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Abstract—This paper describes exactly a new formulation of the T-
matrix method with R-matrix expression for the electromagnetic wave
diffraction efficiency from dielectric coated metallic Fourier grating.
We found that the parameters of numerical calculation are widely
applied by using R-matrix expression in dielectric coating media whose
thickness or depth groove on the Fourier grating is large. The
absorption phenomena of diffraction efficiency in particular incident
angle are observed in the two cases. One of the factor is a guided mode
in the dielectric coated layer. Other factor is resonance absorption that
occurs by plasmon anomalies on the substrate for the TM polarization.
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1. INTRODUCTION

In order to prevent the oxidizing by air, the Fourier grating is composed
of the coated thin dielectric layer on the metallic grating surface.

There are a slight influence to the diffraction characteristics, that
is, it is thin coated layer in comparison with wavelength for protection
membrane, but the thick coated dielectric layer is used not prevention
of oxidizing in recently.

When a numerical calculation is executed in thin coated dielectric
layer, the problem by using a T-matrix expression in the conventional
method with extended boundary condition has not yet been considered.
However, the coated dielectric layer is not always thinly in comparison
with wavelength, the thick coated layer is chosen for the propagation
of a guided mode wave or the control of a diffraction efficiency.

A divergence of the T-matrix expression by evanescent mode of
the diffraction must be considered in the case of these problems. The
resonance absorption by surface plasmon anomalies exists that the
energy of the incident wave in diffraction efficiency by a Fourier grating
with dielectric coating medium has been absorbed [3]. This resonance
absorption depends on oscillation of the surface wave and the guided
wave toward the period of the grating that has already been studied
in details for the past decay [1–3].

On the other hand, the absorption of incident light wave is
confirmed, because the energy is transmitted toward the period of the
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grating with the surface wave in a coating dielectric medium. We must
study interesting phenomena of the diffraction characteristics of these
surface waves in the Fourier grating with the dielectric coating media
because the resonance absorption anomalies by coupling diffracted
evanescent wave of the −1th mode with surface plasmon wave occur
[3].

For the sinusoidal metallic grating with dielectric coating media,
the rigorous solution of differential method [4], the mode matching
method [3] have already been done, however, the sufficient analysis for
the Fourier grating with dielectric coating media has not yet carried
out by T-matrix method with R-matrix expression.

In this paper, we examine the mechanism of the incident light
wave that is absorbed in the grating. The rigorous formulation of the
diffraction problem by the Fourier grating with large thickness of the
dielectric coating is described by using the T-matrix analysis [6] with
the R-matrix expression [2]. If thickness of the coated dielectric layer is
large, the absorption by the guided mode along the direction of Fourier
grating is observed.

And it find that the absorption anomalies by surface plasmon
occur the particular incident angle of the TM polarization.

Their results are discussed in details, that is not only the
diffraction efficiencies versus a thickness of the coated dielectric layer, a
groove depth of the grating and the incident angle, the electromagnetic
fields are illustrated in maps on the amplitude of field distribution and
Poynting vector.

2. GEOMETRY OF THE PROBLEM AND THE
DIELECTRIC COATED FOURIER GRATING

Let us consider the electromagnetic wave diffraction from a dielectric
coated Fourier grating illuminated by a plane wave. The dielectric
coated Fourier grating structure and the geometry of the problem are
shown in Fig. 1. We assume a two-dimensional problem where the
surface vary periodically in the x direction and does not vary in the y
direction, the plane of incidence is the x-z plane for the incident angle
θinc.

The incident region and substrate of the grating are filled up by
material of homogeneous isotropic medium (permittivity ε0 and ε2,
the permeability µ0 and µ2), respectively, and also dielectric coating
(uniform medium for the permittivity ε1 and the permeability µ1) is
considered.

When Sι(ι = 0, 1) is defined, the surface boundary profiles fι(x)
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Figure 1. Geometory of the problem and the Fourier grating with
dielectric overcoating in which the dielectric coating layer [SiO(

√
ε1(=

n1 = 1.54, λ = 650 nm)], substrate of Fourier grating [Au(
√
ε2(= n2 =

0.142 − j3.374, λ = 650 nm)] are used.

yield

Sι : fι(x) + dι (ι = 0, 1 : numbering of the boundary surface) (1)

where d0(ι = 0) means the thickness d of the dielectric coating, and
d1(ι = 1) is zero width in this problem.

