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Abstract—This paper begins with a complete description of the
complex Poynting theorem, followed by a rigorous study of the
generalized resonance in a multi-antenna system. The condition
generating the generalized resonance is discussed, which is the balance
of the electromagnetic fields energy stored in the antennas open system.
The matrix expression of the generalized resonant factor (GRF ) is
derived. On this basis, the generalized Foster reactance theorem for
an arbitrary antenna system is presented and radiation Q is used to
further describe the generalized resonance behaviors. Some practical
examples have shown that the generalized resonance may take on the
phenomena of strong and sharp fields in the near zone and super-
directivity in the far zone of the antenna system.
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1. INTRODUCTION

With the development of the electronic devices and wireless
communication, the electromagnetic environment becomes more and
more numerous and complicated. It is well known that there are scores
of antennas, even hundreds of antennas simultaneously located on an
airplane, ship or communication device, which compose a complicated
multi-antenna system. The interaction and mutual coupling among
antenna elements sometimes give rise to the strong electromagnetic
oscillation phenomena. Some researches of the electromagnetic
compatibility (EMC) for warships have found the phenomenon of
strong electric field spots near missile trays when some antennas are
simultaneously working, which will result in the free-running of missile
trays [1, 2]. Especially for the high-power radiating systems which
have found that the power that may be transmitted can be severely
limited by the breakdown of the air around the antennas [3]. Fante
[3] studied the bounds on the electric field outside a radiating system.
Liang [1] and Jin [2] gave an analysis of the special phenomenon and
presented the concept of generalized resonance, which is based on
an open system and is caused by strong interaction of multi-object.
However, the nature of the generalized resonance in an open system can
not be revealed completely. Therefore, a rigorous analysis of resonant
behaviors in EMC has been an interesting and challenging problem for
years [1–10].

In this paper, we desire to give a more rigorous study of the
generalized resonance in a multi-antenna open system. In Section 2,
we present a complete description of the complex Poynting theorem for
electromagnetic fields, in order to derive the electric and magnetic field
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energy stored in the near zone of the antenna system. In Section 3,
based on the complex Poynting theorem, it is shown that the multi-
antenna system is essentially equivalent to a complicated lossy multi-
port network and the electromagnetic oscillation still exists in the open
system. When the stored electric field energy and magnetic field energy
are identical, namely the balance of the stored electric and magnetic
field energy, the generalized resonance will take place. The matrix
expression of the generalized resonant factor (GRF ) is derived, which
can be used to determine the generalized resonant frequency. The
conventional Foster reactance theorem is usually stated for a lossless
network. For an antenna system, the loss represents the radiated
power from the antenna, which prohibits the direct use of the Foster
reactance theorem, because the slope of reactance for the antenna can
be negative. In Section 4, we further present the generalized Foster
reactance theorem for antennas and radiation Q computed in complex
frequency domain to describe the generalized resonance behaviors.
Finally, by analyzing some practical multi-antenna systems presented
in this paper, we have shown that the generalized resonance may take
on the phenomena of strong and sharp fields in the near zone and
super-directivity in the far zone of the antenna systems.

2. POYNTING THEOREM AND ELECTRIC AND
MAGNETIC FIELD ENERGY STORED IN OPEN
SYSTEM

The differential form of the complex Poynting theorem [8] for time
harmonic field in an isotropic medium is given by

∇ ·
(

1
2
�E × �H∗

)
= −1

2
�J∗ · �E − j2ω(wm − we) (1)

where wm = 1
4µ

�H · �H∗ and we = 1
4ε
�E · �E∗ are the magnetic and electric

field energy densities, respectively. We take the integration of (1) over
a region V , which is enclosed by a sphere surface S, as shown in Fig. 1.
Let V0 be the volume occupied by the source �J and S0 be the surface
surrounding V0. Using the divergence theorem, we get∫

S

1
2
( �E × �H∗) · d�s =

∫
V0

−1
2
�J∗ · �Edv − j2ω

∫
V

(wm − we)dv (2)

Taking the imaginary part of (2), we easily obtain

Im
∫

S

1
2
( �E × �H∗) · d�s = Im

∫
V0

−1
2
�J∗ · �Edv − 2ω

∫
V

(wm − we)dv (3)
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Figure 1. A volume V containing source region.

