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Abstract—This is the first of two companion papers on global
optimization and antenna analysis and synthesis. In Part I, an analysis
of the problems involved in Global Optimization is presented by
critically discussing the basic concepts and tools, the performances to
be expected, the required computational complexity and the guidelines
to select algorithms solving efficiently the problem at hand. The
relevance of stochastic techniques is enhanced and the role of double
phase algorithms is stressed. The proof of the convergence property of
an idealized version of a simplified evolutionary algorithm is provided.
In Part II, the selected algorithm, a hybrid evolutionary algorithm, is
tested against two real world problems relevant in electromagnetics,
the power synthesis of contoured beam hybrid reflector antennas and
the reflector antenna diagnosis from only amplitude data. The results
of an extensive numerical analysis are presented.

1. INTRODUCTION

The solution of many practical problems in several application areas,
from engineering to economics, requires the global optimization of
a non linear multimodal objective functional. F.i., if we restrict
our attention only to electromagnetics, solving inverse problems
such as antennas diagnosis and synthesis, the practical applications
discussed in the second part of our paper, sources and scatterers
localization, microwave tomography and wave front reconstruction
in optical astronomy, frequently demands for the optimization of a
functional that, in principle, has local optima.

In many instances, such optimization problems are afforded by
exploiting local optimization techniques [1–8].
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However, in the case of multiextremal functionals, this choice
suffers from a relevant drawback: depending on the starting point of
the searching procedure, the algorithm can be trapped into suboptimal
solutions or useless false solutions [9–19].

Accordingly, new strategies able to overcome or significantly
reduce the occurrence of false solutions are of serious interest [20–26].

Two different approaches can be followed to overcome such a
drawback.

By means of a proper reformulation of the problem at hand, the
first strategy should lead to the “convexification” of the objective
functional and obtain an unimodal optimization problem [27]. This
effect can be obtained by using additional information and constraints.

Obviously, as long as it is possible, this approach seems to be
the privileged way toward effectiveness and reliability. However, it is
not always a simple task to be accomplished. In some sense, asking
always for unimodal objective functions is analogous to requiring
that, since linear operators are simpler to be managed, all scientific
problems should be modeled by means of only linear relationships.
On the other side, in principle, “convexification” is not always strictly
necessary and/or convenient. F.i., in the antenna synthesis area, each
reformulation worsening the quality of the optimal solution should be
avoided if all the feasibility constraints have been already enforced.
Analogously, in the diagnosis area, no additional information should
be required beside the ones strictly needed to achieve the well position
of the problem.

The second approach asks for advanced optimization techniques
of global nature, able to traps out from local optima and transcend the
incumbent solution [20–26]. Concerning this point, it must be stressed
that, as long as the absence of local optima has not been proved, global
optimization algorithms should always be used.

However, even if the problem of global optimization is of particular
relevance, the available theoretical and algorithmic results have enjoyed
a wide spreading in the scientific community of practitioners only in the
recent years so that, in the practical applications, local optimization
techniques are very often adopted to optimize multimodal functionals.
This behavior appears evident if we observe that commercial numerical
packages implementing some of the most popular global optimization
algorithms are becoming available only recently.

The reasons of this lacking of attention in the past years should be
ascribed both to the absence of sufficient computing resources and to
the youngness of the discipline. In fact, only in the last three decades
the need for more accurate solutions to more sophisticated practical
problems and the renewal of attention by researchers all over the
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world have produced a significant theoretical evolution in this area. In
particular, new algorithms able to give new solutions to old problems as
well as solutions to problems never afforded before have been designed
[20–26].

Anyway, the distance between the theoretical world of Mathemat-
ical Programming applied to Global Optimization and the scientific
community directly involved in the solution of practical problems is
still wide [28]. Obviously, the theoretical results and the advanced op-
timization tools can significantly contribute to managing the practical
optimization problems of interest. On the other side, neither a dra-
matic simplification of the searching procedure nor a drastic reduction
of the computational complexity should be expected. In fact, the ex-
ploration of a complex landscape, when it does not enjoy strong known
peculiar properties, is always a very hard task and necessarily requires
a high computing effort. To clarify such concept, let us argue from
analogy. The topographical mapping of a region on the Earth surface,
still based on a very old idea, has been recently made very efficient by
exploiting the advanced technology of the Remote Sensing, the coun-
terpart of the advanced computing resources in the optimization area
[29].

On the other side, theorists of Global Optimization claim the
absence of real world applications of global algorithms able to
effectively test their performances (test functions are generally unable
to provide a convincing measure of the attainable performance in
practical problems) [21].

The aim of the first part of the present work is to discuss some
basic concepts and tools in global optimization, the performances to be
expected from global tools, the required computational complexity and
the guidelines to select the algorithms and efficiently solve the problem
at hand. The first part enlighten the reasoning that led us to select
a particular approach, a hybridized Evolutionary Algorithm (EA), to
solve the two relevant problems in applied electromagnetics discussed
in the second part of the paper.

Furthermore, a new convergence property of a simplified and
idealized version of an EA is provided. In particular, the probabilistic
analysis shows that such an algorithm is able to find the solution of a
global optimization problem with a finite number of steps, a property
already proved in the literature for Adaptive Search Algorithms
(Simulated Annealing) [30].

The aim of the second part of the paper is to present the
application of our global optimization algorithm to reflector antennas
power pattern synthesis and to reflector antennas surface diagnosis
from amplitude only far-field data. These two problems are of interest
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for the electromagnetic community as long as high performances are
required in the modern telecommunication and radar applications.

2. PROBLEM FORMULATION

In the introductory Section we disclosed that Global Optimization
deals with finding the absolute extreme points of a function. In
this Section, we formally introduce the problem and we discuss the
conditions involved in its practical solution.

2.1. The Problem

Let us now state the problem in a general mathematical framework.
We assume that the functional to be optimized, in the following the
objective functional, is a real valued function of n real variables. The
set of real numbers will be denoted with R and, as usual, the set of

vectors of n real numbers, x = (x1, . . . , xn), by Rn =

n times︷ ︸︸ ︷
R × . . .× R.

Both sets are considered equipped with the standard inner product
and the corresponding induced norm, we denote with < ·, · > and
‖ · ‖, respectively. According to our notations, the functionals to be
optimized herein will be in the form:

F |(x1, . . . , xn) = x ∈ Θ ⊆ Rn → R (1)

where the domain of definition Θ is assumed to be an open set of Rn

to avoid troubles at boundary points.
Often a priori information on the solution to be searched are

available, suggested, for instance, by the physics of the problem. They
should be taken into account in the optimizing procedure both to
obtain an acceptable solution and to make smaller the search domain.
To this end a set, Λ say, of the feasible solutions is introduced, generally
specified by known constraint functions Ci|Θ ⊆ Rn → R:

Λ = {x ∈ Θ|Ci(x) ≤ 0, i ∈ {1, . . . ,m}} (2)

However, as will be further discussed later on, the complexity of
the optimization problem, beside the objective functional, depends also
on the topological properties of Λ. As a consequence, it could not be
always convenient to increase the complexity of Λ by incorporating any
available information.

