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Abstract—The scattering problem from the random interface with
the Dirichlet boundary condition can be formulated as an integral
equation x = K̂y with respect to surface sources y (here, K̂ is the
integral operator). Starting with an approximate operator K̂0, for
which the inverse operator M̂ = K̂−1

0 is known, the series in powers of
the operator Ẑ = M̂(K̂0 − K̂) is derived. As an approximate kernel,
we consider the kernel depending only on the difference of arguments:
K0 = K0 (r − r′) , for which the kernel of the operator M̂ can be found
in terms of generalized functions. The norm of the difference operator
||Ẑ|| is found; the conditions of convergency ||Ẑ|| � 1 were obtained.
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1. INTRODUCTION

If we consider the problem of wave scattering by some body or surface,
the equation for the sources of the scattered field may be presented
in the form of the first or the second kind of integral equation (IE).
Usually the Green’s integral theorem and the corresponding Helmholtz
integral are used in the derivation of such equations. The extinction
theorem [20] is a useful tool to derive IE in the scattering problem.
Examples of such equations in rough surface scattering theory can be
found in many publications, e.g., [8, 13, 18, 1, 3, 10, 11, 19] (we mention
here only a few of them). Different algorithms for the solution of these
equations were suggested in the above-mentioned papers.

In the present paper, we consider a general method that can be
applied to an arbitrary Fredholm IE of the first or second kind. This
method allows us to construct the solution of a given IE with the kernel
K if an analytical solution of a “close” IE, having an “approximate”
kernel K0, is known (we call this method a semi-inversion method,
[SIM]). If we know the solution of an IE with the kernel K0, it is
possible to derive a new IE of the second kind (both for the first and
the second kind of the original IE), which provides the solution of the
original IE in the form of a series in powers of difference (K −K0).
The success of this method depends on an appropriate choice of K0,
and this step cannot be formalized. It is important that SIM may be
used for the acceleration of convergency of an iterative solution of IE.
Examples of using methods similar to SIM can be found in [14, 16].
The SIM was extensively used in the different problems of gratings
[6, 7, 15]. The review paper [15] contains more than 100 references
related to SIM.

There exist many types of kernels for which it is possible to obtain
analytical solution; we can mention degenerate kernels, the finite sum
of degenerate kernels, the kernels of convolution type, and the kernels
defining the known integral transforms [14, 16]. Such types of kernels
may be used as K0. The important problem of convergency of obtained
series arises.

In this paper, we illustrate the SIM as applied to a scattering
problem from a rough surface with the Dirichlet boundary condition.
For the problem of wave scattering by a random (i.e., an arbitrary)
surface the simplest possible method is to replace the precise kernel
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with the kernel of convolution type. But we do not exclude the
possibility of using more sophisticated kernels, for instance the kernel,
which leads to the small-slope approximation [18]. In Section 2, we
consider the first kind IE (8) for the normal derivative of the field at
the scattering surface. In Section 3, we describe the SIM procedure
using operator notations and introduce the norm of the operator, which
determines the convergence of SIM. In Sections 4 and 5, we consider
the approximate IE, which was suggested by Meecham and Lysanov
(ML) [12, 9] and find the corresponding inverse kernel in a form of
generalized function. In Sections 6 and 7, we evaluate the norm of
the operator, which determines convergence of SIM, and formulate the
condition of convergence.

2. FORMULATION OF THE SCATTERING PROBLEM

We consider the scattering of waves by the irregular rough interface
between two media (each of them is infinite in a positive or negative
z direction). We assume that the boundary condition at the interface,
which has the equation z = ζ (r), r = (x, y), comes to the vanishing
of the complex amplitude† of a wave field E (r, z) at the surface (the
Dirichlet boundary condition), i.e.,

E (r, ζ (r)) = 0. (1)

If we consider an acoustical problem, this boundary condition
corresponds to the scattering of sound, propagated in water, from
a water-air interface. In the case of electromagnetic (EM) waves,
this boundary condition corresponds to the scattering of horizontally
polarized waves from an ideal conductor in a one-dimensional
scattering problem. In the case of two-dimensional EM problems, this
boundary condition may be used if the cross-polarization is negligible.

Outside the boundary, the field E (r, z) satisfies the Helmholtz
equation,

∆2E (r, z) +
∂2E (r, z)
∂z2

+ k2E (r, z) = 0 (2)

where ∆2 is the 2D Laplasian operator,

∆2 =
∂2

∂x2
+
∂2

∂y2
=
∂2

∂r2
, ∆2 = ∇2, ∇ =

∂

∂r
=

(
∂

∂x
,
∂

∂y

)
, (3)

† We assume that the time dependence of the wave is given by the factor exp (−iωt) , and
we may consider the complex amplitude E as time-independent.
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and k = ω/c is the wave number.
For the Dirichlet problem, the scattered field Esc (r,z) can be

expressed in terms of the normal derivative F (r) of the field E at
the surface as follows:

Esc (r,z) =
∫∫

G
(
r, z; r′, ζ

(
r′

))
F

(
r′

)
dΣ

(
r′

)
. (4)

Here,

dΣ
(
r′

)
=

√
1 + (∇ζ (r′))2d2r′ (5)

is the element of the surface area, and

G
(
r, z; r′, z′

)
= −

exp
[
ik

√
(r − r′)2 + (z − z′)2

]
4π

√
(r − r′)2 + (z − z′)2

(6)

is the Green’s function. Formula (4) contains the Green’s function with
the first argument (r, z) , which corresponds to the point of observation,
and the second argument (r′, ζ (r′)) , which corresponds to the variable
point of integration, located at the surface.

