
this time stand for a complex conjugate pair for ω < ωC on the jω
axis, we are led to derive that in general there always exists at least
one real γ2

i (jω) for either ω > ωC or ω < ωC , if γ2
i (jωC) = 0.

Hence we conclude: if ωC is a cutoff frequency, there can not exist
only complex wave modes on both sides of the singular point jωC ,
while the propagation constant vanishes at ωC .

As the result we exclude all cutoff frequencies ωC such that γ2(p)
are singular at jωC . This follows, because a) we first showed in the
above paragraphs, that we must exclude cutoff frequencies, on at least
one side of which there always exists a branch of γ2(p) which is real
there, while γ2(p) is singular at jωC . And now b) additionally we have
shown impossibility of a cutoff frequency which is a singularity on the
jω axis on both sides of which there exist only complex wave modes.

3.3. A Numerical Example

By means of a numerical example we shall illustrate some of the ideas
developed in this section and highlight the general algebraic function
theory approach to the understanding of singularities of dispersion
characteristics of the type of guiding structures considered.

We chose a cylindrical waveguide loaded with a lossless coaxial
dielectric rod as the guiding structure (inset of Figure 4) for the
numeric computations. Exact solutions for this problem are known
[6]. Parameter values are ε2 = 15ε0, ε1 = ε0, r1 = 0.25′′, r2 =
0.67r1. A personal computer was used in the computations. As the
frequency interval for verification of the method we picked up the
neighborhood of the cutoff frequency of the backward wave mode in
the dispersion characteristics. These characteristics are given in [3, 6]
for the two lowest order modes. We defined a normalized frequency
as V = ω

√
ε0µ0r1. The exact value of the normalized cutoff frequency

found from the exact transcendental characteristic equation was VC =
1.020323. Two different orders of truncation were run in application of
the Moment Method. Using 150 TE and 150 TM modes of the empty
guide, the cutoff frequency found was VC = 1.01806509. For 500 TE
and 500 TM modes, the cutoff frequency found was VC = 1.0196330.
The relative error dropped to 0.0676% from 0.221%. The convergence
of numerical results with the increase of order of truncation, indicates
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Figure 4. Dispersion characteristics about the cutoff frequency of
the backward mode in the numerical example. Inset: The guiding
structure of the example.

that with a more powerful computing capability errors can be reduced
further.

The first two terms of the expansion (11) were considered.
Formulas for the coefficients C1 and C3 were determined using their
definitions in terms of derivatives of γ2(p) with respect to p at the
point p = jωC , which can in turn be found from consideration of
γ2(p) as an implicit function in the algebraic equation G(γ2, p) = 0,
and from differentiation of this equation. Values for C1 and C3 were
numerically found for both orders of truncation in the Moment Method
(see Table 1). Lower and upper lines of points in Figure 4 are Moment
Method results with 150 TE and TM and 500 TE and TM mode

Table 1. Computed C1 and C3 coefficient values.

 150 TE, 150 TM modes 500 TE, 500 TM modes

1C    )1(9887565.50 j    )1(022203.47 j  

3C  )1(9576625.350 j 1(745063.350 j  

 

)

− −

+ +
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truncations respectively. Perfect agreement of these with results of
the method in this paper, especially in the neighborhood of the cutoff
frequency, indicates applicability of the approach presented. The fact
that this agreement is achieved taking only two terms of the series (11)
and generating each of the solid line curves from computation of only
two coefficients C1 and C3, further strengthens the point made. Indeed
the curves for the Moment Method involve solution of an eigenvalue
problem at each point, which requires many more computations.

4. SOME REMARKS ON REFERENCE [1]

In this section we substantiate some of the propositions made in
Section 2 of [1] and give corrections to some of the misstatements
in the same paper. Several of these corrections follow from the new
results of the development of the present paper.

In Section 2 of [1], it is stated without proof that singularities of
γ2(p) imply infinite derivatives, at p = jωB, if jωB is a singular point of
γ2(p). For the case of an algebraic branch point where the propagation
constant is finite, this can be seen if one considers Appendix A, where
the order of an algebraic branch point jωB, to be encountered in
guiding structures considered in this paper, is shown to be always
1, and where additionally, it is shown that the multiple eigenvalue
γ2(jωB) must be defective. These conditions can be expressed by
expanding γ2(p) as [7],

γ2(p) = γ2(jωB) +
∞∑

n=1

Cn[p− jωB]n/2. (17)

where C1 is non-zero, to insure that γ2(p) is not differentiable at
p = jωB. Then, ∣∣∣∣∣dγ