The global minimization problem† for the function F over the set
† All the definitions and results can be straightforwardly extended to global maximization.
In this case the maximum of F will be denoted by F ∗ and the set of points of Λ wherein
F attains f∗ by argmax

Λ
F = {x∗ ∈ Λ|F (x∗) = f∗∀x ∈ Λ}
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Λ amounts to find:

a) the lower bound of F over Λ, f∗ say;
b) the set of global optimizers, i.e., the set:

arg min
Λ

F = {x∗ ∈ Λ|F (x∗) ≤ F (x)∀x ∈ Λ} (3)

The definition evidently enlighten the substantial difference
between global and local optimization. Local minimization only
requires to find a point of Λ such that the inequality (3) is satisfied in
a neighborhood of the point x∗.

Obviously, assumptions on F and Λ are needed to ensure the
feasibility of the global optimization problem [31]. Beside the trivial
hypothesis that the domain of F is not void, the more relevant
requirement should ensure the existence of a minimum of F over Λ. It
is worth noting that, when dealing with global minimization, maxima
of F are not of concern; in particular the function F can even be
not upper bounded at all over Λ [32]. As a consequence, the weaker
hypothesis generally considered is that the objective functional is lower
semi-continuous (l.s.c.), a property that ensures the existence of a
minimum of F on compacta [32, 33], or that F enjoys other properties
when the search domain is unbounded [31, 32].

2.2. Feasibility Conditions

Once the existence of the absolute minimum has been ensured, we have
to define those requirement making the optimization problem solvable
from an algorithmic point of view. In other words we need to discuss
if and under which assumptions a real-world algorithm is able to get
the optimum.

As shown by Dixon about twenty years ago [34], the global
optimization problem is unfeasible in a finite number of function
evaluations. The sampled minimum value can in fact be arbitrarily
different from the real minimum of the objective function.

To clarify this point let us consider a l.s.c. function on an open
set Θ, say F |Θ ⊆ Rn → R, and a feasible compact set Λ ⊆ Θ. We
denote with {x1, . . . , xk} the sampling points till the k-th iteration and
consider the function:

F ′ = F + aB

(
‖x− x0‖2

b

)
(4)

where x0 is a point of Λ, a and b are two scalars and B is the well
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known bell function of the Theory of Distributions [35]

B(x) =


 −1

e
exp

(
− 1

1 − x2

)
x ∈ [−1, 1]

0 otherwise
(5)

where e is the neper number.
If we choose

x0 ∈
{
x ∈ Λ\{xi}i∈{1,...,k}

}
(6a)

b <
1
2

min
i∈{1,...,k}

‖x0 − xi‖2 (6b)

a < min
Λ
F − F (x0) (6c)

the function F ′ assumes the same values of F at the sampling points,
but its absolute minimum can be located “everywhere” in Λ and its
value can be arbitrarily small.

Accordingly, by only inspecting the levels of the objective function
at the sampling points, an algorithm cannot distinguish between F
and F ′, neither smoothness hypothesis’s on F are useful since the
bell function B is indefinitely continuously differentiable. Moreover,
sampling the derivatives does not help.

However, this dramatic result can be applied also to local
minimization algorithms that process information on the objective
function and its derivatives at the sampling points. As a consequence,
also local minimization cannot be accomplished in a finite number of
steps.

The astonishing conclusion conflicts evidently with the enormous
number of successful numerical results obtained by these optimization
techniques. And so, this behavior should not be considered as a proof
against Global Optimization. It only shows that the exact attainment
of the global minimum is an excessive claim, at least when a priori
information are not available.

The previous example could suggest that a constraint on the
variations of the functional should solve the paradox. In particular,
it could be natural to require that F or its derivatives [36–38] be
a Lipschitz function with a known Lipschitz constant‡. However, it
is worth noting that the simple a priori information expressed by a
known upper bound on the maximum variations of F is ineffective [37].
‡ We define the class of Lipschitz functions, K say, with Lipschitz constant κ as:

{F : |F (x1) − F (x2)| ≤ κ‖x1 − x2‖ x1, x2 ∈ Θ}
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In fact, given a Lipschitz monovariate objective function F IR → R
belonging to K, no black box algorithm exists able to find x∗ and
prove its optimality in a finite number of function evaluations unless
F has a saw tooth shape in a neighborhood of x∗ [37]:

∃δ > 0 I F (x) = F (x∗) + κ|x− x∗| ∀x ∈ [x∗ − δ, x∗ + δ] (7)

Furthermore, even if (7) is fulfilled, the attainment of the optimum
in a finite number of function evaluations is not guaranteed unless κ is
known exactly, an unusual circumstance [37].

All these difficulties are circumvented if our claims are weakened.
In fact, even if the data are known and managed with infinite precision,
only e-optimal solution can be found in a finite number of function
evaluations. Accordingly, it is widely assumed that a global problem is
solved if, for some prescribed value of ε, a point in one of the following
sets is found [21, 39]:

Λx(ε) = {x ∈ Λ I‖x− x∗‖ < ε} (8a)
Λf (ε) = ‖x ∈ Λ I |F (x) − F (x∗)| < ε} (8b)

which are certainly non void if F is a continuous function and Λ is a
robust set [23].

2.3. When Global Optimization Is Required

From the definitions given in Section 2.1 the hardness of global
optimization shows immediately. Obviously, the task becomes harder
and harder depending on both the nature of F and the topological
properties of the set Λ. And so, it is really useful to enlighten those
aspects that, at least in principle, should be exploited in practice to
obtain an efficient optimization algorithm.

The mathematical tool oriented to this analysis is Convex Analysis
[26, 85]. Even if developed in the convex and local optimization area,
the underlying convex nature of non convex problems makes many of
its concepts and results essential when investigating a wide class of
global optimization problems [23, 24–26].

Above all, it is of primary interest to point out the aspects making
unimodal the problem.

Convex functions and convex feasibility sets play a relevant role
[40]. In fact, the Convex Programming Problem, i.e. finding the
minimum point of a convex function on a convex set, is the easiest
to solve, since each local minimum of a convex function over a convex
set can be easily proved also global§ [20].
§ It is easy to prove with a counterexample that this property does not keep if the convex
hypothesis on Λ is relaxed.
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On the other side, any non convex optimization problem can be
reduced to a convex one by considering the convex hulls [20, 31].

Unfortunately, this result has essentially a theoretical life. The
convex hull of a given function F , conf(F ) later on, is generally hard
to calculate, often as difficult as solving the original problem. On the
other side, the use of the Legendre-Fenchel transform [32] is not very
helpful, even if it can be evaluated via algorithms similar to the FFT
ones [31]. Only in the particular case of quadratic objective functions
subjected to linear constraints, the task becomes easier [41].

However, beside the required degree of smoothness, convex
functions do not exhaust the whole class of functions whose local
minima are also global. To clarify this point, let us consider the bell
function B introduced in Subsection 2.2, restricted to the interval
[−1, 1]. It is trivial to show that B (an indefinitely continuously
differentiable function over [−1, 1]) has only one local minimum (x = 0)
but it is not convex.

And so convexity is not mandatory when unimodality is required.
Furthermore, it is worth stressing that, even if the objective function
is convex, the optimization problem can be hard when Λ is not convex.
To clarify this point let us observe that, given a continuous function
F on Rn and a compact set Λ, the problem of finding arg min

Λ
F is

equivalent to find arg min
(x,t)∈Γ

t, where:

Γ = {(x, t) ∈ Λ × R IF (x) − t ≤ 0‖ (9)

Let us observe that the function to be optimized in the problem
arg min
(x,t)∈Γ

t is convex (linear). In other words, we have transformed a

continuous optimization problem and converted the non convexity of
the objective function into the non convexity of the constraint set.
Despite the transformation, the resulting problem is, obviously, not
less hard to solve. Accordingly, as remarked in the Subsection 2.1, it
could not be always convenient to increase the topological complexity
of Λ by incorporating any available information.