The total field E is the sum of the incident field, Einc (r, z) , and
the scattered field, Esc (r, z) . In terms of Einc and Esc, the boundary
condition (1) takes the form

Esc (r,ζ (r)) + Einc (r,ζ (r)) = 0. (7)

Substituting (4) into (7) , we obtain the first kind IE with respect to
an unknown normal derivative of the field at the surface, F :∫∫

G
(
r, ζ (r) ; r′, ζ

(
r′

)) √
1 + (∇ζ (r′))2F

(
r′

)
d2r′ = −Einc (r,ζ (r)) .

(8)

In (8) , both points (r, ζ (r)) and (r′, ζ (r′)) belong to the scattering
surface.

It is possible to derive the second kind IE for the same problem
by applying the normal derivative operator to (4); such approach was
used, for example, in [8].

3. SEMI-INVERSION PROCEDURE

In this section, we use operator notations. The IE of the type∫∫
K

(
r, r′

)
X

(
r′

)
d2r′ = Y (r) (9)
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will be presented as

K̂X = Y. (10)

Here, K̂ denotes an integral operator with the kernel K (r, r′) . The
product of two operators K̂1K̂2 = Ŵ is the integral operator, having
the kernel

W
(
r, r′

)
=

∫∫
K1

(
r, r′′

)
K2

(
r′′, r′

)
d2r′′.

The inverse operator, M̂ = K̂−1, is determined by

K̂M̂ = M̂K̂ = 1̂. (11)

Here, 1̂ is the identical operator with the kernel δ (r − r′) . In the
explicit form, (11) looks like∫∫

K
(
r, r′′

)
M

(
r′′, r′

)
d2r′′ =

∫∫
M

(
r, r′′

)
K

(
r′′, r′

)
d2r′′ = δ

(
r − r′

)
.

(12)

We can present (8) in the form (9) if we set

K
(
r, r′

)
= G

(
r, ζ (r) ; r′, ζ

(
r′

))
,

X
(
r′

)
=

√
1 + (∇ζ (r′))2F

(
r′

)
, (13)

Y (r) = −Einc (r,ζ (r)) .

Let us assume that if we replace the precise kernel K (r, r′) by
some approximate kernel K0 (r, r′) , we will be able to solve (9) or
(10) . In other words, we can find, in the explicit form, the operator M̂
or the corresponding kernel M (r, r′) , which is inverse to the operator
K̂0:

M̂K̂0 = K̂0M̂ = 1̂. (14)

Let us rewrite (10) as follows:(
K̂ − K̂0 + K̂0

)
X = Y,

or

K̂0X = Y +
(
K̂0 − K̂

)
X. (15)
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If we apply the operator M̂ to (15) from the left and take into account
(14) , we obtain the equation

X = M̂Y + M̂
(
K̂0 − K̂

)
X. (16)

This equation is the second kind integral equation, which can be
iterated. If we denote

Ẑ = M̂
(
K̂0 − K̂

)
, (17)

we obtain the iterative series for X:

X = M̂Y + ẐM̂Y + Ẑ2M̂Y + Ẑ3M̂Y + · · ·
=

(
1̂ + Ẑ + Ẑ2 + Ẑ3 + · · ·

)
M̂Y. (18)

If the operator K̂0 is close to the precise operator K̂, i.e., if the
approximate kernel presents the precise kernel with good accuracy, the
difference (K̂0 − K̂) and the operator Ẑ may be “small,” i.e., its norm
may be small.

A similar procedure can be used in the case of an IE of the second
kind,

X − Q̂X = Y. (19)

An approximate equation has the form

X − Q̂0X = Y (20)

and we assume that the solution of (20),

X = P̂ Y, P̂ =
(
1̂ − Q̂0

)−1
(21)

is known, i.e., that we know in an explicit form the kernel of the
operator P̂ . In this case, if we present (19) in the form

X − Q̂0X = Y +
(
Q̂− Q̂0

)
X,

apply to this equation the operator P̂ , and denote

Ẑ = P̂
(
Q̂− Q̂0

)
, (22)
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we obtain the solution of (19) in the form

X =
(
1̂ + Ẑ + Ẑ2 + Ẑ3 + · · ·

)
P̂ Y. (23)

Formulae (18) and (17) on the one hand, and (23) and (22) on the
other hand, are similar. Thus, in both cases of an IE of the first kind
and the second kind, it is possible to present the solution in powers of
the difference between the initial and approximating operator.