2(jωB)
dp

∣∣∣∣∣ = ∞. (18)

From this, we have (dγ
dp )p=jωB = ∞ because dγ2

dp = 2γ dγ
dp and γ(jωB) is

finite.
If the singularity jωB is due to a zero of a0(p), which is the

coefficient of the leading term in the algebraic equation G(γ2, p) = 0
associated with Z(p)Y (p), then according to Appendices A and B,
γ2(p) admits an expansion of the form

γ2(p) = γ2(jωB) +
∞∑

n=−n1

Cn[p− jωB]n. (19)
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Here n1 > 0. If one considers the dominant term in this series, for dγ
dp

one can obtain
dγ

dp
≈

√
C−n1(p− jωB)−(

n1
2

+1) · (−n1/2). (20)

This derivative approaches infinity as p → jωB.
In summary, all possible types of algebraic singularities of γ2(p)

that can exist for the class of structures considered, imply infinite dγ
dp

as the singularity.
Cases i) and ii) in Section 2 of [1] are ruled out, because as shown

in Section 3 of the present paper jωB can not be a singular point of
γ2(p), since γ2(jωB) = 0.

In case iii), the right hand limit for the evaluation of the derivative∣∣∣( dβ
dω )ω=ωB

∣∣∣ has been assumed to possess two different finite values.
This configuration depicted in Figure 3 of [1] is not permitted. This
follows if one observes the two results of Appendix A of this paper,
namely 1) order of an algebraic branch point where the propagation
constant is finite, can only be 1 and 2) such an algebraic branch point
must be defective (i.e.,

∣∣∣( dβ
dω )ω=ωB

∣∣∣ = ∞, if jωB is the branch point).
In case iv) of Section 2 in [1], we noted that when ωB is the end

point of a complex wave mode frequency interval, and β(ωB) 	= 0,
the only possible dispersion curves for ω > ωB are those depicted in
Figure 4 in [1]. It was mentioned in [1] that the necessity of this nature
of the dispersion characteristics was to be supplied with a proof in a
separate publication.

Indeed by Appendix A, we claim that q = 2 is the only possible
value for q, the multiplicity of an eigenvalue at the branch point.
Furthermore if there is a region of complex wave modes for ω < ωB

ending at ωB, then the frequency region immediately above it can not
support complex wave modes, and the two modes must necessarily
have pure imaginary propagation constants in that region. Again by
Appendix A this multiple eigenvalue must be defective. If one also
makes use of the bifurcation property [2] the dispersion characteristics
in Figure 4 of [1], can be obtained.

Four corrections are in the order for some misstatements in [1]. On
p. 1401 in [1], a0(p) is defined to be the polynomial equal to the common
denominator of the entries of the matrix Z(p)Y (p). The definition
for a0(p) must be corrected as ‘the lowest common denominator of
the expression g(γ2, p) = det[γ2(p)I − Z(p)Y (p)]’ whose members are
defined in [1].

On p. 1404 the (−1)1/q real case is addressed as part of the proof
of the existence of a complex wave mode frequency interval below a



166 Yener

backward wave mode interval. This problem was originally taken up in
[8]. By Appendix A of the present paper the q odd case is precluded for
the multiplicity of an eigenvalue at a branch point. Since (−1)1/q can
not be real for q even, the part of the proof appearing in [1] becomes
unnecessary as a whole. However one should note that (−1)i/q factor
in [8] is always complex when q is even. Only if i attains only even
values could this fact be untrue. But then, one has a cancellation by
2 in i/q between all indices i and q. This in turn implies reducible
G(γ2, p) which is incompatible with our hypothesis and is disregarded.

On p. 1407 in [1], a necessary and sufficient condition for the
existence of a backward wave mode for ω ≥ ωB is given when ωB

is the upper end point of a complex frequency region. By Appendix
A, γ2(jωB) is a defective double eigenvalue. Using the notation in
Section 1, if i(jωB) and v(jωB) are the transmission line currents
and voltages corresponding to eigenvalue γ2(jωB), v+(jωB)i(jωB) =
0 follows. To see this, write this product of eigenvectors of
Z(jωB)Y (jωB) and Y (jωB)Z(jωB), in terms of generalized eigenvector
of Z(jωB)Y (jωB) and eigenvector of Y (jωB)Z(jωB). Then the
necessary and sufficient conditions for the existence of a backward
wave mode for ω > ωB, when ωB is the upper end point of the complex
frequency region is now modified as follows.

v+i =

{
0 for ω ≤ ωB

x 	= 0 and x pure real for ω > ωB.