However, fixed the convexity of Λ, by introducing the concept
of quasi-convex (strict quasi-convex [26]) function, we can enlarge
the functional space wherein those aspects of convex functions that
make them useful in the optimization area keep true. In fact, each
local minimizer (strict local minimizer) of a strict quasi-convex (quasi-
convex) function on a convex set can be easily proved also a global
minimizer‖.
‖ The hypothesis of strict quasi-convexity cannot be relaxed into quasi-convexity without
assuming the local minimizer a strict local minimizer. For instance, the bell function B is
obviously quasiconvex and all the points in R − [−1, 1] are only local minimizers.
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Unfortunately, neither quasi-convexity allows to describe the
whole set grouping all functions with only one local minimum (even if
in a strict sense).

In the one dimensional case something more can be said on the
relationship between the occurrence of local optima and the concepts
of quasi-convexity and quasi-concavity [42]. In fact, given a continuous
function F over the interval [xa, xb], we have:

F has a finite number of locally optimal points ⇒
⇒ ∃δ > 0|F is strictly quasiconvex or quasiconcave on any

subinterval [xc, xc + δ] with

xc ∈ [xa, xb − δ].
In the multidimensional case, a similar result cannot be proved.

In fact, in a neighborhood of a saddle point a multivariate function
is not quasiconvex nor quasiconcave. And so, generally speaking, as
stressed in [20], it is difficult to completely characterize the class of
constrained problems which have a unique local minimum [43].

The theoretical investigation allows also to characterize and
classify the optimization problems according to theoretical properties
enjoyed by the objective function and the constraint functions. In
particular, it will be enlightened the underlying convex nature of any
optimization problem and the relationship between the “simplest” to
be accomplished, and the one that would seem the hardest, since it do
not meet any peculiar property.

Concerning the classification, we will refer here to the one
proposed in [26], wherein Concave Minimization [20, 23, 26, 44],
Reverse Convex Programming [23, 26], D.C. Programming [23, 26, 45]
and Continuous Programming [26] are considered. Only the general
aspects will be herein considered. For a detailed description and a
rigorous definition specifying all the hypothesis to be considered, we
refer the reader to [26].

We do not spend any word about convex problems, since they are
not multiextremal, so that they can be solved by exploiting “simple”
local optimization tools.

The next problem to be considered is Concave Minimization. The
only aspect that distinguish this programming from the previous one
resides in the hypothesis that F is assumed a concave function [40],
instead of a convex function. Obviously, the considered problem can
be relaxed into a more general one, if we refer to quasiconcave functions
[26].

The third problem is the Reverse Convex Programming. It
requires:

Find arg min
∆\Λ

F
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where, Λ is a closed convex set in Rn, ∆ is the interior of the
set {x ICi(x) ≤ 0} and, as in Convex Programming, F and Ci are
convex functions.

It appears evidently that this problem differs from Convex
Programming because the inequalities considered in the definition of
the effective constraint set are reversed.

As in the previous case, the hypothesis F convex can be relaxed
into the hypothesis F quasiconvex [26].

Concerning the effective difference between the last two problems
now considered, we note that it can be proved that quasiconcave
minimization over a convex set is essentially equivalent to quasiconvex
maximization over the complement of a convex set [26].

The last optimization problem enjoying some peculiar mathemat-
ical properties is the D.C. Programming [23, 45].

Let us remember that D.C. functions are functions expressible as
the difference of convex functions.

As a consequence, a D.C. programming problem can be framed as
follows:

Find arg min
∆∩Λ

F

where, Λ is a closed convex set in Rn, ∆ = {x ICi(x) ≤ 0} and F and
Ci are D.C. functions.

It is worth noting that D.C. Programming includes a large variety
of practical problems, since D.C. functions are very common. In fact,
it can be proved that any continuous function can be expressed as the
difference of two convex functions, even if the explicit decomposition
is not always available.

Finally, the more general optimization problem that, at least
in principle do not enjoy any peculiar theoretical property, is the
Continuous Programming Problem.

However, it can be proved that any Continuous Programming
Problem falls in the large class of D.C. Programming. Furthermore, it
can be shown that any D.C. Problem can be reduced to a canonical
D.C. programming problem, belonging to the class of Reverse Convex
Programming Problems.

Accordingly, the above classification shows the underlying convex
nature of any optimization problem. Unfortunately, this feature is
not always obvious nor can be easily exploited to devise an efficient
optimization algorithm.
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3. GENERAL REMARKS ON GLOBAL OPTIMIZATION

In this Section we will discuss the general results available in
the literature concerning the feasibility of global optimization, its
complexity issues and the optimum search strategy.

3.1. Conditions for Global Optimality

To recognize the global optimal solution is a key point when affording
a global optimization problem. Each algorithm is required to check
if the feasible solution is effectively the searched solution and, when
this is not the case, to transcend it, avoiding the stagnation in a false
result. Accordingly, it is of real interest to know if there exist necessary
and/or sufficient conditions in the global world corresponding to the
well known local optimality conditions (see the Karush-Khun-Tuker
conditions [46]) and to enlighten their role as theoretical and practical
tools.

In the global world this “recognition” problem becomes quite hard.
In fact, to be really useful, an optimality condition should satisfy some
specific requirements. In particular, according to Strekalovsky [47]:

a) it should be an analytical condition involving only the data of the
problem under investigation;

b) it should have a relation with the classical extremum theory;
c) it should reduce to solving a problem which is simpler (in some

sense) than the original one;
d) it should posses the algorithmic property, i.e., the ability of

constructing a new feasible point better then the incumbent one,
when it does not satisfy the optimality conditions.

Several conditions for global optimality have been proposed.
Firstly, it is worth noting that global optimality can be proved

by exploiting the well known necessary condition for local optimality
∇F = 0 together with a check on the convex hull or by showing that
all the points at the same level of the incumbent solution are local
minimizer.

In other words the following relationships hold [31, 48]:

x0 is a global minimum of F⇔∇F (x0)=0 and conv (F )(x0)=F (x0)
x0 = arg min

Λ
F ⇔ x ∈ Λ|F (x) = F (x0) is a local minimizer on Λ

Unfortunately, these propositions are useful in the negative sense.
The convex hull is a global concept that cannot be computed by locally
sampling the objective functional (see Section 2.2). Accordingly, as
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pointed out by Hirriart-Urruty [31], the first condition has a practical
application when a tight upper bound on the convex envelope is
available. On its side, the second equivalence outlines the reason
why procedures attempting to transcend the incumbent solution by
looking for points wherein F remain constant should be expected to
work [48, 49].

Integral conditions for global optimality refer to the general global
optimization problem of continuous functions over compact sets, the
results being obtained via a “convexification” process of the objective
functional.

The first result in this area, well known in Probability and
Statistics, probably dates back to Laplace. More recently new criteria
have been addressed such as the Zheng’s, Falk’s [50] and Pinkus’ [51]
criteria. These results solve, in principle, the global optimization for an
enormously wide class of problems. Again, their practical application
is cumbersome, since the involved integrals must be evaluated by
stable and efficient procedures. Anyway some applications have been
proposed by Duong for polynomial optimization (referred by Tuy [45])
as well as by Glinkin and Sukharev [21].