While two surfaces have same smooth profile, the Fourier grating
structure is expressed by

fι(x) = −h{cos (Kx) + γ cos (2Kx+ δ)} (2)

whereK = 2π/P , P is the period of Fourier grating, h is the amplitude
of fundamental sinusoidal wave, hγ and δ are the amplitude and phase
of second hormonic wave, respectively.

3. FORMULATION BY USING EXTINCTION
THEOREM

Here, we obtain the two-dimensional wave equation when the
Maxwell’s equations are derived in the rectangular coordinates for the
each region as ∂/∂y ≡ 0, therefore, electric and magnetic field do not
vary in the y direction, and time dependence exp(jωt) is suppressed
throughout in this paper.

∂2ψi

∂x2
+
∂2ψi

∂z2
+ k2

i ψi = 0 (3)

ψi =
{
Eiy : TE wave
Hiy : TM wave (i = 0, 1, 2 : numbering of the media)
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where, ki(= ω
√
εiµi) denotes propagation constant in the ith medium,

ω is the angular frequency. We yield wave number kxm of the diffraction
grating satisfying condition for mth mode number in the x direction
as

kxm = k0 sin θinc +m
2π
P

(4)

where θinc is the incident angle, above wave number kxm can be
also replaced by kxm = kiαim. Also, we define wave number kizm

satisfying the radiation condition in the z direction, it is replaced by
kizm = kiβim, that is

βim =




√
1 − α2

im 1 ≥ α2
im

−j
√
α2

im − 1 1 ≤ α2
im

(i = 0, 1, 2) (5)

The incident wave ψinc(r̄), fields ψ0(r̄) in the incident medium, fields
ψ2(r̄) in the substrate, and fields ψ1(r̄) in the coating medium are
defined, respectively. In the each region, the electric and magnetic
fields satisfy the integral representations by applying extinction
theorem as the following:

• incident medium

ψinc(r̄) −
∫

P
dσ̄′0 ·

[
G0(r̄, r̄′)∇′ψ0(r̄) − ψ0(r̄′)∇′G0(r̄, r̄′)

]
z′=f0(x′)+d

=
{
ψ0(r̄) z > S0

0 z < S0
(6)

• dielectric coating medium∫
P
dσ̄′1 ·

[
G1(r̄, r̄′)∇′ψ1(r̄) − ψ1(r̄′)∇′G1(r̄, r̄′)

]
z′=f1(x′)

−
∫

P
dσ̄′0 ·

[
G1(r̄, r̄′)∇′ψ1(r̄) − ψ1(r̄′)∇′G1(r̄, r̄′)

]
z′=f0(x′)+d

=




0 z > S0

ψ1(r̄)
0 z < S1

(7)

• substrate medium∫
P
dσ̄′1·

[
G2(r̄, r̄′)∇′ψ2(r̄) − ψ2(r̄′)∇′G2(r̄, r̄′)

]
z′=f1(x′) =

{
0 z>S1

ψ2(r̄) z<S1

(8)
where integral contour P means one period along the both surfaces,
Gi (i = 0, 1, 2) denotes the two-dimensional Green function Gi(r̄, r̄′)
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satisfying periodic property that is represented as

Gi(r̄, r̄′) = − j

2kiP

∞∑
m=−∞

1
βim

exp
[
−j{kxm(x− x′) + kizm|z − z′|}

]
(i = 0, 1, 2) (9)

where, r̄, r̄′ are the position vector of the observation and the secondary
source on the surface, respectively. And, dσ̄′ι is the normal direction
vector defined by

dσ̄′ι = dx′
[
ẑ − dfι(x′)

dx′
x̂

]
(10)

x̂ and ẑ are the unit vectors x and z, respectively.
Then, we apply the following boundary conditions on the surface

ψ2(r̄′) = ψ1(r̄′)|z′=f1(x′) (11a)

dσ̄′1 · ∇′ψ2(r̄′) = ν2dσ̄
′
1 · ∇′ψ1(r̄′)|z′=f1(x′) (11b)