The last correction is in the second paragraph from the bottom
on p. 1413. Here the algebraic branch point at jωB due to a pole of
Z(p)Y (p) there, belongs to γ2(p) and not Z(p)Y (p).

5. CONCLUSIONS

Complex wave modes and modal behavior in the neighborhood of
cutoff frequencies have been assessed using algebraic function theory
concepts with focus on metallic waveguides containing a class of lossless
inhomogeneous and/or anisotropic media which in practice correspond
to a broad range of applications.

It has been shown that the problem of studying propagation
constant characteristics of complex wave modes in the vicinity of
end points of frequency intervals supporting such modes, is one
of considering zeroes of the discriminant of the algebraic equation
associated with the matrix Z(p)Y (p).

The particular form of the Puiseux series expansion of the
propagation constant has been established in the neighborhood of
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cutoff frequencies which are this time shown to be algebraic branch
points of the square root of the solution of the same algebraic equation.
In the assessment of behavior about cutoff, it is found that at a cutoff
frequency point on the jω axis, γ2(p) must necessarily be regular
whereas γ(p) is not.

It has also been proved that the order of an algebraic branch point
at which the square of the propagation constant, i.e., the solution of
G(γ2, p) = 0 is finite is necessarily 1. It has further been proved that
at such a point jωB, the eigenvalue γ2(jωB) of Z(jωB)Y (jωB) must be
defective. It has also been found that at end points of complex wave
mode intervals real and imaginary parts of the propagation constant
can not vanish simultaneously.

Additionally it has also been demonstrated that γ2(p) can not
have a pole branch singularity and that a finite order pole singularity
corresponds to a cutoff frequency of the system represented by shunt
admittance and series impedance matrices per unit length, Z−1(p) and
Y −1(p).

A numerical example has been given which illustrates that the
method can be applied to efficiently approximate the propagation
constant in the neighborhood of the cutoff frequency of a backward
wave mode.

APPENDIX A. CONSTRAINTS ON PROPERTIES OF
AN ALGEBRAIC BRANCH POINT WHERE
PROPAGATION CONSTANT IS FINITE

A.1. Proof of Defective Property of a Finite Multiple
Eigenvalue

First we prove two facts.
Fact 1. If eigenvalue γ2

1(jωB) of Z(jωB)Y (jωB) (or Y (jωB)Z(jωB)
since using Foster matrix properties of Z(p) and Y (p), these matrices
can be shown to possess the same eigenvalues) is real and non-defective,
no branch of γ1(p) can be complex on both sides of jωB on the jω axis.

Proof. Suppose γ2
1(jωB) is real and non-defective and there exists

a branch of γ1(p) which is complex on both sides of jωB. At
those frequencies where γ1(jω) is complex, v+

1 (jω)i1(jω) vanishes,
if additionally the eigenvalues are distinct at that frequency [1].
Definitions of the quantities v1(jω) and i1(jω) are the same as of
v(p) and i(p) of Section 1. Recall that they are eigenvectors of
Z(jω)Y (jω) and Y (jω)Z(jω) respectively, both corresponding to
the common eigenvalue γ2

1(jω). Because γ2
1(jωB) is non-defective

v1(jω) and i1(jω) can be chosen with elements continuous at jωB [9].
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Therefore we claim v+
1 (jω)i1(jω) is continuous at jωB. Since γ1(jω) is

complex on both sides of jωB, the form v+
1 (jω)i1(jω) vanishes at these

frequencies. But because of continuity at jωB, the same form at jωB,
i.e., v+

1 (jωB)i1(jωB) must vanish. However it is possible to show that
v+
1 (jωB)i1(jωB) is non-zero if Z(jωB)Y (jωB) possesses a complete set

of eigenvectors [4]. Since our eigenvalue is assumed to be non-defective
the set of eigenvectors is complete. We have a contradiction. QED.

Fact 2. A multiple eigenvalue γ2
1(jωB) can not be non-defective,

if γ1(jω) is complex for ω < ωB (or for ω > ωB) and non-complex for
ω > ωB (or for ω < ωB).