3.1. Norm of the Operator Ẑ

There exist many different definitions of norms of functions and
operators. We will use the definition of the norm ||u (r)|| of a function
u (r) that corresponds to the space of continuous complex functions:

||u (r)|| = max
r

[ |u (r)| ] . (24)

The norm ||Â|| of the operator Â is defined by the formula,

∣∣∣∣∣∣Â∣∣∣∣∣∣ = max
u

∣∣∣∣∣∣Âu∣∣∣∣∣∣
||u|| . (25)

The norm ||Â|| shows how much the norm of the vector (function) u
may rise after applying the operator Â. If ||Â|| < 1, the norm of the
transformed function will be less than the norm of the original function.
The norm of a product of two operators satisfies the inequality,∣∣∣∣∣∣ÂB̂∣∣∣∣∣∣ �

∣∣∣∣∣∣Â∣∣∣∣∣∣ × ∣∣∣∣∣∣B̂∣∣∣∣∣∣ . (26)

If ||Ẑ|| < 1, the series in powers of Ẑ in (18) converges. The smaller is
||Ẑ||, the faster is convergence.

If the norm of the function is defined by formula (24) , the
corresponding norm of an operator is given by the simple formula,∣∣∣∣∣∣Â∣∣∣∣∣∣ = max

r

∫∫ ∣∣A (
r, r′

)∣∣ d2r′. (27)

Using (26) and (17) we obtain∣∣∣∣∣∣Ẑ∣∣∣∣∣∣ �
∣∣∣∣∣∣M̂ ∣∣∣∣∣∣ × ∣∣∣∣∣∣(K̂0 − K̂

)∣∣∣∣∣∣ . (28)

In the next section, we will concretize the approximate kernel K̂0, find
the inverse operator M̂, and its norm ||M̂ ||.
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4. APPROXIMATE EQUATION

The main integral in Equation (8) may be presented in the form of (9)
if we use the notations in (13) . To obtain an approximate equation,
which can be solved in the explicit form, we replace the exact kernel
K (r, r′) for the approximate kernel K0 (r, r′) as follows:

K0

(
r, r′

)
= K0

(
r − r′

)
= −

exp
{
ik

√
(r − r′)2

}
4π

√
(r − r′)2

. (29)

This formula corresponds to neglecting the term

δϕ = k
[ζ (r) − ζ (r′)]2

2 |r − r′|

in the expansion of k
√

(r − r′)2 + [ζ (r) − ζ (r′)]2 in powers of u =
ζ (r)−ζ (r′) . Because the value δϕ enters in the exp (iδϕ) , the necessary
condition for neglecting this term is

k
[ζ (r) − ζ (r′)]2

2 |r − r′| � 1. (30)

This approximation was independently suggested in 1956 by Meecham
[12] and Lysanov [9]. The physical meaning of the condition in (30)
becomes clearer if we present it in the form

∣∣ζ (r) − ζ
(
r′

)∣∣ � √
λ |r − r′|

π
, (31)

where λ = 2π/k. Thus, the difference in elevations at any distance
|r − r′| must be small in comparison with the radius of the first Fresnel
zone for this distance,

√
λ |r − r′|. This means that a diffracted field

fills in all possible shadowing zones, which may appear according
to geometric optics for small grazing angles of an incident wave.
Therefore, the Meecham-Lysanov approximation (MLA) by itself may
be valid only if all shadowing zones for small grazing angles of an
incident wave are filled by the diffracted field. This condition, however,
cannot guarantee that MLA will be correct. In this paper, we will use
MLA as a starting point for constructing an expansion (18).
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4.1. Solution of the Approximate Equation

To determine the inverse operator M̂, we consider the equation,∫∫
K0

(
r − r′

)
X

(
r′

)
d2r′ = Y (r) . (32)

Using (29) we can write

−
∫∫ exp

{
ik

√
(r − r′)2

}
4π

√
(r − r′)2

X
(
r′

)
d2r′ = Y (r) . (33)

Equation (33) has the form of convolution and can be solved by Fourier
transform. Using the Weyl-Sommerfeld (WS) formula for the Green’s
function G,

−
exp

[
ik

√
(r − r′)2 + (z − z′)2

]
4π

√
(r − r′)2 + (z − z′)2

=
1

8iπ2

∫∫
exp

[
iq

(
r − r′

)
+ iν (q)

∣∣z − z′∣∣] d2q

ν (q)
(34)

where

ν (q) =
{ √

k2 − q2 > 0 for q < k
i
√
q2 − k2, for q > k

, (35)

it is possible to find the solution of (33) . The solution is presented by
the formula, in which the order of integration is important and cannot
be changed:

X(r) = lim
h↓0

i

2π2

∫∫
ν(q) exp[iqr−iν(q)h]

[∫∫
Y (r′) exp(−iqr′)d2r′

]
d2q.

(36)

The integral over r′ in (36) determines the Fourier transform Ỹ (q):

Ỹ (q) =
1

4π2

∫∫
exp

(
−iqr′

)
Y

(
r′

)
d2r′.

Let us analyze (36). First of all, the factor exp [−iν (q)h] for
q > k according to (35) has the form exp

[
+

√
q2 − k2h

]
and tends to
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q

0.5

1

|Y(q)|, |f (q)|

|f (q)|

|Y(q)|

q0

Figure 1. The additional factor f (q) is close to 1 in the region q < q0,
where the function Y (q) is concentrated and does not change the value
of the integral.

