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Abstract—The intra-channel collision of optical solitons, with power
law nonlinearity, is studied in this paper with the aid of quasi-particle
theory. The perturbation terms that are considered in this paper are
of Hamiltonian type. The suppression of soliton-soliton interaction,
in presence of these perturbation terms, is achieved. The numerical
simulations support the quasi-particle theory.
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1. INTRODUCTION

The propagation of pulses through an optical fiber, for a Kerr nonlinear
medium [2], in an optical communication system, is governed by the
Nonlinear Schrodinger’s Equation (NLSE). The dimensionless form of
the NLSE, for the power law nonlinearity, is given by

i
∂q

∂Z
+

1
2

∂2q

∂T 2
+ |q|2pq = 0 (1)

Here q represents the dimensionless optical field in the fiber core while
Z & T are the independent variables. Here, Z represents the distance
along the fiber while T is the time. Equation (1) is not integrable by
Inverse Scattering transform (IST) unless p = 1 in which case the Kerr
law nonlinearity is recovered.

It is to be noted that various materials exhibit power law
nonlinearities, including semiconductors [16, 17]. Here, it is necessary
to have 0 < p < 2 to prevent wave collapse [18]. In particular, it is
necessary to impose the restriction p �= 2 to avoid the self-focusing
singularity issue [2, 6, 8, 14, 18].

In the anomalous dispersion regime [2], the particularly relevant
solutions to (1) are called solitons, or nontopological solitons. In most
cases, the interest is confined to a single pulse described by the 1-
soliton solution of the NLSE. However, in this paper, the effects of the
perturbation terms in NLSE on two soliton interaction will be studied.
It is necessary to launch the solitons close to each other for enhancing
the information carrying capacity of the fiber. If two solitons are placed
close to each other then it can lead to its mutual interaction thus
providing a very serious hinderance to the performance of the soliton
transmission system. However, the presence of the perturbation terms
of the NLSE can lead to the suppression of the two soliton interaction
thus solving our problem.

The perturbed NLSE that is going to be studied in this paper for
the soliton-soliton interaction (SSI) is

i
∂q

∂Z
+

1
2

∂2q

∂T 2
+ |q|2pq = iεR[q, q∗] (2)

where

R = λ
∂

∂T

(
|q|2q

)
+ νq

∂

∂T

(
|q|2

)
− α

∂q

∂T
− γ

∂3q

∂T 3
− iσ

∂4q

∂T 4
(3)

In fiber optics ε is called the relative width of the spectrum, that
arises due to quasi-monochromaticity, and is assumed that 0 < ε � 1.
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In (3), α is the frequency separation between the soliton carrier
and the frequency at the peak of EDFA gain. Also, λ is the self-
steepening coefficient for short pulses [3, 4, 11, 25] (typically ≤ 100
femto seconds), ν is the higher order dispersion coefficient [11, 25] and
γ is the coefficient of the third order dispersion [11, 19, 25]. Moreover,
σ represents the coefficient of fourth order dispersion.

It is known that the NLSE, as given by (1), does not give
correct prediction for pulse widths smaller than 1 picosecond. or
example, in solid state solitary lasers, where pulses as short as 10
femtoseconds are generated, the approximation breaks down. Thus,
quasi-monochromaticity is no longer valid and higher order dispersion
terms come in. If the group velocity dispersion is close to zero,
one needs to consider the third order dispersion for performance
enhancement along trans-oceanic distances. Also, for short pulse
widths where the group velocity dispersion changes within the spectral
band-width of the signal can no longer be neglected, the presence of
the third order dispersion needs to be taken into account.

The quasi-particle theory (QPT) of SSI has been investigated
[2, 3, 7, 8] for Kerr law nonlinearity and it is proved by virtue of it
that the interaction can be suppressed due to linear gain and filters.
Here, it will be proved that using the QPT, the SSI can be suppressed
due to the NLSE given by (1) and also in presence of the perturbation
terms in (2).