Proof. Suppose γ2
1(jωB) is a non-defective multiple eigenvalue and

additionally γ1(jω) is complex on one side of jωB. Eigenvectors v1(jω)
and i1(jω) can be chosen with elements continuous at jωB [9]. Hence
v+
1 (jω)i1(jω) can be chosen to be continuous at jωB. Coupled with

the vanishing of this form for ω < ωB (or for ω > ωB) [1], its continuity
at jωB can be used to show that v+

1 (jωB)i1(jωB) must vanish. This is
the same type of contradiction for a non-defective eigenvalue as in the
proof of Fact 1. Therefore our hypothesis is wrong. QED.

We can now claim by these two facts proved that, a complex
wave mode frequency interval can not end at a singular point at which
the square of the propagation constant is a non-defective eigenvalue.
The square of the propagation constant at a singularity where the
discriminant of the equation G(γ2, p) = 0 vanishes, and where a
complex wave mode interval ends, is a defective eigenvalue.

A.2. Bifurcation Property and Some of Its Consequences

In our further investigation of the frequency points which mark the
onset of complex wave mode intervals, we refer to the fact that unless
γ = 0, singularities in the derivative of a dispersion characteristics
bring about the bifurcation of a curve [2].

On the other hand a singularity can occur in the derivative of
a dispersion characteristics where γ2

1(jω) is non-zero only if at the
frequency point on the jω axis, γ2

1(jω) is a defective eigenvalue. Let
us assume below that the point jωB is such a point. Then we shall show
that the multiplicity q, of γ2

1(jωB) must be 2. This will be done by first
proving that q can not be odd. Then q even case will be considered
leading to a further restriction that q can only be equal to 2.

Before going on with this proof, in order to obtain two auxiliary
facts that we need in the development, let us examine the argument of
each term in the series for γ2

1(jω) in (A1) below, in view of determining
the number of branches of γ2

1(p) that are real on the jω axis. Reality of
a branch on the jω axis is equivalent to each term in this series having
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arguments equal to zero or integer multiples of π. If [7]

γ2
1(jω) = γ2

1(jωB) +
∞∑

n=1

Cn[jω − jωB]n/q, (A1)

for ω > ωB, the argument of each term with n ≥ 1 can be written as

ϕn +
(
π

2
+ 2πs

)
n

q
with s = 0,∓1,∓2, . . . ,∓(q − 1), (A2a)

where s is the index representing the branch of γ2
1(p), and ϕn stands

for the argument of Cn. Alternatively for ω < ωB the same argument
can be written as

ϕn +
(
−π

2
+ 2πs

)
n

q
with s = 0,∓1,∓2, . . . ,∓(q − 1). (A2b)

Using (A2), one can find these two results. i) If q is odd, there
can at most be one branch of γ2

1(p) real on either side of the point jωB

on the jω axis. ii) If q is even, on either side of jωB, either there are
no real branches of γ2

1(p), or if there are real branches, their number
must be two.

Now we can proceed with our proof. Consider that part of the
curve, say on the left side of jωB, on the dispersion characteristics for
Im{γ1(jω)} where we assume γ1(jω) is complex. Since γ2

1(jωB) is a
multiple non-zero eigenvalue with non-zero β(jωB) but zero α(jωB)and
by Section 2 and defective property of the eigenvalue, ( dβ

dω )ω=ωB = ∞
holds, this part of the curve must bifurcate at jωB. The two curves
that appear on the right of jωB after bifurcation, must correspond to
two real branches of γ2

1(p) on the jω axis. Otherwise, because it can
be shown that complex conjugate of γ2

1(jω) is also an eigenvalue of
Z(jω)Y (jω) due to Foster matrix properties of Z(p) and Y (p), the
total number of eigenvalues will not have been conserved.

If q is odd, since the curve for Im{γ1(jω)} bifurcates at jωB, by
the argument of the above paragraph there will exist at least two real
branches of γ2

1(p) on the jω axis for ω > ωB. The bifurcation argument
due to a degeneracy of the kind (dα

dω )ω=ωB = ∞, will also yield the same
result. These two results do not conform with result i) above and lead
to preclusion of odd q.

We shall consider the q even case in two steps. We shall exhaust
possible even values first assuming q ≥ 6. Bifurcation property of
Im{γ1(jω)} and Re{γ1(jω)} curves in this case, yields real branches
of γ2

1(p) on the jω axis, always outnumbering the limit of two, set by
result ii). Therefore q can be at most 4. In fact we shall see below that
if q > 1, it must be equal to 2.
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As the second step take q equal to 4 and start by assuming that
two non-real branches of γ2

1(p) exist on jω for ω < ωB only (or for
ω > ωB only), the β(jω) = Im{γ1(jω)} or α(jω) = Re{γ1(jω)} curves
for which must split into a total of four real γ2

1(jω) branches in the
region ω > ωB (or ω < ωB). This condition is inconsistent with result
ii) and when q = 4, existence of two non-real branches on only one side
of ωB is ruled out.