∞ while q → ∞. Thus, the integral over q in (36) may converge only if
the integral over r′ as a function of q, i.e., the function Ỹ (q) , tends to
zero faster than exp

[
−

√
q2 − k2h

]
while q → ∞. If the characteristic

scale of Ỹ (q) is some q0, this means that |Ỹ (q)| must tend to zero
fast enough for q 
 q0 (Figure 1). We assume that this condition is
fulfilled. Therefore, if we introduce, under the integral over q in (36) ,
the additional factor f (q) , which is very close to unity for q < q0,
the value of the integral will not change. For q 
 q0, the function
f (q) tends to zero and, because of this, the behavior of f (q) in this
region does not influence the value of the integral over q in (36) . This
method is typical for the theory of generalized functions (distributions)
see, e.g., [2]. As a result, after introducing such an additional factor
in (36) , we will be able to change the order of integration and obtain
a formula for M (r − r′) in the form of generalized function.

We may choose the additional factor f (q) in the form

f (q) = exp [2iν (q)h] (37)

for the same very small h→ 0. Because the function Ỹ (q) decays for
q → ∞, this additional factor does not change the value of integrals
over q if h is small enough. As a result, we can present (36) in the
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form

X(r) =
i

2π2

∫∫
ν(q) exp [iqr + iν(q)h]

[∫∫
Y (r′) exp(−iqr′)d2r′

]
d2q.

(38)

The factor exp [iν (q)h] tends to 0 while q → ∞. Because of this, in
(38) we may change the order of integration and obtain the formula,

X(r) =
∫∫

Y (r′)d2r′
[
lim
h↓0

i

2π2

∫∫
ν(q) exp

[
iq(r − r′) + iν(q)h

]
d2q

]
.

(39)

Here, the integral over q converges due to the factor exp [iν (q)h].
Formula (39) corresponds to the operator relation X = M̂Y with

the kernel M (r − r′) of the form

M(r − r′) = lim
h↓0

i

2π2

∫∫
ν(q) exp

[
iq(r − r′) + iν(q)h

]
d2q. (40)

5. EVALUATION OF THE FUNCTION M (R − R′)

The integral in (40) can be found using the particular form of the
Weyl-Sommerfeld (WS) formula,

G0

(
r,h; r′, 0

)
=

1
8iπ2

∫∫
exp

{
i
[
q

(
r − r′

)
+ ν (q)h

]} d2q

ν (q)
. (41)

Differentiating (41) with respect to h, we obtain

−8iπ2 ∂
2

∂h2
G0

(
r,h; r′, 0

)
=

∫∫
exp

{
iq

(
r − r′

)
+ iνh

}
ν (q) d2q. (42)

Let us denote ρ = |r − r′| , R =
√
ρ2 + h2. Then, for any function

F (R) ,

dR

dh
=
h

R
,
∂F (R)
∂h

=
h

R

dF (R)
dR

,

∂2F (R)
∂h2

=
1
R

dF (R)
dR

+
h2

R

d

dR

(
1
R

dF (R)
dR

)
,
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and for F (R) = − exp (ikR) /4πR, after simple calculations, we obtain

M
(
r, r′

)
= lim

h→0

i

2π2

∫∫
d2q

√
k2 − q2eiq(r−r′)+ihν(q)

= 4 lim
h→0

∂2G0 (r,h; r′, 0)
∂h2

= − lim
h→0

1
πR

d

dR

{[
1
R

+
ikh2

R2
− h2

R3

]
exp (ikR)

}
. (43)

If we perform differentiation, we obtain another formula,

M(r, r′) =M (R (ρ))

= lim
h→0

k3

π

{
1−ikR
k3R3

+k2h2k
2R2+3ikR−3

k5R5

}
exp(ikR). (44)

Assuming that k∗ = k, we can separate the real and imaginary parts
of M =M1 + iM2. We also will use dimensionless values M1 and M2.

M1 = k3M1; M2 = k3M2.

In terms of ρ0 = kρ and ε = kh, we can present M1 and M2 by the
formulae,

M1 =

lim
ε→0

[
ρ20(1+ε2)+ε4−2ε2

]
cos

√
ρ20+ε2+

√
ρ20+ε2(ρ20−2ε2) sin

√
ρ20+ε2

π(ρ20+ε2)5/2
,

(45)

and

M2 =

lim
ε→0

[
ρ20(1+ε2)+ε4−2ε2

]
sin

√
ρ20+ε2−

√
ρ20+ε2(ρ20−2ε2) cos

√
ρ20+ε2

π(ρ20+ε2)5/2
.

(46)

We emphasize that M2 (ρ0, ε) has the finite limit for ε→ 0, which
is the regular function in the point ρ0 = 0 without singularity:

M2 (ρ0, 0) =
sin ρ0 − ρ0 cos ρ0

πρ30
; M2 (0, 0) =

1
3π
.

The function M2 (ρ0, 0) is shown in Figure 2.
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Figure 2. The function M2 (ρ0, 0) .
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kρ
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-200000

-100000

k−3M1(ρ)

Figure 3. The functions M1 (ρ, 0.01) (solid line) and M1 (ρ, 0.015)
(dashed line).

In contrast to M2 (ρ0) , the function M1 (ρ0) significantly depends
on ε = kh. The functions M1 (ρ0, 0.01) and M1 (ρ0, 0.015) are shown
in Figure 3.