Other conditions for Global Optimality are based on the concept
of subdifferential, ε-subdifferential or on concepts in Convex Analysis
such as polar sets, normal cones etc. [26, 31, 40, 47, 48].

In particular, by exploiting the concept of ε-subdifferential,
conditions for D.C. problems can be stated. Anyway, even if the class
of D.C. problems is quite general to contain the most part of practical
problems, their easy practical application fails (the decomposition
should be available).

This is a typical characteristic of the cited global optimality
conditions. As pointed out in [31], general accepted conditions for
global optimality does not exist. Hirriart-Urruty stresses in [31] that
no practical conditions can be derived for the general continuous
optimization problem. He observes that, even in the restrict area of
quadratic optimization, unsolved problems and non well understood
situations still remain [48].

However, these troubles should not raise objections against the
practical feasibility of Global Optimization. All these theoretical
difficulties comes out when generality is pursued. As we will see in the
next section also the general purpose best algorithm does not exist.
And this behavior does not affect only global optimization. Also the
familiar local checks, often based on the widespread analytic tools of
differential calculus and involving also derivatives of higher order [48],
cannot be easily accomplished when general objective functions are
involved [48, 52].
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3.2. The Best Algorithm

In Subsection 2.1 we stated that the feasible goal for global
optimization is to find, in a finite number of function evaluation, a
point in one of the two sets (8a) and (8b). However, it is easy to prove
that the task of finding a point in one of the two sets in Eqs. (8) can
be solved in a finite number of function evaluations.

To this end, it is sufficient to consider the rough grid search with
a properly chosen dimension of meshes.

Obviously, this method is not efficient because it determines the
sampling points without taking into account the previous outcomes.

Algorithms like this, sampling at present without considering
the previously observed values, are called passive. In contrast, all
algorithms establishing the next evaluation point by processing the
information gathered in previous observations are called sequential.

At first sight it seems natural to believe that sequential algorithms
should outperform passive algorithms. Unfortunately this is not
completely true and the following result clarifies this point. Let us
consider the class of Lipschitz functions K and let us denote with
x∗(f,A , k) the solution provided after k function evaluations, by the
algorithm A when optimizing F .

When the algorithm A is used to optimize the functions in K, its
performances can be evaluated by considering the result relative to the
worst case, i.e.,

max
F∈K

‖x∗(F,A , k) − x∗‖ (10)

Obviously, the best algorithm on K is the one that minimizes
the merit parameter in Eq. (10). The following proposition, due to
Sukharev, allows to compare the best sequential algorithm with the
best passive algorithm [21]:

min
A passive algorithm

max
F∈K

‖x∗(F,A , k) − x∗‖ =

min
A sequential algorithm

max
F∈K

‖x∗(F,A , k) − x∗‖ (11)

This proposition leads to an astonishing consequences: the best
passive algorithm has the same performances of the best sequential
algorithm on K.

As suggested by Torn and Zilinskas, the game theory can be used
to better be convinced. In fact, as long as the algorithm explores the
searching space to locate the optimum, an ideal opponent can change
the function F ∈ K, by substituting it with another element of K that
has the same values at the sampled points.

Again, this dramatic result should not deject attempting to finding
an efficient way to solve a global optimization problem.
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The Sukarev’s Theorem discusses only what happens in the worst
case, assuming that an ideal opponent exists who knows the searching
strategy of the algorithm [21].

Now, let us turn our attention to some other theoretical results,
known as the No Free Lunch Theorems (NFL) [53], which provide more
insight in choosing the strategy to get a successful algorithm for the
problem at hand.

NFL are a set of results found by Wolpert and Macready during
their stay at the Santa Fe Institute [54] and relative to stationary
as well as to time varying optimization problems. They explore
the relationship between an efficient optimization algorithm and the
problem that it is asked to solve.

As usual, the optimized function is assumed to be available to
the algorithm in a black box form and a probabilistic approach is
considered.

These results state that a general purpose algorithm that can be
efficiently used in all optimization problems does not exist: on average,
the performances of any two optimization algorithms are the same
across all the possible optimization problems [53]. In other words,
strategies which work well over a set of optimization problems, will
necessary work bad on some of the remaining ones. Accordingly, the
optimizer cannot be chosen by blindly referring to results obtained in
other application areas neither results on canonical problems are of
great interest when a complex problem must be solved in practice.

Inserting some a priori information on the structure of the problem
at hand should improve the performances.

It is worth noting that the NFL do not exclude that some
algorithms which do not take explicitly into account the structure of
the problem can, nevertheless, work well in practice. The geometric
interpretation of the NFL suggests that an algorithm can be “aligned”
to the structure of the problem because of an implicit tuning procedure
due to training and/or to the years of research [53].

It must be noted that, although general theoretical results, as the
ones cited above, allows finding the main guidelines to compare two
algorithms, we also need criteria allowing a practical comparison of
optimization algorithms. Unfortunately, as enlighten by the NFL, this
is a quite difficult task requiring the introduction of suitable “quality”
parameters.

According to Torn and Zilinskas [21], two parameters are generally
considered as quality factors: the number of function evaluations and
the total computing time.

However, “in all methods there exist a number of heuristic
parameters for which explicit values have to be chosen. When this
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is done by solving the set of standard problems, the methods are
calibrated to efficiently solve these particular problems. Because the
tests problem are rather arbitrarily chosen and easy to solve, it is not
clear that equal success will occur when solving other problems without
again modifying the methods” [21] (see the No Free Lunch Theorems).
“Important information about the efficiency and the applicability of
the algorithms come from solving real world problems”.

The first sentence of this note allow us to briefly introduce the role
of heuristic tricks in optimization algorithm. Torn and Zilinskas refer
that “it is natural that often, in applications, heuristic methods are
used”, since “solving practical problems may be considered somewhat
of an art” [21].

Concerning this point, Ratschek and Rokne [55] believe that,
although choosing something at hand “is familiar to everybody who
is working with computational mathematics, it is still a taboo in wide
mathematical circles which are dreaming of perfect algorithms that
may overcome every numerical problem”.

In [55] they also refer that “a computer can be much more powerful
than otherwise if the brain of a mathematician is allowed as one
peripheral” and that “on line working is the most convenient medium
for this type of work”.

For our part, we believe that the complexity of the problem
naturally leads to heuristic methods unless new theoretical tools will
be devised to (more or less) definitely clarify the open questions either
in a positive or in the negative sense [54].

3.3. Complexity Issues

As stressed in the introductory Section, the high dimensionality of the
problem is the main obstacle towards effective Global Optimization.
The amount of computing time required to get a reliable solution
becomes inordinate as long as the number of variables increase [56, 57].
Many optimization algorithms have good performances when few
variables are involved, but become impractical when dealing with
tens of variables, unless heuristic tricks are introduced to speed up
convergence.

In particular, the dependence of the performances of a global
optimization algorithm versus the dimension of the searching space
can be rigorously established.

As a matter of fact, let us quote the theorem due to Nemirovsky
and Yudin [57] concerning the optimization problem in the functional
space, say F , of k-differentiable functions over [0, 1]n, with bounded
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derivatives in the sense that:∣∣∣∣∣ d
k

dtk
F (x+ te)

∣∣∣∣∣ ≤ κ ∀x ∈ [−1, 1]n (12)

e being any unit vector.
They prove that each optimization algorithm that is guaranteed

to find a point in one of the sets (8), for a given ε, by sampling
the objective function and its derivatives, requires a number of steps
proportional to (κ/ε)

n
k for at least one function in F .