Continue with the q = 4 case considering next the existence of
only two branches of γ2

1(p) non-real on one side of jωB on the jω axis,
while only two branches non-real on the other side, exist in distinction
from existence of two non-real branches on only one side, and four
real branches on the other side taken up above. But utilizing (A2), it
can be seen that when q = 4, existence of only two branches of γ2

1(p)
which yield complex γ1(jω) on one side of jωB, while a set of only
two branches consisting of different or same two branches, or still as
another possibility, consisting of one different and one same branch,
yields also complex γ1(jω) on the other side, is possible only if the
index n of summation in (A1) attains even values.

By inspection of (A1) one can find that if n takes on only even
values, the exponents of the terms in the summation then become
n
q = n

4 = n′
2 , where n′ may take the values n′ = 1, 2, 3, . . .. In other

words q = 4 case reduces to the q = 2 case if there exist branches
of γ2

1(p) that give complex γ1(jω) on both sides of jωB on the jω
axis. But this corresponds to existence of multiple roots γ2(p), which
cause the discriminant of G(γ2, p) = 0 to vanish identically. This in
turn requires G(γ2, p) to be reducible which is incompatible with our
hypothesis.

Therefore when q = 4, a) the case of existence of four real γ2(jω)
on one side of jωB violates result ii) above and must be disregarded.
b) Existence of only two real and two non-real branches of γ2(jω) on
both sides of jωB is ruled out too by the argument of irreducibility of
G(γ2, p). c) Existence of only non-real γ2(jω) on at least one of the
two sides of jωB is prohibited too. Because then a non-zero defective
eigenvalue must bifurcate into real branches, and this means more than
two real γ2(jω) on at least one side of jωB, thus violating result ii)
above.

Similar arguments hold when γ2(jωB) is a defective multiple
eigenvalue with β(jωB) = 0, but α(jωB) 	= 0 and (dα

dω )ω=ωB = ∞
for when q is even as was the case for q odd above. We omit them for
brevity.

Since none of the members of the above set of alternatives a)
through c) which exhausts all possibilities is feasible, we infer q = 4
case is not permissible either.
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We do not need to consider an algebraic branch point jωB at which
both α(jωB) and β(jωB) are nonzero. Because then we can not have
pure real or pure imaginary γ(jω) for either side of jωB, given the
continuity of the root of the algebraic equation at an algebraic branch
point where it is finite. But we must have real γ2(jω), because due
to the bifurcation argument, complex propagation constant real and
imaginary parts which are nonzero at ωB and have infinite derivatives
on one side of ωB, must split into real γ2(jω) at the algebraic branch
point in order to accommodate the degeneracies due to the infinite
derivatives. If these splits were into non-real γ2(jω), total number
of eigenvalues would not be conserved since complex conjugates of
γ2(jω) are also roots of the algebraic equation because of Foster matrix
properties of Z(p) and Y (p).

In summary q = 2 necessarily if γ2
1(jωB) is a finite non-zero root of

the algebraic equation associated with Z(p)Y (p) and with multiplicity
q. Furthermore γ2

1(jωB) is necessarily a defective eigenvalue.

APPENDIX B. PRECLUSION OF AN ALGEBRAIC
BRANCH POINT WHERE THE PROPAGATION
CONSTANT IS INFINITE AND SOME PROPERTIES OF
THE PROPAGATION CONSTANT WITH A POLE

Consider a pole branch point p = jωB of eigenvalue γ2
1(p). By this

we mean γ2
1(p) has a finite number of negative power terms of the

(p− jωB)−n/q type in its Puiseux expansion, where (q−1) is the order
of the branch point. Then at this point,

γ′1
2(p)

∣∣∣
p=jωB

=
1

γ2
1(p)

∣∣∣
p=jωB

= 0 (B1)

is finite. Furthermore γ′1
2(p) = 1

γ2
1(p)

is the root of a new algebraic

equation G′(γ′2, p) = 0 which is obtained from the characteristic
equation of the matrix Y −1(p)Z−1(p) in the same way G(γ2, p) = 0
is obtained from the characteristic equation of the original matrix
Z(p)Y (p). Here Y −1(p)Z−1(p) is a product of two other Foster
matrices since the inverse of a Foster matrix is also a Foster matrix.