In (2), if ε = 0, (1) is recovered. Although (1) is not integrable by
IST, it supports soliton solution of the form

q(Z, T ) =
η

cosh
1
p [ζ(T − vZ − T0)]

e(−iκT+iωZ+iσ0) (4)

with
κ = −v (5)

and

ω =
ζ2

2p2
− κ2

2
(6)

while

ζ = ηp

(
2p2

1 + p

) 1
2

(7)

Here, η is the amplitude (or the inverse width) of the soliton, v is its
velocity, κ is the soliton frequency while T0 and σ0 are the center of
the soliton and the center of the soliton phase respectively.
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Also the 2-soliton solution of the NLSE (1) takes the asymptotic
form

q(Z, T ) =
2∑

l=1

ηl

cosh
1
p [ζl(T − vlZ − T0l

)]
e(−iκlT+iωlZ+iσ0l

) (8)

with
κl = −vl (9)

and

ωl =
ζ2
l

2p2
− κ2

l

2
(10)

while

ζl = ηp
l

(
2p2

1 + p

) 1
2

(11)

In the study of SSI, the initial pulse waveform is taken to be

q(0, T ) =
η1

cosh
1
p

[
ζ1

(
T − T0

2

)]eiφ1 +
η2

cosh
1
p

[
ζ2

(
T +

T0

2

)]eiφ2 (12)

which represents the injection of 2-soliton like pulses into a fiber with
amplitudes A1 and A2 and the corresponding widths as D1 and D2

respectively while the respective phases are φ1 and φ2. Here, T0

represents the initial center-to-center separation of the solitons. For
T0 → ∞ (8) represents exact soliton solutions, however, for T0 ∼ O(1)
it does not represent an exact 2-soliton solution. Corresponding to
the input waveform given by (12), in this paper, the case of in-phase
injection of solitons with unequal amplitudes will be considered. Thus,
(12) simplifies to

q(0, T ) =
η0

cosh
1
p

[
ζ0

(
T − T0

2

)] +
1

cosh
1
p

[
ζ

(
T +

T0

2

)] (13)

where, for convenience, the choice η1 = η0, η2 = 1 and φ1 = φ2 = 0 is
made and

ζ0 = ηp
0

(
2p2

1 + p

) 1
2

(14)

and

ζ =

√
2p2

1 + p
(15)
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2. QUASI-PARTICLE THEORY

The QPT dates back to 1981 since the appearance of the paper by
Karpman and Solov’ev [3]. The mathematical approach to the SSI
using the QPT will be presented. Here, the solitons are treated as
particles. If two pulses are separated and each of them is close to a
soliton they can be written as the linear superposition of two soliton
like pulses [2]:

q(Z, T ) = q1(Z, T ) + q2(Z, T ) (16)

with
ql(Z, T ) =

Al

cosh
1
p [Dl(T − Tl)]

e−iBl(T−Tl)+iδl (17)

where l = 1, 2 and Al, Bl, Tl and δl are functions of z. Here, Al and Bl

do not represent the amplitude and the frequency of the full wave form.
However, they approach the amplitude and frequency respectively for
large separation namely as ∆T = T1 − T2 → ∞, then Al → ηl and
Bl → κl. Since the waveform is assumed to remain in the form of two
pulses, the method is called the quasi-particle approach. The equations
for Al, Bl, Tl and δl using the soliton perturbation theory will be first
derived. Substituting (16) into (2) yields

i
∂ql

∂Z
+

1
2

∂2ql

∂T 2
= iεR[ql, q∗l ] −

[ p∑
r=0

(
p

r

)
qp−r
1 qr

2

]

·
[ p∑

r=0

(
p

r

)
(q∗1)

p−r(q∗2)
r

]
(q1 + q2) (18)

where l = 1, 2 and l = 3 − l with the definition(
n

r

)
=

n(n − 1) · · · (n − r + 1)
r(r − 1) · · · 3.2.1

(19)

Here, the separation

|q|2pq =

[ p∑
r=0

(
p

r

)
qp−r
1 qr

2

] [ p∑
r=0

(
p

r

)
(q∗1)

p−r(q∗2)
r

]
(q1 + q2) (20)

was used based on the degree of overlapping. By the soliton
perturbation theory [2] the evolution equations are

dAl

dZ
= F

(l)
1 (A, ∆T, ∆φ; p) + εMl (21)
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dBl

dZ
= F

(l)
2 (A, ∆T, ∆φ; p) + εNl (22)

dTl

dZ
= −Bl − F3(A, ∆T, ∆φ; p) + εQl (23)

dδl

dZ
=

B2
l

2
+

A2p
l

p + 1
+ F4(A, ∆T, ∆φ; p) + εPl (24)

where

Ml =
1

2 − p

(
2p2

1 + p

)p−3
2p Γ

(
1
p

+
1
2

)

Γ
(

1
p

)
Γ

(
1
2

)∫ ∞

−∞



{
R̂[ql, q∗l ]e

−iφl

} 1

cosh
1
p τl

dτl

(25)

Nl =
2
p

Ap−1
l

(
2p2

1+p

)p−1
2p Γ

(
1
p

+
1
2

)