ψ1(r̄′) = ψ0(r̄′)|z′=f0(x′)+d (11c)

dσ̄′0 · ∇′ψ1(r̄′) = ν1dσ̄
′
0 · ∇′ψ0(r̄′)|z′=f0(x′)+d (11d)

where
νi =

{
µi/µi−1 : TE wave
εi/εi−1 : TM wave (i = 1, 2) (12)

Furthermore, fields expression by using Fourier series expansion on
surface Sι (ι = 0, 1) of the grating is assumed

ψ1(r̄′) = 2
∞∑

n=−∞
αs

1n exp(−jkxnx
′), z′ = f1(x′) (13a)

dσ̄′1 · ∇′ψ1(r̄′) = −2jk1dx
′

∞∑
n=−∞

βs
1n exp(−jkxnx

′), z′ = f1(x′) (13b)

ψ0(r̄′) = 2
∞∑

n=−∞
αs

0n exp(−jkxnx
′), z′ = f0(x′) + d (13c)

dσ̄′0 · ∇′ψ0(r̄′) = −2jk0dx
′

∞∑
n=−∞

βs
0n exp(−jkxnx

′), z′ = f0(x′) + d

(13d)

where, αs
1n, βs

1n, αs
0n and βs

0n are the unknown coefficients to be
determined from the boundary conditions.
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3.1. Field Expansion in the Incident Medium

For the incident medium, we expand to get the modal plane wave
in Eq. (6). The incident wave ψinc and reflected diffraction wave ψr

0
having the unknown coefficients of reflected waves bm and incident
wave am are explicitly expanded as

ψr
0 =

∞∑
m=−∞

bm
exp {−j(kxmx+ k0zmz)}√

β0m
z > f0 + d (14a)

ψinc =
∞∑

m=−∞
am

exp {−j(kxmx− k0zmz)}√
β0m

z < f0 + d (14b)

Because incident plane wave has a single mode in free space, it is
determined on the surface z = f0(x′) + d

am =
{

1 m = 0
0 m �= 0 (15)

By applying the boundary conditions (11a) and (11b), and Fourier
series expansions (13a) and (13b), normalizing by the phase factor
Λ±

m = exp {±jk0zmd}, the unknown coefficients bm, am can be
expressed in the matrix form as[

b′m
a′m

]
=

[
X11 X12

X21 X22

] [
βs

0n
αs

0n

]
(16)

where b′m = Λ+
mbm, a′m = Λ−

mam and[
X11 X12

X21 X22

]
=

[
−Q+

D(k0, f0) −Q+
N (k0, f0)

Q−
D(k0, f0) Q−

N (k0, f0)

]
.

(17)

where Q±
D, Q±

N are the Dirichlet matrices and the Neumann matrices,
respectively, as later expression.

3.2. Fields Expansion in the Substrate

The fields expression in the substrate medium as described in Eq. (8)
can be similarly expressed by using a modal expansion of the plane
wave in Eq. (14a). Since the substrate is infinite extended medium in
the −z direction, unknown coefficientBm satisfying radiation condition
is zero and unknown coefficients Am meaning the transmitted wave ψt

2
is represented as

0 =
∞∑

m=−∞
Bm

exp {−j(kxmx+ k2zmz)}√
β2m

z > f1 (18a)
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ψt
2 =

∞∑
m=−∞

Am
exp {−j(kxmx− k2zmz)}√

β2m
z < f1 (18b)

By applying the boundary conditions (11c) and (11d), and Fourier
series expansions (13c) and (13d), we also obtain the matrix form for
unknown coefficients Bm, Am[

Bm

Am

]
=

[
Y11 Y12

Y21 Y22

] [
βs

1n
αs

1n

]
(19)

where

[
Y11 Y12

Y21 Y22

]
=




−ν2
k1

k2
Q+

D(k2, f1) −Q+
N (k2, f1)

ν2
k1

k2
Q−

D(k2, f1) Q−
N (k2, f1)


 (20)

where Q±
D, Q±

N are the Dirichlet matrices and the Neumann matrices,
respectively, as later expression.