The function M1 (ρ0, ε) has no uniform limit for ε→ 0, and only
integrals of the type

ρ∫
0

F (ρ)M1 (ρ0, ε) ρdρ

may have the independent of ε limit while ε → 0. This is a typical
situation for generalized functions, and M1 (ρ0) presents an example
of a generalized function.
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The integrals of the type
a∫

0

F (ρ)M1,2 (ρ0, ε) ρdρ

converge at a→ ∞ very slowly, only due to oscillations of M1,2 (ρ0, ε).
Such oscillations always take place in wave problems. However, to
analyze an absolute convergence of series (18) , we use a norm of the
operator Ẑ and must consider max

(∣∣∣∣∣∣Ẑx∣∣∣∣∣∣ / ||x||) for any functions
x, including non-oscillating functions. In such a consideration, the
modulus |M (ρ)| appears, which is a non-oscillating function:

|M (ρ0, ε)| =

√
ρ60 + ρ40(1 − ε2 + ε4) − 2ρ20ε2(2 + ε2 − ε4) + ε4(4 + ε4)

π(ρ20 + ε2)5/2
.

(47)

The function |M (ρ0, ε)| ≈ 1/
(
πρ20

)
while ρ0 → ∞. Therefore, the

integral
a∫

0

|M (ρ0, ε)| ρ0dρ0 ∼ ln a

logarithmically diverges while a → ∞. To avoid this divergence, in
some integrals we will assume that the wave number k has a very
small imaginary part, and we will introduce the additional factor of
the form

exp (−ρ/A) = exp (−ρ0/A0) , (48)

where A0 = kA 
 1. Because of A0 
 1, we will still consider k as a
real number everywhere except the factor exp (ikR) in (44) for M. If
we account for this factor in (47) , we obtain

|M (ρ0, ε)| = exp (−ρ0/A0)×√
ρ60 + ρ40 (1 − ε2 + ε4) − 2ρ20ε2 (2 + ε2 − ε4) + ε4 (4 + ε4)

π
(
ρ20 + ε2

)5/2
.

(49)

The role of the scale A is to restrict the effective domain of
integration. A similar restriction always appears in real problems
because of the finiteness of all real beams in contrast to infinite and
non-realizable plane waves. The artificial damping factor of the form
(48) is usually included to ensure the absolute convergency of integrals
in wave problems (see discussion of this issue in [8]).
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5.1. Verifying the Solution

We consider an example in which we are able to solve (32) in two
different ways: (a) using the Fourier transform, and (b) using explicit
form (45) and (46) of the inverse kernelM. In this example the function
Y (r) is Gaussian:

Y (r) = exp
(
− r2

2a2

)
. (50)

Using (36) we can evaluate all the integrals, and after simple
manipulations obtain the formula

X (r) = −2a2k3

∞∫
1

√
x2 − 1 exp

(
−k

2a2

2
x2

)
J0 (krx)xdx

+2ia2k3

1∫
0

√
1 − x2 exp

(
−k

2a2

2
x2

)
J0 (krx)xdx

= x1 (kr, ka) + ix2 (kr, ka) . (51)

If we find the same functions using M1 and M2 we obtain

X (r) = lim
ε→0

[X1M (kr, ka, ε) + iX2M (kr, ka, ε)] . (52)

Here,

X1M (kr, ka, ε) = 2πk exp

(
− (kr)2

2 (ka)2

)
∞∫
0

M1 (ρ0, ε) exp
(
− ρ20

2k2a2

)
I0

(
(kr) ρ0
(ka)2

)
ρ0dρ0,

X2M (kr, ka, ε) = 2πk exp

(
− (kr)2

2 (ka)2

)
∞∫
0

M2 (ρ0, ε) exp
(
− ρ20

2k2a2

)
I0

(
(kr) ρ0
(ka)2

)
ρ0dρ0,

(53)

I0 (u) is the Bessel function of an imaginary argument, and we marked
by the subscript M the functions X1,2 obtained using operator M̂.
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Figure 4. The difference x1 (kr, 1) − X1M (kr, 1, 10−n) for n = 2, 3,
and 4.

The difference x1 (kr, 1) −X1M (kr, 1, ε = 10−n) for n = 2, 3, and
4 is shown in Figure 4. These plots show the rate of convergence of
X1M (ε) → x1 depending on ε. The relative difference is less than 1.3%
for ε = 0.01 and less than 0.13% for ε = 10−3. It is easy to show that
|x1 (0, ka) −X1M (0, ka, ε)| ∼ ε.

Because the function M2 (ρ0, ε) has the final limit while ε → 0,
there is no need to check the rate of convergency for X2. The example
considered illustrates a good convergence of the solution obtained using
the operator M̂ (ε) to the precise solution X.