The theoretical result clearly states the exponential dependence of
the number of minimization steps on the dimensionality of the problem.
It also shows that the smoothness hypothesis has not significant
benefits: it affects the exponential dependence, but it does not turn
the exponential complexity into a polynomial one.

However, this result should not be interpreted as the further
proof that Global Optimization is a too hard task to have practical
applications. Also Local Optimization presents, as shown by Murty
and Kabadi [52], similar complexity issues.

As a concluding remark, it is worth stressing that multivariate
optimization can be effectively afforded only by designing new
algorithms, without attempting to leading back the problem to the
univariate case.

In fact, given a multivariate objective function F on an interval
ξ = [x1a, x1b] × . . . × [xna, xnb], it can be optimized by solving the
sequence of one dimensional problems by fixing n− 1 variables:

min
ξ
F = min

[x1a,x1b]

[
. . . min

[xna,xnb]
F

]
(13)

Obviously the minima of each single step can be evaluated by ex-
ploiting any one-dimensional minimization algorithm. Unfortunately,
the complexity of this approach, firstly proposed by Piyavskii, make it
quite difficult, since the number of one dimensional optimization prob-
lems grows rapidly with the dimension of the problem. As a matter of
fact, few computational results based on this approach have published
till now [58].

Neither the approach proposed by Strogin and Butz, relying on
the mathematical properties of the Peano’s curve [42], is successful.
In this case the basic idea is to solve a one dimensional problem
on a curve that essentially fills the searching domain, according to
the required accuracy and the maximum variations of the objective
function. However the one dimensional optimization becomes a hard
task, since points of the searching domain close to each other are
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mapped into points which can be also very far on the filling curve.
Accordingly, the univariate function to be optimized can present many
local minima very similar to the global one.

4. THE ALGORITHM

In this section we discuss the way that led us to choose a particular
algorithm for the practical problem of concern in the Part II of the
paper, i.e., the diagnosis and the synthesis of reflector antennas.

Obviously, such considerations are completely general and define
the general strategy that should be followed, in any application of
global optimization, to practical problems.

4.1. Deterministic and Stochastic Approaches

We stressed in the previous Sections that global optimization is
generally required when we deal with the optimization of multiextremal
functions, and no manipulations appear evident to simplify the
problem.

The problem we have to face in Part II requires a continuous
optimization algorithm of high dimensionality.

Unfortunately, a large number of unknown is involved and no
useful assumptions can be drawn to be explicitly used at the designing
stage of the optimization algorithm. As we stressed, it must be
expected that high dimensional problems are the most difficult to
manage. This general trend is effectively confirmed in practice, being
dimensionality the first obstacle toward efficiency and reliability of a
great deal of optimization problems.

The choice of the optimization algorithm becomes quite difficult
since the best general purpose algorithm does not exist. We stressed
that efficiency is obtained only if some information on the problem at
hand is inserted explicitly or implicitly in the optimization algorithm.

On the other side, many algorithm have been devised and some
among them enjoy interesting theoretical properties.

They are generally classified into deterministic and stochastic
approaches, depending on whether they incorporate some stochastic
elements [21, 23, 24, 26, 39].

First of all, it must be noted that a general feature leads to a
typical working strategy shared by many approaches. Let us remember
that the key point in any global optimization procedure is the problem
of transcending the incumbent solution [26]: to check the ε-optimality
of the obtained feasible solution and, when the goal is not fulfilled, to
find a new point whose level is not higher than the current one.
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Accordingly, global algorithms subdivide the searching process
into two phases:
the local phase: given a point in the searching space, the goal of the

local phase is to search for a better new point. Obviously, this task
can be accomplished by using local optimization tools and/or non
deterministic techniques.

the global phase: the goal of the global phase is to transcend the
incumbent solution, providing a better estimate of the solution
from which restarting the local phase. At this stage the global
optimality conditions we briefly discussed above, assume a very
relevant role.
Deterministic methods are promising optimization tool when well

defined analytical properties of the objective functional are available.
Many specialized algorithms have been devised, dealing with quadratic,
bilinear, concave, fractional and D.C. problems [20, 23, 24, 26]. On the
other side, algorithms for continuous optimization, such has the branch
and select techniques, the relief indicator technique, the Lipschitz
optimization procedures, the generalized descent algorithms, have been
developed only in the last three decades and the attempts to solve
problems with dimensionality higher than two have begun only in
recent years. Unfortunately, when the number of unknowns grows, this
techniques require very large computing resources and some heuristic
tricks (with the consequent lack in theoretical rigor) to skip the most
time consuming searching steps.

On the other side, besides the non unanimous consent, Stochastic
Algorithms are retained in [39] the most efficient methods for finding
the global minimum of an objective function and by Rastrigin [21]
are even considered the only efficient approach to global optimization.
Anyway, stochastic elements in optimization algorithms can be
important building blocks of efficient global minimization techniques
and their appeal often depends on an easy numerical implementation.

Obviously, in contrast with deterministic approaches, the absolute
guarantee of success is missed. However, the convergence properties
of this class of algorithms can be analyzed in a probabilistic sense. In
particular, asymptotic convergence can be considered, i.e., it can be
required that, according to a probabilistic criterion, the minimizing
sequence generated by the algorithm converges to the global optimum
as long as the number of iterations grows to infinity. On the
other side, to state the performances of the searching procedure,
the asymptotic convergence of an optimization algorithm is simply a
necessary condition to be considered.

In fact, even the simplest and unsatisfactory Pure Random
Search approach, that samples the feasible domain with a sequence
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of independent and uniformly distributed points, meet the asymptotic
convergence to an ε-optimal point. This result can be immediately
proved by observing that, since the probability of getting a point in
Λx(ε) after k samples is given by:

Pr{∃m ∈ {1, . . . , k}Ixm ∈ Λx(ε)} = 1 −
(

1 − M(Λx(ε))
M(Λ)

)k

(14)

the probability of success goes to one as k goes to infinity, as long as
the Lebesgue measure of Λx(ε), say M(Λx(ε)), is greater than zero.

Moreover, the simplest deterministic search technique, the Grid
Search, converges, even in a finite number of function evaluations, to
a point of ξε.

On the other side, at the first sight, no reasons should make a
random sampling covering preferable to a simple Grid Search.

However, firstly, it has been proved by Anderssen and Bloominfield
that, according to a probabilistic criterion, Pure Random Search
provides a covering of the feasible region more efficient then Grid
Search, at least when dealing with high dimensional problems [59].
Secondly, finite convergence is quite useless if the computational effort
exceeds the available resources. As a matter of fact, only an upper
bound on the needed computational complexity is of real interest to
estimate the algorithm effectiveness.

On its side, Pure Random Search has a natural predisposition
to become an Adaptive Search Algorithm, the basic building
block of really efficient algorithms, enjoying surprisingly interesting
convergence properties.

The first straightforward modification of Pure Random Search
naturally leads to Multistart [39].

Its basic idea is very simple: the global phase randomly explores
the feasible domain, looking for promising regions, but without
neglecting any part of it, while the neighborhood of each sampling
point is inspected efficiently by using Local Search (LS). The local
phase processes the information gathered in the global step to refine
the data quickly and to reject unfruitful sampling points.