3.3. Fields Expansion in the Coating Medium

The fields expansion in the dielectric coating medium will be described
by using a modal expansion of the plane wave in the previous section.
We use the R-matrix expression with exchanged submatrix in the
extinction theorem. Thus, we avoid numerical singularity by the T-
matrix expression so that the relations between unknown coefficients
αs

1n, βs
1n on S1 and unknown coefficients αs

0n, βs
0n on S0 are represented

by transition matrix in the coating medium. In this case, let us note
r̄′ in Eq. (7), in which the prime means the position vector of the
secondary source on the surface. The first team in Eq. (7) means the
position vector on the substrate surface defined by f1(x′), the second
team in Eq. (7) denotes the position on the dielectric coating medium
surface by f0(x′) + d.

Next, we consider fields expansion in the dielectric coated medium.
When the field ψ1(r̄) is expanded with a property for the periodic
Green function, it is as following:

ψ1(r̄) =
∞∑

m=−∞
b1m

exp {−j(kxmx+ k1zmz)}√
β1m

−
∞∑

m=−∞
a1m

exp {−j(kxmx− k1zmz)}√
β1m

(21)

where b1m, a1m mean the unknown coefficients of down-going and up-
going waves in the coating medium, respectively. By applying the
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boundary conditions (11a)–(11d) and Fourier series expansions (13a)–
(13d), we have the matrix form for relation of the unknown coefficients.

[b1m] =
[
Q+

N (k1, f1)
]
αs

1n +
[
Q+

D(k1, f1)
]
βs

1n (22a)

[a1m] = ζ−1
[
Q−

N (k1, f0)
]
αs

0n + ν1
k0

k1

[
Q−

D(k1, f0)
]
βs

0n (22b)

where αs
1n, βs

1n are the unknown expansion coefficients in Eqs. (13a),
(13b) and αs

0n, βs
0n are the unknown expansion coefficients in

Eqs. (13c), (13d).
The representation of the unknown coefficients Bm, Am at the

substrate medium in the previous Subsection 3.2 is obtained. These
coefficients Bm, Am can be solved for the expansion coefficients βs

1n,
αs

1n. Similarly, the unknown coefficients b′m, a′m at the incident medium
in subsection 3.1 are represented. These coefficients b′m, a′m can be also
solved for the expansion coefficients βs

0n, αs
0n.

Substituting these coefficients Bm, Am, b′m and a′m into Eqs. (22a),
(22b), solving for Am, b′m by using R-matrix expression, therefore, the
unknown coefficients Am, b′m are determined and the field distribution
in the dielectric coating medium is found.

In this section, the R-matrix expression between αs
0n, αs

1n and βs
0n,

βs
1n will be described. By using the periodic property of Green function

in Eq. (9), applying the boundary conditions (11a) and Fourier series
expansions (13a), we have the expression of the R-matrix form[

αs
0n
αs

1n

]
=

[
r11 r12
r21 r22

] [
βs

0n
βs

1n

]
(23)

where[
r11 r12
r21 r22

]
=

[ −Q+
N (k1, f0) ζ−1 Q

+
N (k1, f1)

−Q−
N (ki, f0) ζ+

1 Q
−
N (ki, f1)

]−1

×



ν1
k0

k1
Q+

D(k1, f0) −ζ−1 Q+
D(k1, f1)

ν1
k0

k1
Q−

D(k1, f0) −ζ+
1 Q

−
D(k1, f1)




,

(24)

ζ±1 are the diagonal matrix elements which mean variation elements
for the thickness d of the dielectric coating medium. Thus elements in
Eq. (24) are expressed by phase factor

ζ±1 = exp(±jk1zmd) (25)

Eq. (23) is expressed by the R-matrix form with the submatrix r11, r12,
r21, r22 in Eq. (24) which are based on Dirichlet Q±

D and Neumann Q±
N
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elements of the coating layers on the surface of two boundaries S0 and
S1.