6. NORM OF THE OPERATOR Ẑ

6.1. Norm of the Operator M̂

According to (27) , we have∣∣∣∣∣∣M̂ ∣∣∣∣∣∣ = max
r

∫∫ ∣∣M (
r, r′

)∣∣ d2r′. (54)

Substituting (49) we obtain∣∣∣∣∣∣M̂ (ε)
∣∣∣∣∣∣ = k3 max

r

∫∫
d2r′ exp (−ρ0/A0) ×√

ρ60+ρ40(1−ε2+ε4)−2ρ20ε2(2+ε2−ε4)+ε4(4+ε4)

π
(
ρ20 + ε2

)5/2

∣∣∣∣∣
ρ0=k|r−r′|

= kM (ε) (55)
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Figure 5. The function M (ε) in the double decimal logarithmic scale
for A0 = 104 (solid) and A0 = 107 (dashed).

where M (ε) is the dimensionless quantity,

M (ε) = 2π

∞∫
0

exp (−ρ0/A0) ×

√
ρ60 + ρ40(1 − ε2 + ε4) − 2ρ20ε2(2 + ε2 − ε4) + ε4(4 + ε4)

π(ρ20 + ε2)5/2
ρ0dρ0. (56)

By simple analysis it is easy to find that for ε < 10−2 the function
M (ε) can be approximated by

M (ε) ≈ C (A0)
ε

. (57)

The value of C (A0) can be determined numerically. The function
C (A0) for 104 < A0 < 109 has a good approximation given by the
formula

C (A0) = 8/
(
3
√

3
)

+ 0.050 log10A0. (58)

The plot of the function M (ε) in the double logarithmic scale is
shown in Figure 5 for A0 = 104 (solid) and A0 = 107 (dashed). Note
that dependence on A0 is very slow (logarithmic).

Finally, for the norm
∣∣∣∣∣∣M̂ (ε)

∣∣∣∣∣∣ we obtain the estimate,∣∣∣∣∣∣M̂ (ε)
∣∣∣∣∣∣ � kC (A0)

ε
= k

1.54 + 0.050 lgA0

ε
. (59)
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6.2. Norm of the Operator V̂ = K̂0 − K̂
We have ∣∣∣∣∣∣V̂ ∣∣∣∣∣∣ = max

r′′

∫∫ ∣∣V (
r′′, r′

)∣∣ d2r′ (60)

where

V (r′′, r′) = K0 (r′′, r′) −K (r′′, r′)

=
exp

{
ik

√
(r′′−r′)2 + [ζ (r′′) − ζ (r′)]2

}
4π

√
(r′′−r′)2 + [ζ (r′′) − ζ (r′)]2

−
exp

{
ik

√
(r′′−r′)2

}
4π

√
(r′′−r′)2

.

(61)

If we denote

u2 =
[
ζ

(
r′′

)
− ζ

(
r′

)]2
, ρ =

∣∣r′′−r′
∣∣ , (62)

we obtain

∣∣V (
r′′, r′

)∣∣2 =
1

16π2ρ2
+

1
16π2 (ρ2 + u2)

−
2 cos

[
k

(√
ρ2 + u2 − ρ

)]
16π2ρ

√
ρ2 + u2

.

(63)

The function |V (r′′, r′)|2 is the oscillating function of u. The upper en-
velopeB2 (ρ, u) of |V (r′′, r′)|2 corresponds to cos

[
k

(√
ρ2 + u2 − ρ

)]
=

−1 and is equal to

B2 (ρ, u) =

[
1

4πρ
+

1

4π
√
ρ2 + u2

]2

;

i.e.,

B (ρ, u) =

√
ρ2 + u2 + ρ

4πρ
√
ρ2 + u2

. (64)

In the region u� ρ we obtained another asymptotic

V (r′′, r′) =
exp{ikρ}

4πρ
−

exp
{
ik

√
ρ2+u2

}
4π

√
ρ2+u2

≈− e
ikρ

4πρ2

(
ikρ−1

2ρ

)
u2+O(u4),
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Figure 6. The functions |V (ρ)|, B (ρ, u), and A (ρ, u) for kρ = 5 vs
ku.

and the modulus of V in the region u� ρ is given by the formula∣∣V (
r′′, r′

)∣∣ ≈ √
1 + k2ρ2

8πρ3
u2 ≡ A (ρ, u, k) . (65)

The dependencies |V (ρ, u)|, B (ρ, u), and A (ρ, u) on ku for kρ = 5 are
shown in Figure 6.

To obtain the monotonous in u upper estimate of |V (r′, r′′)| , we
must use such monotonously non-decreasing function E (ρ, u) that

E (ρ, u+ δu) − E (ρ, u) � 0 for δu > 0 and
∣∣V (

r′ − r′′
)∣∣ � E (ρ, u) .

To construct such a function, we find the point of intersection of the
functions A (ρ, u) and B (ρ, u) . The point of intersection of the two
asymptotic u = u0 is determined by the equation B (ρ, u0) = A (ρ, u0) .
The positive solution of this algebraic equation, u0 (ρ) , is given by

u0 (ρ, k) =
1√
2

√√√√
ρ2

(
4√

1+k2ρ2
− 1

)
+

√
ρ4(1+k2ρ2)

(
1+k2ρ2+8

√
1+k2ρ2

)
1+k2ρ2 .

(66)

We determine the monotonously non-decreasing functionE (ρ, u, k)
which serves as an upper bound for |V (ρ)| for all u:

E (ρ, u, k) =

{
A (ρ, u, k) if u < u0 (ρ, k)

A (ρ, u0 (ρ, k) , k) if u > u0 (ρ, k)
. (67)
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Figure 7. The functions |V (ρ, u)|, B (ρ, u), and E (ρ, u) for kρ = 20
vs ku.

The plot of the functions E (ρ, u, k) for value of kρ = 20 is presented
in Figure 7.