The Multistart Algorithm in its canonical formulation at the k-th
iteration works as follows:

1) take a sample, x say, randomly and uniformly in the feasible region
Λ;

2) apply a local search to x, getting a point x̂;
3) if F (x̂) < fk then xk+1 = x̂ and fk+1 = F (x̂), otherwise xk+1 = xk

and fk+1 = F (xk).
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However, two reasons make Multistart inefficient.
Firstly, the random sampling of Λ has no memory. The uniform

distribution, even if very useful from a theoretical point of view to
easily prove convergence properties, samples without accounting for
the searching history, without adapting itself to the previous outcomes
and to the iteration number.

Secondly, the LS, the most time consuming step, is started blindly.
Accordingly, computing time is wasted when it is applied to points
lying in the attraction region of the same local minimum.

To overcome these drawbacks, two different classes of algorithms
have been developed: the Random Search Technique [21, 60, 61] and
the Clustering Methods [21, 62, 63].

The Random Search Techniques are the evolution of Pure
Random Search. The random sampling is improved by making it
adaptive, by considering variable probability sampling distributions
that depend on the iteration number and previous outcomes. These
algorithms enjoy very attractive theoretical properties and their
practical implementations leads naturally to Random Walk based
approaches [64].

A first approach to the problem leads to Pure Adaptive Search
Algorithm [64, 65]. In this case the searching procedure samples
uniformly only the region of Λ where the objective function F assumes
values better that the current one, say Λ(k), being k the current
iteration number.

It can be proved that Pure Adaptive Search requires a bounded
number of steps to get a solution with a prefixed accuracy. In other
words, the expected performance is bounded. Furthermore, the bound
grows only linearly with the dimension of the problem (this seems to
contradict the result by Nemirovski and Yudin).

Unfortunately, this algorithm is only of conceptual nature as
clearly stressed in [60].

Pure Adaptive Search is quite difficult to be practically
implemented, since it is not available an efficient method to estimate
Λ(k). In particular, Boender and Romeijn note that the inefficient
implementation of Pure Adaptive Search based on an acceptance and
rejection mechanism, leads to an algorithm whose complexity grows
exponentially with the dimensionality of the problem [60].

However, this is not the point of main interest here. The
interesting point is that Pure Adaptive Search can be thought as a
random algorithm with a variable sampling probability distribution on
Rn.

Accordingly, rather than evaluating Λ
(k)

and uniformly sampling
it, a sampling distribution varying with the iteration number can be
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considered.
This approach leads to Adaptive Search Algorithms [60].
These algorithms enjoy the same theoretical properties of the Pure

Adaptive Search Algorithm.
In particular, it has been proved by Romeijn and Smith [30]

that the expected number of function evaluations required to get the
solution with a given accuracy is not greater than that of Pure Adaptive
Search.

Obviously, the problem is to define and implement the sampling
according with the probability density distribution as a function of k.

Both problems can be solved and Markov Chain based algorithms
can be effectively used to approximate these distributions. In
particular, many algorithms have been devised to this end. They
approximate the desired distribution as the limiting distribution of
the chain.

Immediately, this approach leads to algorithms such as Simulated
Annealing and Evolutionary Algorithms [22, 25, 60, 66, 67].

The clustering techniques attempt to avoid starting LS uselessly.
The basic idea is to cluster (according to a clustering criterion) the
points provided by the global phase and assume that points belonging
to the same group lies in the attraction region of the same minimum.
Accordingly, only one LS can be started in each group. Furthermore,
previously determined local minima can be memorized and used as
seed points avoiding to start LS in the corresponding cluster.

When properly structured, clustering techniques enjoy very
attractive theoretical properties. In particular, it can be proved that,
for the Single Linkage Algorithm [62], the probability of starting LS
goes to zero as the number of iteration goes to infinity and that, if
the parameters of the algorithm are properly set, the total number of
invoked LS remains finite even if the procedure continues forever.

It is evident the relevance of such properties. They state that the
algorithm starts LS efficiently.

Unfortunately, the guarantee of success of the rough Multistart
is lost. In particular, both methods are affected by a drawback:
the possibility that each cluster contains more than one attraction
region. Accordingly, by starting only one LS for each cluster, some
local optimum (which could be also global) may be missed.

The main reason of this lack of guaranteed convergence resides on
the fact that the approaches do not use at all the values of the objective
function when clustering.

Multilevel methods have been proposed to circumvent this
difficulty and restore the convergence to the solution [63]. They are
proved to converge to the global optimum as Multistart, but are also
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proved to invoke the local search only one time, with probability equal
to one, in each region of attraction.

As above mentioned, this algorithm shares with single Linkage
its strong theoretical properties we presented. Furthermore, it can be
proved that it is able to find all local minima of F in a finite number
of iterations with probability equal to one [63].

As a concluding remark, it must be noted that these clustering
algorithms, even if considered very efficient, also for practical
applications, may fail to find the global minimum when stopped
too early (when computing resources have been used out) [63].
Furthermore their performances, as usual in global optimization,
depend on the dimensionality of the problem [63]. In particular, it must
be stressed that the performances of the algorithms strongly depend on
the amount of available computing resources. As a consequence, when
the adopted algorithm can be easily parallelized, the use of parallel
computing machine becomes quite convenient [68].

A suggested way to improve the performances is to change the
sampling probability distribution, adapting it to the objective function
(i.e., to the history of the search) [63]. In particular, it could be useful
to consider advanced random search procedures (see above) as a global
phase.

4.2. Why Evolutionary Algorithms as the Global Phase?

In the previous subsections it has been noted that the performances
of stochastic algorithms can be greatly improved by adopting two
different strategies.

The first one smartly interweaves the global random step with
an effective local search procedure to speed up convergence without
wasting computing time in unpromising regions of the searching space.

The second one adopts advanced stochastic search techniques
exploiting the information gathered from previous outcomes to smartly
sampling the searching space and adapting itself to the problem at
hand. It has been observed that practical implementation of algorithms
that samples, with memory, the searching space are random walk
techniques such as Evolutionary Algorithms and Simulated Annealing
Algorithms.

Obviously, as suggested in [63], better results should be expected
by combing together both these approaches. For our part we choose
an Evolutionary Algorithm as the global phase of the optimization
algorithm [25].

Evolutionary Algorithms are all the approaches that arise from
the analogy with the Theory of Evolution, a very wide class (to which
also Simulated Annealing can be reduced [69]) containing techniques
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that, in practice, can be quite different from each other, sharing only
the general inspiring concepts. Anyway, their strict relationship allows
to define a prototype algorithm to which all algorithms can be led back
when the search modules are properly specified [70–72].

It is worth noting that usually the objective function to be
optimized in the Evolutionary Computing area is called fitness and
is related to a maximization process instead of a minimization one. To
this end we introduce the fitness function G, properly related to F and
the sets:

Ψx(ε) = {x ∈ Λ I‖x− x∗‖ < ε‖ (15a)
Ψg(ε) = {x ∈ Λ I|(G(x) −G(x∗)| < ε} (15b)

Generally speaking, Evolutionary Algorithms are subdivided into
three large subclasses: Genetic Algorithms, Evolution Strategies and
Evolutionary Programming [70–76]. The distinction has essentially
an historical origin. Genetic Algorithms effectively were ideated as
a formal tool to study the complex process of adaptation [25, 71, 75–
78]. The other two approaches, Evolution Strategies and Evolutionary
Programming, since their birth, were used to solve practical problems,
as a new way to Optimization and Artificial Intelligence, respectively
[71, 79].