4. T-MATRIX FORMULATION

In order to obtain T-matrix formulation by using R-matrix expression
in Eq. (23), expansion coefficients βs

0n and βs
1n, then, αs

0n and αs
1n

are extinguished by substituting Eq. (23) into Eqs. (16) and (19), the
coefficients βs

0n and βs
1n can be eliminated in the form of the recombined

matrix for the immediately expression. The reflected coefficient b′m
in Eq. (16) and transmitted coefficient Am in Eq. (19) are finally
represented for the incident wave coefficients a′m in Eq.(16) and Bm ≡ 0
satisfying radiation condition in the substrate. The total T-matrix
formulation [Tmn] with R-matrix expression is finally obtained, that is[

b′m
Am

]
= [Tmn]

[
a′m
Bm

]
(26)

where

[Tmn]=
[
X11r11+X12 X11r12
Y21r21 Y21r22+Y22

] [
X21r11+X22 X21r12
Y11r21 Y11r22+Y12

]−1

(27)
In Eqs. (24) and (27), the elements of the Dirichlet matrices Q±

D

and Neumann matrices Q±
N are defined in the rigorous form:

Q±
D(ki, fι) =

−1
P
√
βim

∫ P/2

−P/2
dx′ exp

{
±jkizmfι(x′)

}
× exp

{
−jx′(kxn − kxm)

}
ι = 1(i = 1, 2), 0(i = 0, 1) (28a)

Q±
N (ki, fι) =

[
1 − αinαim

±βim

]
Q±

D(ki, fι)

ι = 1(i = 1, 2), 0(i = 0, 1) (28b)

where fι(x′) is the Fourier grating profile defined by Eq. (2). The
matrix elements Eqs. (28a), (28b) for the Fourier grating can be
analytically expressed by the Bessel functions

Q±
D(ki, fι) =

−1√
kizm

∞∑
l=−∞

exp
{
∓jl

(
π

2
+ δ

)}

(∓j)|n−m±2l|J|n−m±2l|(kizmh)Jl(kizmhγ)
ι = 1(i = 1, 2), 0(i = 0, 1) (29)
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and Q±
N are determined form Q±

D that the relationship is already given
by Eq. (28b).

This is the Fourier grating Eq. (2) whose profile is expressed by
summation of two sinusoidal functions, which are rigorously formulated
in this paper. Also, the one of the sinusoidal grating is obtained by
setting γ = 0 in this Section [6], that is, analysis of the electromagnetic
diffraction from a dielectric coated sinusoidal grating has already been
studied [7].

5. DIFFRACTION EFFICIENCIES AND POYNTING
VECTOR

The diffraction power of the reflected, transmitted waves and the
incident power are obtained by calculating from time average of the
Poynting vector in the each mode. By using the normalized power
having the incident wave, we define diffraction efficiencies of the
reflected ρr

m and the transmitted ρt
m waves for the mode number m

ρr
m = |bm|2 (30)

ρt
m =

k2

k0

1
ν2ν1

|Am|2 (31)

where bm is the expansion coefficient of reflected wave in Eq. (14a),
Am is the expansion coefficient of transmitted wave in Eq. (18b).
Therefore, the total reflected ρr

total and transmitted ρt
total diffraction

efficiencies are also defined by summing possible modes for the
propagating

ρr
total =

∑
m

ρr
m (m : Re(β0zm) > 0) (32)

ρt
total =

∑
m

ρt
m (m : Re(β2m) − Im(β2zm) > 0) (33)

If the medium of all regions is the perfect dielectrics without loss, the
energy conversion does supply a good numerical consistency check.
The percentage power error εerr is, then, defined by

εerr = |1 − (ρr
total + ρt

total)| × 100 [%] (34)

In the perfect dielectrics of all region, thus, the energy conversion is
calculated from time average of the Poynting vector. This percentage
power error ≤ 1 [%] is obtained, however, the numerical data figures
are omitted here in the paper.
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Figure 2. The total reflected diffraction efficiency ρr
total versus

thickness d/P for incident angle θinc = 30◦.

6. NUMERICAL EXAMPLES AND DISCUSSION

In this section, all the parameters, P = 800 nm, h = 20 nm, γ = 0.2
and δ = π/2, θinc = 30◦ and wavelength λ = 650 nm, Au substrate
(n2 = 0.142 − j3.374), SiO dielectric coating (n1 = 1.54) are used.