Γ
(

1
p

)
Γ

(
1
2

)∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

} tanh τl

cosh
1
p τl

dτl

(26)

Ql =
1

Ap+1
l

(
p + 1
2p2

)p+2
2p

Γ
(

1
p

+
1
2

)

Γ
(

1
p

)
Γ

(
1
2

)∫ ∞

−∞



{
R̂[ql, q∗l ]e

−iφl

} τl

cosh
1
p τl

dτl

(27)

Pl =
1

Ap+1
l

(
2p2

p+1

)p+1
2p Γ

(
1
p

+
1
2

)

Γ
(

1
p

)
Γ

(
1
2

)∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

}(1−τl tanh τl)

cosh
1
p τl

dτl

(28)

and F
(l)
1 , F

(l)
2 , F3 and F4 that are functions of A, ∆T and ∆φ are

obtained by virtue of SPT due to integrations of the right side of (18)
on using the soliton form given by (19). Also, in (25)–(28), 
 and �
stands for the real and imaginary parts respectively. In addition, the
following notations are used

R̂[ql, q∗l ] = R[ql, q∗l ] − i

[ p∑
r=0

(
p

r

)
qp−r
1 qr

2

]

·
[ p∑

r=0

(
p

r

)
(q∗1)

p−r(q∗2)
r

]
(q1 + q2) + i|ql|2pql (29)
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τ = Al(T − Tl) (30)
φ = Bl(T − Tl) − δl (31)

∆φ = B∆T + ∆δ (32)
∆T = T1 − T2 (33)
∆δ = δ1 − δ2 (34)

A =
1
2
(A1 + A2) (35)

B =
1
2
(B1 + B2) (36)

D =
1
2
(D1 + D2) (37)

∆A = A1 − A2 (38)
∆B = B1 − B2 (39)
∆D = D1 − D2 (40)

Moreover, it was assumed that

|∆A| � A (41)
|∆B| � 1 (42)
|∆D| � B (43)
A∆T � 1 (44)
D∆T � 1 (45)

|∆A|∆T � 1 (46)
|∆D|∆T � 1 (47)

From (35) to (38), one can now obtain

dA

dZ
= εM (48)

dB

dZ
= εN (49)

d(∆A)
dZ

= F
(1)
1 (A, ∆T, ∆φ; p) − F

(2)
1 (A, ∆T, ∆φ; p) + ε∆M (50)

d(∆B)
dZ

= F
(1)
2 (A, ∆T, ∆φ; p) − F

(2)
2 (A, ∆T, ∆φ; p) + ε∆N (51)

d(∆T )
dZ

= −∆B + ε∆Q (52)

d(∆φ)
dZ

=
A2p

1 − A2p
2

p + 1
+

∆T

2

(
F

(1)
2 + F

(2)
2

)
+ εB∆Q + ε∆P (53)
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where

M =
1
2
(M1 + M2) (54)

N =
1
2
(N1 + N2) (55)

and ∆M, ∆N, ∆Q and ∆P are the variations of M, N, Q and P which
are written as for example

∆M =
∂M

∂A
∆A +

∂M

∂B
∆B (56)

assuming that they are functions of A and B only, which is, in fact,
true for most of the cases of interest, otherwise, the equations for

T =
1
2
(T1 + T2) (57)

and
φ =

1
2
(φ1 + φ2) (58)

would have been necessary. In presence of the perturbation terms, as
given by, (3), the dynamical system of the soliton parameters, by virtue
of soliton perturbation theory, are

dA

dZ
= 0 (59)

dB

dZ
= 0 (60)

dT0

dZ
= −B − ε

2
A2(3λ + 2ν)

Γ
(

1
2

+
1
p

)

Γ
(

1
2

+
2
p

) Γ
(

2
p

)

γ

(
1
p

)

−ε(α + 3γB2) +
3εγD3

p2




Γ
(

p − 1
p

)

Γ
(

1
p

) Γ
(

1
2

+
1
p

)

Γ
(

3
2

+
2
p

) + 1


(61)

so that by virtue of (50)–(53),

d(∆A)
dZ

= F
(1)
1 (A, ∆T, ∆φ; p) − F

(2)
1 (A, ∆T, ∆φ; p) (62)

d(∆B)
dZ

= F
(1)
2 (A, ∆T, ∆φ; p) − F

(2)
2 (A, ∆T, ∆φ; p) (63)
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d(∆T )
dZ

= −∆B − ε

4
A∆A(3λ + 2ν)

Γ
(

1
2

+
1
p

)