Now we may perform the following estimations:

|V (ρ, u, k)| � E (ρ, u, k) , (68)

and because E (ρ, u, k) is the monotonously non-decreasing function of
u, we may write

|V (ρ, u, k)| � E (ρ, u, k) � E (ρ, umax (ρ) , k) , (69)

where umax (ρ) is the maximum possible value of u = ζ (r′′) − ζ (r′) .
We will consider the case when ζ (r) is a statistically homogeneous,

random function. In this case, the difference u = ζ (r′′) − ζ (r′) is a
random value, having for any fixed distance ρ some probability density
function (PDF) W (u, ρ) . We assume that

W (u, ρ) = 0 if |u| > umax (ρ) . (70)

This assumption is absolutely natural because all realizable physical
surfaces must have only finite bursts. For instance, if we approximate
the PDF of u by a Gaussian low, this approximation may be accurate
only in the region of relatively small u, say |u| <

√
P 〈u2〉, where 〈· · · 〉

denotes the statistical averaging. (We assume that 〈ζ〉 = 0.) Here,
P is some number about 3-5. The tails of the PDF in the region
|u| >

√
P 〈u2〉 must be replaced for 0. Therefore, in this case we have
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the estimate,

u2
max (ρ) = P

〈[
ζ

(
r′′

)
− ζ

(
r′

)]2
〉
. (71)

The quantity
〈
[ζ (r′′) − ζ (r′)]2

〉
, appearing in (71) , is a so-called

structure function (see, e.g., [17], §5). This function may be expressed
in terms of a correlation function of the surface as follows:〈[

ζ
(
r′′

)
− ζ

(
r′

)]2
〉

=
〈[
ζ

(
r′′

)]2
〉

+
〈[
ζ

(
r′

)]2
〉
− 2

〈
ζ

(
r′

)
ζ

(
r′′

)〉
.

For statistically homogeneous surfaces, the value
〈
[ζ (r)]2

〉
= σ2 is

independent of r and the correlation coefficient

〈ζ (r′) ζ (r′′)〉
σ2

= b (−→ρ )

depends only on the vector −→ρ = r′−r′′. For simplicity we will consider
the case of statistically isotropic surfaces for which b (−→ρ ) = b (ρ)
depends only on the modulus of |−→ρ | = ρ, i.e., on the distance between
the points r′ and r′′. Thus, we obtain for u2

max the estimate,

u2
max (ρ) = P

〈[
ζ

(
r′′

)
− ζ

(
r′

)]2
〉

= 2Pσ2 [1 − b (ρ)] . (72)

It is important for the convergency of integrals that u2
max (ρ) ∼ ρ2 for

small ρ.
After substituting (69) and (72) in (60) we obtain∣∣∣∣∣∣V̂ ∣∣∣∣∣∣ = max

r′′

∫∫ ∣∣V (r′′, r′)
∣∣ d2r′

� max
r′′

∫∫
E

(
ρ,

√
2Pσ2[1 − b(ρ)], k

)
d2ρ

=
∫∫

E
(
ρ,

√
2Pσ2 [1 − b (ρ)], k

)
d2ρ

= 2π

∞∫
0

E
(
ρ,

√
2Pσ2 [1 − b (ρ)], k

)
ρdρ. (73)

According to (48) we introduce the additional factor exp (−ρ/A) in the
integrand in (73) and use the formula,∣∣∣∣∣∣V̂ ∣∣∣∣∣∣ � 2π

∞∫
0

E
(
ρ,

√
2Pσ2 [1 − b (ρ)], k

)
exp (−ρ/A) ρdρ. (74)



130 Tatarskii

In the following numerical calculations we will use the following
model for b (ρ):

b (ρ) = exp
(
−ρ2/l2

)
(75)

where l is the correlation radius for elevations.

7. CONDITIONS OF CONVERGENCE

According to (28) , (59) , and (74) , the final formula for
∣∣∣∣∣∣Ẑ∣∣∣∣∣∣ has the

form∣∣∣∣∣∣Ẑ∣∣∣∣∣∣ �
∣∣∣∣∣∣M̂ ∣∣∣∣∣∣ × ∣∣∣∣∣∣V̂ ∣∣∣∣∣∣ � Z (kσ, kl, kA, ε) =

1.54 + 0.050 log10 (kA)
ε

× 2π

∞∫
0

E
(
ρ,

√
2Pσ2D(ρ), k

)
exp(−ρ/A)ρdρ.

(76)

The condition of convergence,

Z (kσ, kl, kA, ε) < 1, (77)

can be resolved with respect to kσ and takes the form

kσ < kσcr (ε, kl, kA) . (78)

The function kσcr (ε, kl, kA) can be found numerically from (77) . The
results of calculations for ε = 10−2 are presented in Figure 8.

In the regions kl 
 kA and 1 � kl � kA, the following
asymptotic formulae can be derived:

kσcr ≈ l
√

2ε
A

√
P (1.54 + 0.05 log10 (kA))

for kl
 kA,

kσcr ≈
√

2ε√
P [1.54 + 0.05 log10 (kA)] [0.434 3 log10 (A/l) − 0.2886]

for 1 � kl� kA. (79)

Here, 0.2886 = 0.5×Euler constant.
The best conditions for convergency appear if l0 > A0. For

example, for l0 = 107 and A0 = 103 we obtain kσ � 632 for ε = 10−2

and kσ � 63.2 for ε = 10−4.
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Figure 8. The function kσcr (ε, kl, kA) for ε = 10−2 in double decimal
logarithmic scale for different kA.
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Figure 9. The value kσcr as the function of the slope γ = σ/l for
kA = 102 (upper curve), kA = 103, kA = 104, kA = 105, kA = 106,
and kA = 107 (lower curve).