Nowadays, many aspects which characterized each subclass are
adopted in the same algorithm so that a well defined classification is
not till possible.

In the last two decades, Evolutionary Computing has proved
a very attractive and effective optimization tool whose number of
successful practical applications has grown impressively. On the other
side, the attempts to explain, in a theoretical framework, the dynamical
behavior of the searching process as well as the reasons of its success
in solving real world problems [25, 80–89] are multiplying.

In the following we will focus our attention only on two theoretical
aspects of Evolutionary Algorithms: the asymptotic convergence and
the finite convergence.

In contrast with a widespread idea in the practitioner community,
as other stochastic approaches, Evolutionary Algorithms, when
properly structured, enjoy the asymptotic convergence.

This property, even if crucial to state the effectiveness of the
algorithm (before the proof appeared, Evolutionary Algorithms were
frequently criticized when compared to those approaches whose
asymptotic convergence was already proved [90]), is of limited interest
both from a theoretical and practical point of view.

From one side also the simplest Search Algorithm, the pure
random search, converges asymptotically to the Global Optimum
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as stated above. Secondly, since in real world applications infinite
computational resources are not available, the asymptotic convergence
does not tell anything about the efficiency of the searching procedure,
in particular on the expected number of iterations required by the
algorithm to attain an ε-optimal solution.

Accordingly, the most appealing property for an optimization
algorithm is its ability of finding an ε-optimal solution in a finite
number of (expected) iterations whose upper bound can be expressed
in a closed form as a function of the key feature of the problem at
hand.

Concerning this point, Romeijn and Smith have provided [30, 67]
an upper bound to the number of iterations required by the Adaptive
Search (AS) algorithm to find an ε-optimal solution of Lipschitz
functions over a convex set. Furthermore, [30] shows that a practical
implementation of AS can be approximately obtained by Simulated
Annealing algorithms with a properly structured cooling schedule.

In this paper we provide an analogous result for an idealized
version of a simplified Evolutionary Algorithm.

In particular, we prove, in Appendix A, that the number of
expected iterations required to such an algorithm is, as for the AS
algorithm, stochastically less than that of the Pure Adaptive Search
(PAS) algorithm.

This result reassesses a sort of equivalence, at least from a
theoretical point of view, between SA and EA and, moreover, provide
a further explanation of the effectiveness of EA.

4.3. The Hybrid Evolutionary Algorithm

In the previous Section we have shown the reasons which led us
to adopt an Hybrid Evolutionary Algorithm. Let us now describe
explicitly the proposed algorithm.

The first problem which must be faced when constructing an
Evolutionary Algorithm relies on how to code the unknowns.

Furthermore, in contrast with a widespread idea, a particular
cardinality of the alphabet does not offer any intrinsic advantage.
In other words, the well known Holland’s rule [75], which suggests
to reduce the cardinality to enhance the implicit parallelism of the
algorithm, and, consequently, its performances, is not well founded
[91–93].

In fact, a recent result by Fogel and Ghoezil shows clearly that,
regardless of the cardinality of the representation, different algorithms
can be constructed with the same performance if the reproduction
operators are suitably chosen [91].
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This conclusion not only perfectly agrees with the NFL but also
explains the empirical results obtained in the latest years, which shows
that real coding of continuous problems generally works better then
binary coding [93].

Let us now discuss the hybrid scheme.
Different approaches can be followed when combining a global

optimizer and a LS. In this paper we devote our attention to two
schemes which are suggested by the analogy with the Theory of
Evolution: the Lamarckian and the Darwinian [94].

The underlying concept is “life”. During life the individual
demonstrates the potential of its genetic inheritance with respect to
the environment. In a hybrid algorithm “life” is LS which allows to
efficiently explore the region of the fitness landscape in an individual’s
neighborhood. The Lamarckian and Darwinian approaches distinguish
from each other depending on if the chromosomal inheritance changes
during “life” or not, respectively.

To describe this mechanism with more details, we will introduce
the following formal framework.

Let us first denote with k the population cardinality and with
Πp = {c1,p, . . . , ck,p} the population at the p-th generation.

Let H be the operator:

H IΠp ∈ Rn∗k → g = (g1, . . . , gk) ∈ Rk (16)

which associate to each population the fitness vector of its elements.
Let S, R, M be the reproduction operators, i.e., the selection, the

recombination and the mutation operators respectively:

S
∣∣∣ (Π, g) ∈ Rn × Rk × Rn → Π′ ∈ Rn × Rk (17a)

R
∣∣∣ Π′ ∈ Rn × Rk → Π′′ ∈ Rn × Rk (17b)

M
∣∣∣ Π′′ ∈ Rn × Rk → Π′′′ ∈ Rn × Rk (17c)

Let us denote with Ls the LS operator, i.e., the operator which
produce a new population by applying the LS q times with starting
points equal to the individuals in the current population:

Ls
∣∣∣ Π ∈ Rn × Rk → Π′ ∈ Rn × Rk (18)

And so, by denoting with the symbol “◦” the product of two
operators, a generation of a Darwinian Algorithm is structured as:

Πp+1 = M ◦ R ◦ S
(
Πp,H(Ls(Πp))

)
(19)
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while a generation of a Lamarckian Algorithm is structured as:

Πp+1 = M ◦ R ◦ S
(
Ls(Πp),H(Ls (Πp))

)
(20)

Even if the Darwinian approach seems to be more robust, we have
considered the other one because of its faster convergence rate [94].

Furthermore, as widely discussed in the previous Sections, since
LS is a time consuming step in the procedure, it must be invoked
as rarely as possible. Accordingly, it has not been applied to each
individual of the population, but only to a fraction of it, according to
a simple clustering criterion choosing the best fit individuals.

Now, let us describe the reproduction operators.
In a Hybrid Evolutionary Algorithm the role of the Evolutionary

Algorithm is essentially to explore the searching space and locate the
more promising regions. Accordingly, high selection pressures [95] even
if is able to speed up the convergence rate, can induce high probable
premature convergence to false solutions. And so, a roulette wheel
proportional selection with elitist [96] has been considered.

In order to get a non negative fitness function and to control the
selection pressure, a “quasi-linear” scaling of the objective functional
has been adopted.

The quasi-linear scaling realizes the following non increasing
correspondence between the objective functional and the fitness
function

G =

{
aF + b for aF + b ≥ 0

0 for aF + b < 0
(21)

where the constants a and b are chosen in order to fix the mean value
and get max(G) = h∗ min(F ), where h > 1 is a scaling parameter.
In Authors’ experience this scaling strategy works better then more
standard ones such as:

G = c/F ; (22a)
G = f0 − F (22b)

wherein c and f0 are suitably chosen constants.
It must be stressed that elitist must be introduced when dealing

with the proportional selection mechanisms to retain the asymptotic
convergence to the global minimum [88]. Furthermore, the elitist
strategy ensures, essentially, that the performance of a hybrid
algorithm cannot be worse than the one of the LS when the starting
point of LS is inserted in the initial population.