Fig. 2b shows the Fourier grating with the coating dielectric
medium when the grating is illuminated by TM plane wave with
incident angle θinc = 30◦ from incident medium (air, n0 = 1.0). We find
that the resonance absorption (surface plasmon) in the thin dielectric
coating layer arises in the total reflected diffraction efficiency. The total
reflected diffraction efficiency ρr

total(=
∑ |bm|2) is illustrated versus

thickness d of the coating layer with period P , such as, d/P . Fig. 2a is
TE polarization, we can not find that the resonance absorption in the
thin dielectric coating layer arises in the diffraction efficiency as TM
polarization. Also, the numerical results(ρr

0) by T-matrix method with
R-matrix expression in the paper are confirmed in good agreement with
the results by S-matrix method [4] in the special case of a sinusoidal
profile (γ = 0) with incident angle (θinc = 42◦), however, the figures
are omitted here.

In Fig. 3b, the reflected diffraction efficiency ρr
total (d/P = 0.07)

versus groove depth h of the grating is illustrated. Fig. 3a is also TE
polarization for d/P = 0.346. We find that the minimum value of
diffraction efficiency ρr

total by shallow groove depth in this thickness of
coating layer exists at h/P = 0.0125.
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Figure 3. The total reflected diffraction efficiency ρr
total versus groove

depth h/P .
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Figure 4. The total reflected diffraction efficiency ρr
total versus

incident angle θinc.

When the TE plane wave is illuminated on incident angle θinc =
24◦ ∼ 34◦, the reflected diffraction efficiency ρr

total versus θinc as
shown in Fig. 4a is appeared an aspect varying of the absorption
angle whose parameter d/P is the thickness of the a dielectric coating
layer. We found that the maximum absorptions by guided wave in
numerical value of ρr

total exist at the thickness d/P = 0.8(θinc = 28.03◦)
in the TE polarization. The TM polarization is also illustrated in
Fig. 4b, for which the maximum absorption arises at the parameter
d/P = 1.0(θinc = 27.25◦).
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Figure 5. The amplitude of field distributions along z/P for x/P =
0.25.

Fig. 5a shows the one dimensional electric field distribution
|Ey(z/P )| by normalizing maximum value |Ey|max along z axis for the
fixed position x/P = 0.25, and parameters d/P = 0.8, θinc = 28.03◦,
and the absorption results from the guided wave only in dielectric
coating media.

Fig. 5b also shows the magnetic field distribution |Hy(z/P )| by
normalizing maximum value |Hy|max along z axis for the fixed position
x/P = 0.25, and parameters d/P = 1.0, θinc = 27.25◦. We found that
the absorption results from both the surface plasmon in grating and
the guided wave in dielectric coating media.

Figs. 6 and 7 show two-dimensional equi-field distributions and
Poynting vector, whose fixed line on x/P = 0.25 in Fig.5 which were
marked by broken line as same parameters, respectively.

Fig. 6a is the mapped equi-electric field amplitude of two-
dimensional distributions for TE polarization and d/P = 0.8, θinc =
28.03◦. The Fig. 6b shows also equi-magnetic field amplitude for TM
polarization and d/P = 1.0, θinc = 27.25◦ similarly. We found that
the large amplitudes (TM) of the field arise on surface of the grating.

As shown in Fig. 7a, the two-dimensional map of the Poynting
vector is illustrated in TE polarization. We found that the guided wave
only in dielectric coating media is observed. Fig. 7b shows the case of
TM polarization. In this TM polarization, it has been point out that
surface plasmon anomalies occur in the Fourier grating with complex
permittivity, we found that the resonance absorption arise from both
the surface plasmon and the guided wave in dielectric coating media.
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Figure 6. The two-dimensional equi-field distribution in the space
(x, z).
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Figure 7. A map of the Poynting vector in the space (x, z).

7. CONCLUSION

This numerical results were discussed in details, those were the
diffraction efficiencies versus d/P, h/P and the incident angle. And,
the electromagnetic fields were illustrated in maps on the amplitude of
field distribution and Poynting vector.

In those numerical examples, it depends on existence of guided
mode that the absorption phenomena occur in a certain particular
incident angle. We shown that the absorption arises from the resonance
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absorption by surface plasmon anomalies on the TM polarization wave
incidence.

This formulation can be applied to numerical calculation of the
Fourier grating that the coated dielectric layer is thick, and that groove
depth of the grating is comparatively deep although the coating layer
is thin.

For future works, the analysis of the multilayer-coated Fourier
grating will be treated by using the T-matrix method with R-matrix
expression in the paper.
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