Because this matrix is the inverse of Z(p)Y (p), its eigenvalues
are reciprocals of those of Z(p)Y (p). Therefore one would expect
the pole branch point of the original eigenvalue problem to be an
algebraic branch point in the new eigenvalue problem at which the
new eigenvalue is finite (in fact zero). Hence the Puiseux expansion of
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γ′1
2(p) in the neighborhood of jωB should contain no negative power

terms.
On the other hand we have shown in Section 3 that a mode can not

have a cutoff frequency ωC , when γ2(p) is not regular at jωC . Because
now ωB is a cutoff frequency for the system obtained by inverting
Z(p)Y (p) with γ′1

2(jωB) = 0 holding, γ′1
2(p) must be regular at jωB.

But this does not conform with the fact that γ2
1(p), hence γ′1

2(p) is
multi-valued about jωB. Therefore we must rule out the case of an
algebraic branch point at which the propagation constant is infinite,
for all guiding systems of the type considered throughout this paper.

Assume the same sequence of arguments are applied to a pole
p = jωB of eigenvalue γ2

1(p). The reciprocal of γ2
1(jωB), denoted by

γ′1
2(jωB) will again be zero. But this time γ′1

2(p) will be regular at
p = jωB. This can be seen by writing the Laurent series for γ2

1(p)
which has a finite number of negative power terms, and taking the
reciprocal of the expression for this series.

On the other hand by Section 3, ωB can be a cutoff frequency for
γ′1

2(jω), so long as γ′1
2(p) is regular at p = jωB. Therefore a pole is

a permissible singularity for γ2(p) which is an eigenvalue of Z(p)Y (p),
and it corresponds to a cutoff frequency for the corresponding mode
with eigenvalue γ′2(p) obtained for the guiding structure represented
by the shunt admittance and series impedance matrices per unit length,
Z−1(p) and Y −1(p).

APPENDIX C. GLOSSARY

This section was compiled by referring mainly to [7, 10].
Algebraic equation; An equation of the form G(w, p) = 0, where

G denotes an entire rational function of p and w. If we imagine G to
be arranged in ascending powers of w, it can be written in the form

G(w, p) = g0(p) + g1(p)w + g2(p)w2 + · · · + gm(p)wm = 0,

where the coefficients gv(p) represent polynomials in p alone.
Algebraic singularity; may be a pole, or an algebraic branch point

as per the below definitions.

1) Pole; is a zero of gm(p), the coefficient of the leading term in
the algebraic equation, in the neighborhood of which the Laurent
expansion has a finite number of negative powers. It can be traced
to be a pole of Z(p)Y (p) in our formalism (see Section 1 and [1]).

2) Algebraic branch point which admits a Puiseux expansion with no
negative power terms. This point is a zero of the discriminant
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of G(w, p) = 0. The root of the algebraic quation is finite and
continuous at this type of a singularity.

3) Algebraic branch point which admits an expansion containing
fractional exponents with a finite number of negative power terms.
This expansion can be considered as a Puiseux series with a finite
number of negative powers. This singular point is also a zero of
gm(p). This singularity is also referred to as a pole branch point
[10]. It can be traced to be a pole of Z(p)Y (p) in our formalism
(see Section 1 and [1]).

Defective multiple eigenvalue; is a multiple eigenvalue for which
the number of associated linearly independent eigenvectors is less
than the multiplicity of the eigenvalue. Such an eigenvalue is not
differentiable.

Discriminant of the irreducible algebraic equation G(w, p) = 0; is
a polynomial in p the zeroes of which correspond to multiple roots of
G(w, p) = 0.

Generalized eigenvector of index k(≥ 1) of a matrix A with respect
to eigenvalue λ; is a vector x which satisfies

(A− λI)rx = 0

if and only if r ≥ k. Here r and k are integers, while I is the unit
matrix.

Irreducible G(w, p) = 0; is an equation not expressible as the
product of two polynomials of the same type as G. For the treatment
of an equation of the form

G1(w, p) ·G2(w, p) = 0

can be replaced by the separate consideration of the equations G1 = 0
and G2 = 0.

Non-defective multiple eigenvalue; is a multiple eigenvalue for
which the number of associated linearly independent eigenvectors is
equal to the multiplicity of the eigenvalue. Such an eigenvalue is
differentiable.

Puiseux series; (for our purpose) is a power series containing
fractional exponents.
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