Γ
(

1
2

+
2
p

) Γ
(

2
p

)

Γ
(

1
p

)

−3εγ

4p2
∆D[12D2 + (∆D)2] +

3εγ

p2
∆D[12D2 + (∆D)2]

·
Γ

(
p − 1

p

)

Γ
(

1
p

) Γ
(

1
2

+
1
p

)

Γ
(

3
2

+
2
p

) (64)

which can be rewritten, by virtue of (53), as

d(∆T )
dZ

= −∆B − ε

4
(3λ + 2ν)g1

{
d(∆φ)

dZ

} Γ
(

1
2

+
1
p

)

Γ
(

1
2

+
2
p

) Γ
(

2
p

)

Γ
(

1
p

)

−3εγ

4p2
g2

{
d(∆φ)

dZ

}
+

3εγ

p2
g2

{
d(∆φ)

dZ

} Γ
(

p − 1
p

)

Γ
(

1
p

) Γ
(

1
2

+
1
p

)

Γ
(

3
2

+
2
p

)
(65)

d(∆φ)
dZ

=
A2p

1 − A2p
2

p + 1
(66)

For in-phase injection of solitons with unequal amplitudes,

A =
1
2
(A0 + 1) (67)

B = 0 (68)

∆A0 = A0 − 1 (69)

∆B0 = 0 (70)

∆T0 = T0 (71)

∆φ0 = 0 (72)

∆φ = ∆δ (73)

so that for ∆B = 0
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∆T = T0 −
ε

6
(3λ + 2ν)

− ε

4
(3λ + 2ν)h1

{
d(∆φ)

dZ

} Γ
(

1
2

+
1
p

)

Γ
(

1
2

+
2
p

) Γ
(

2
p

)

Γ
(

1
p

)

−3εγ

4p2
h2

{
d(∆φ)

dZ

}
+

3εγ

p2
h2

{
d(∆φ)

dZ

} Γ
(

p − 1
p

)

Γ
(

1
p

) Γ
(

1
2

+
1
p

)

Γ
(

3
2

+
2
p

)
(74)

where
hj(s) =

∫
gj(s)ds (75)

for j = 1, 2. Thus,
∆T = T0 + O(ε) (76)

Now, T0 ∼ O(1) so that ∆T →/ 0 and thus the pulses do not collide
during the transmission. This will be observed in the numerical results
in the next section.

3. NUMERICAL SIMULATIONS

In this section, the numerical simulations of the quasi-particle theory
for the soliton-soliton interaction due to Hamiltonian perturbation with
power law nonlinearity will be observed. In all cases, A0 is taken to be
equal to 1.1 and ε was set to 0.1 while T0 = 7. The following cases are
studied.

1. With the third order dispersion, namely when γ is turned on,
equation (74), for p = 1, modifies to

∆T = T0 −
εγ

2
∆δ (77)

Again, since T0 ∼ O(1) so that ∆T →/ 0 during transmission and
thus the pulses do not collide during the transmission as seen in
Figure 1, where γ = 0.14.

2. When all the perturbation terms are turned on, equation (74), for
p = 1, modifies to

∆T = T0 −
ε

6
(3λ + 2ν + 3γ)∆δ (78)
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Once again T0 ∼ O(1) so that ∆T →/ 0 and thus the pulses
do not collide during the transmission. This phenomenon is also
observed numerically in Fig. 2, where λ = 0.3, ν = 0.16, γ = 0.14
and σ = α = 0.5.

Figure 1. γ = 0.14.

Figure 2. λ = 0.3, ν = 0.16, γ = 0.14, σ = 0.5, α = 0.5.
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4. CONCLUSIONS

In this paper, the SSI of the NLSE, with power law nonlinearity,
in presence of Hamiltonian perturbation terms, was studied. The
case with in-phase injection of solitons with unequal amplitudes was
considered. It is proved, by the aid of quasi-particle theory, that long
distance transmission of solitons due to Hamiltonian perturbations, can
be achieved without any kind of interaction of solitons in optical fibers.
Thus, this can be of very great advantage in applied soliton community.
So, information can be transmitted through optical fibers, without any
loss.

In future, one can study the soliton-soliton interaction in optical
fibers, due to other laws of nonlinearity namely the parabolic law as
well as the dual-power law of nonlinearity. The quasi-particle theory
due to these non-Kerr laws are yet to be developed and these results
will be reported in future publications. Also, the 3-soliton interactions
and higher numbers are to be studied with the aid of quasi-particle
theory. The results with these ideas are awaited at this time.
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