The condition l0 
 A0 in a certain way corresponds to such
footprint that is small in comparison with l0, so it may have practical
meaning. Thus, we may expect good convergency in the case D � l0;
i.e., the size D of footprint is smaller than the correlation scale.

We may describe the finite beam by the function exp
(
−r2/A2

0

)
. In

our calculations, if we replace the factor exp (−r/A0) for exp
(
−r2/A2

0

)
,

we obtain results that are very close to those presented in Figure 8.
We also can present the condition of convergency in the
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coordinates (σ/l, kσcr), if we resolve the equation

Z
(
kσ,

kσ

γ
, kA, ε

)
< 1,

with respect to kσcr for given slope γ = σ/l. The results are presented
in the Figure 9 for different kA.

We note that for very small kσcr < 2.5 × 10−3 the iterations
converge even for large slopes.

8. SUMMARY AND DISCUSSION

1. In this paper we suggest a method of constructing a series presenting
the solution of an integral equation of the first kind K̂X = Y in powers
of the operator Ẑ = M̂(K̂0 − K̂), where K̂0 is an approximate integral
operator for which the equation K̂0X = Y may be solved in the form
X = M̂Y. If the difference K̂0 − K̂ is small, this series may converge.

2. We consider the problem of scalar wave scattering from a rough
surface with the Dirichlet boundary condition, which may be described
by the integral equation of the first kind (8) .

3. As an approximate operator K̂0 we choose the operator having
a kernel depending on the difference of arguments (Meecham [12] and
[9]). Such equation may be solved by the Fourier transform.

4. We found the explicit form of the kernel of M̂ in terms of
generalized functions ([2, 5]), which are defined in terms of functions,
depending on the small parameter ε → 0. We illustrate a good
convergence of a solution obtained using M̂ to the solution obtained
by the Fourier transform.

5. The norm ||Ẑ|| of the operator Ẑ, corresponding to the space
of complex continuous functions [4, 5], was found. Some statistical
characteristics of a surface were used for estimations.

6. The condition of convergence of the series, ||Ẑ|| < 1 was
investigated. This condition may be presented in the forms kσ �
kσcr (ε, kl, kA) or kσ � kσcr (ε, γ, kA) where k is the wave number, σ
is the rms of surface elevations, l is the correlation length of surface
elevations, γ is the rms slope of surface, and A is the extinction length
of the scattered waves. The functions kσcr (ε, kl, kA) and kσcr (ε, γ, kA)
were obtained numerically (see Figures 8 and 9).

7. The best conditions of convergence correspond to l 
 A.
Physically, such a situation may be realized in the case of finite beams
if the footprint is small in comparison with the correlation length. It
is important that the convergence condition was obtained for any form
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of incident wave, and because of this, is independent of the angle of
incidence of the wave. Thus, the series obtained must converge even
in the case of small grazing angles.

It is useful to compare the results of this paper with the results,
obtained in [10, 11], because the method of [10, 11] is rather close
to that considered here. In [10], the scattering from 1D surface
with the Dirichlet boundary condition was considered. The difference
δG = G2 (r,ζ (r) ; r′, ζ (r′)) − G2 (r,0; r′, 0) , where G2 ∼ H

(1)
0 (kR) is

the Green’s function for a cylindrical source, was used as an expansion
parameter. But in contrast to the present paper, the numerical Fourier
transform was used to solve the corresponding IE of the convolution
type, which doubles the number of integrations and creates the problem
of stability. To analyze the convergence of the expansion obtained, in
[10] was used another norm: the spectral radius ρ, i.e., the greatest
modulus of the eigenvalue of the matrix, which represents the operator
δG. The condition ρ < 1, which was analyzed in [10] for periodic
interface, similarly to the condition ||Ẑ|| < 1, ensures the absolute
convergence of the expansion. It is unclear, however, how the value
of ρ was obtained in [10, 11]. In particular, it is unclear why the
dependence on the angle of incidence, θ0, in Figures 2 and 3 in [10]
appears, because the spectral radius ρ depends only on the operator
δG and may not depend on the angle of incidence, which enters only
in the right-hand side of the IE (see equations (4), (6) and (1) in [10]).
The parameter A, which describes attenuation of the wave and seems
to be an essential parameter for analyzing the condition of absolute
convergence (see discussion in [8]), does not appear in [10]. Possibly,
the reason for this is that in [10] the convergence was analyzed not by
the direct calculation of ρ (in this case dependence on θ0 would not
appear), but by analyzing a few different examples. Because of this,
some cases in which expansion diverges, were not found (in Figure 3
in [10] there is one point where ρ = 1 in the region tan ε < 1; possibly,
if considering more examples, the points where ρ > 1 may appear).
In the present paper, the inequality ||Ẑ|| < 1, which was analyzed
analytically, guarantees convergence of expansion for any conditions.
It is necessary to emphasize that conditions of convergency presented in
Figures 8 and 9 are only sufficient conditions and may be too restrictive.
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