Concerning the mutation scheme, a uniform mutation on the
searching space has been considered. It is worth noting that normal
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mutation distribution is more usual [97]. The central limit theorem
and, again, the analogy with the Theory of Evolution are generally
invoked to justify this predominant choice in real coded EA’s, even if
the Gaussian distribution is not the only limit distribution of a sum of
random variables [98]. In nature, in fact, mutation is determined by
different physical and chemical causes which interact in a very complex
way. Accordingly, mutation can be interpreted as the overall effect, the
sum, of a sequence of independent random variables.

However, in our experience, the uniform mutation scheme
demonstrated better performance then the gaussian one. This behavior
can be explained by observing that the explorative features of the
global phase must be enhanced in a hybrid scheme.

Concerning the recombination operator, an extended intermediate
recombination has been considered [99].

The last critical point to be faced when implementing an EA is
the parameter setting. Obviously, only heuristics rules are available
to determine the population size and the parameters of reproduction
operators [100]. Furthermore also self adaptation of the parameters
has been considered [101–103].

It must be stressed that, by enlarging the population size, the
performances of the algorithm does not necessarily improve. In fact,
as pointed out in [104], an efficient algorithm can be obtained only by
trading off between an accurate search space sampling and the amount
of available computing resources.

We will not discuss this point further in this paper, and we refer
the reader to the review papers already referenced.

5. CONCLUSIONS

The problems involved in global optimization have been critically
discussed, by referring to the main results recently presented in the
literature.

The basic concepts and tools, that let us to select a particular
approach, a hybridized evolutionary algorithm, in solving two relevant
problems in applied electromagnetics have been enlightened. The proof
of the convergence property of an idealized version of a simplified
evolutionary algorithm has been provided.

APPENDIX A.

Following [81, 82], an EA algorithm with an infinite population and
characterized by only a proportional selection reduces to a stochastic
process {Xk}k∈N defined by the sequence of probability distributions
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{Pk}k∈N over the searching space Λ and the corresponding sequence of
probability cumulative distribution functions {Pk}k∈N.

The stochastic process {X k}k∈N defines a sequence of random
variables. {G(X k) = Gk}k∈N0 (G0 = g∗ is assumed).

According to [105], an index k is called a record if

Gk = max{G0, . . . ,Gk} (A1)

and the sequence of record values {rk}k∈N0 defines the time indexes
corresponding to an increasing values of {Gk}k∈N0 .

Let us now introduce explicitly the PAS algorithm.
The PAS is the simplest evolution of Pure Random Search.

While PRS samples uniformly the whole search space, PAS attempts
to improve at each step the current feasible solution by sampling,
uniformly, as PRS, the set of the points of Λ corresponding to
functional levels higher that the current one.

Formally, PAS is defined by the following iterative searching
procedure:

1) k = 0; w0 = g∗
2) Generate xk+1 uniformly over {x ∈ Λ IG(x) > wk}
3) Set wk+1 = G(xk+1), k = k + 1 and go to 2)

The above procedure defines a stochastic process Wk that, according
to the definition in [105], stochastically dominates Grk

, a key property
for our purposes. In fact, [65] provides an upper bound to the expected
number of iteration required by PAS to get an ε-optimal solution of an
optimization problem of a Lipshitzian function on a convex bounded
set.

However, to demonstrate the above mentioned result, we need to
prove the preliminary proposition:

A) Pr{Grk+1
> u2|Grk

= u1} ≥ Pr{Wk+1 > u2|Wk = u1}
Let us evaluate the conditional probability distributions:

Pr{Grk+1
> u2|Grk

= u1} (A2a)
Pr{Wk+1 > u2|Wrk

= u1} (A2b)

We have:

Pr{Wk+1 > u2|Wk = u1} =




M (Ψg(g∗ − u2))
M (Ψg(g∗ − u1))

u1 < u2

1 otherwise
(A3)
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Similarly, it results that:

Pr{Grk+1
> u2|Gτk+1

= u1} =




Pk+1 (Ψg(g∗ − u2))
Pk+1 (Ψg(g∗ − u1))

u1 < u2

1 otherwise
(A4)

From the very definition of stochastic dominance, A) follows
immediately once it is proved that:

Pr{Grk+1
> u2|Grk

= u1} ≥ Pr{Wk+1 > u2|Wk = u1} ∀u1, u2 (A5)

The result is obvious for u1 ≥ u2. To prove the assertion in the case
u1 < u2, let us introduce the function:

H(g) =
M (Ψg(g∗ − u1))

Prk+1
(Ψg(g∗ − u1))

ark+1
grk+1 (A6)

where ark+1
is a sequence defined by the probability distribution of the

EA searching process [81, 82].
Let us firstly assume that H(u2) ≥ 1. We have:

Pr{Grk+1
> u2|Grk

= u1} =
1

M(Ψg(g∗ − u1))

∫
Ψg(g∗−u2)

H ◦G(x)dx

(A7)
Since H is an increasing function it results that:

Pr{Grk+1
> u2|Grk

≥ u1} ≥ 1
M(Λ(g∗ − u1))

∫
Ψg(g∗−u2)

dx

= Pr{Wk+1 > u2|Wk = u1} (A8)

On the other side, if H(u2) < 1,

H(y) < 1 ∀y = G(x)|x ∈ Λ\Ψg(g∗ − u2) (A9)

Accordingly:

Pr{Grk+1
> u2|Grk

= u1} = 1 − Prk+1
(Ψg(g∗ − u1)\Ψg(g∗ − u2))
Prk+1

(Ψg(g∗ − u1))

= 1 − 1
M (Ψg(g∗ − u1))

∫
Ψg(g∗−u1)\Ψg(g∗−u2)

H ◦G(x)dx ≥ Pr{Wk+1 > u2|Wk = u1}
(A10)
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that completely proves A).
Let us now prove the proposition:
B) Grk

≥st Wk ∀k ∈ N0

The proof is based on an induction process.
Obviously G0 ≥st W0. And so we need to prove that if Grk

≥st Wk

then Grk+1
≥st Wk+1.

By exploiting the total probability theorem and A) it follows that:

Pr{Grk+1
> u} =

∫
R

Pr
{
Grk+1

> u IGrk
= v

}
dPGrk

(v)

≥
∫
R

Pr {Wk+1 > u IWk = v} dPGrk
(v) (A11)

Since Pr{Wk+1 > u|Wk = v} is an increasing function of v, from the
induction hypothesis and the very definition of Stieltjes integral, B)
follows immediately.

Now, given the two stochastic processes:

M(u) = min
k∈N0

{Grk
> u} (A12a)

N (u) = min
k∈N0

{Wk > u} (A12b)

from proposition B), once it is observed that:

Pr{M(u) > i} = Pr{Gri > u} (A13a)
Pr{N (u) > i} = Pr{Wi > u} (A13b)

it follows immediately that

M(u) ≥st N (u) (A14)

Consequently, from the basic properties of stochastic dominance [105],
we have immediately:

E[M(u)] ≤ E[N (u)] (A15)

By exploiting the upper bound to the computational complexity of a
PAS algorithm [65], we get:

E[M(u)] ≤ 1 + n ln(κd/(g∗ − u)) (A16)

where n, as usual, is the dimensionality of the optimization problem, d
is the diameter of the searching region and κ is the Lipshitz constant
of the optimized function.
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As a concluding remark it is noted that the above results concerns
only the process Grk

.
However, on average, according to the theory of the repeated

trials process, the number of iterations required to improve the current
feasible solution, is finite.
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