Let us choose V = V∞, where V∞ is the region enclosed by a sphere
with radius r∞, where r∞ is sufficiently large so that it lies in the far
field region of the antenna system. Since the complex Poynting vector
is a real vector in the far field region, we have

Im
∫

V0

−1
2
�J∗ · �Edv = 2ω

∫
V∞

(wm − we)dv (4)

Substituting (4) into (3), we obtain

Im
∫

S

1
2
( �E × �H∗) · d�s = 2ω

∫
V∞−V

(wm − we)dv (5)

Equation (5) shows that the surface integral of the imaginary part of
the Poynting vector depends on the integration surface S in the near
field region. Taking the real part of (2), we obtain the radiated power

Prad = Re
∫

S

1
2
( �E × �H∗) · d�s = Re

∫
V0

−1
2
�J∗ · �Edv (6)

Equation (6) shows that the surface integral of the real part of the
Poynting vector is independent of the surface S as long as it encloses
the source region V0, that is, Prad(S) = Prad(S0) = Prad(S∞) =
Re

∫
V0

−1
2
�J∗ · �Edv. Combining (5) and (6), we get∫

S

1
2
( �E × �H∗) · d�s = Re

∫
V0

−1
2
�J∗ · �Edv + jIm

∫
V0

−1
2
�J∗ · �Edv

− j2ω
∫

V
(wm − we)dv

= Prad + j2ω
∫

V∞−V
(wm − we)dv (7)
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The above expression is the integration form of the complex Poynting
theorem for the region shown in Fig. 1, which indicates that the
complex power flowing out of S is equal to the radiation power plus the
reactive power outside S. Some controversies about the applicability
of the complex Poynting theorem and the time dependent Poynting
theorem in the calculation of antenna Q were proposed [11–16]. A
misunderstanding is actually caused by an improper explanation of
the power balance relation (7).

The field radiated by an antenna consists of a radiation field
carrying power to infinity and a localized reactive field. However, for
the purpose of evaluating the energy stored in the reactive field, the
field can not be separated into a radiation field and a reactive field
and treated separately due to nonzero interaction terms. Following
the Collin’s and Fante’s viewpoints [17, 18], the energy density can be
physically separated into two parts: one is time reversible and the
other is time irreversible. The reversible part should be identified
with evanescent stored energy, while the irreversible part should
be associated with radiation. Let w′

e and w′
m denote the time-

average, nonpropagating, stored electric field and magnetic field energy
densities, and wrad

e and wrad
m denote the time-average radiated electric

field and magnetic field energy densities, respectively. We can then
define {

wm = w′
m + wrad

m

we = w′
e + wrad

e

(8)

These calculations are physically appropriate since density is a
summable quantity. It is readily seen from (5) that wm = we in
the far field zone since the complex Poynting vector becomes real as
V approaches V∞. In addition, according to the far field expression
generated by an arbitrary current distribution [15, 19], we can easily
obtain �Erad = η �Hrad × n̂, where η denotes the wave impedance in free
space, i.e., η = 120π. Hence, we have

wrad
m =

1
4
µ �Hrad · �Hrad∗ =

1
4
ε �Erad · �Erad∗ = wrad

e (9)

Mathematically, (9) holds everywhere. It is shown that the electric field
energy and magnetic field energy for the radiated field are identical
everywhere. Therefore, in the region V∞ − V0, we obtain

W ′
m −W ′

e =
∫

V∞−V0

(w′
m − w′

e)dv =
∫

V∞−V0

(wm − we)dv

=
1
2ω

Im
∫

S0

1
2
( �E × �H∗) · d�s (10)
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W ′
m +W ′

e =
∫

V∞−V0

(w′
m − w′

e)dv

=
∫

V∞−V0

[(wm − wrad
m ) + (we − wrad

e )]dv

=
∫

V∞−V0

(wm + we)dv −
r∞
c

Re
∫

S∞

1
2
( �E × �H∗) · d�s

= Wm +We −
r∞
c
Prad (11)

where Wm and We represent the total time-average magnetic field
and electric field energy, and W ′

m and W ′
e represent the time-

average, nonpropagating, stored magnetic field and electric field
energy, respectively. Prad is the radiated power, r∞ is the radius of
the sphere surface S∞ , and c is the speed of light. It is noticed that
two integral terms in (11) are divergent as r∞ → ∞. However, by using
a proof similar to that used in Rellich’s theorem [20], it can be shown
that the net term in (11) is convergent, which implies the reactance
energy stored around an antenna system is finite. Thus, W ′

e and W ′
m

can be expressed as follows

W ′
e =

1
2

∫
V∞−V0

(wm + we)dv −
r∞
2c

Prad −
1
4ω

Im
∫

s0

1
2
( �E × �H∗) · d�s

(12)

W ′
m =

1
2

∫
V∞−V0

(wm + we)dv −
r∞
2c

Prad +
1
4ω

Im
∫

s0

1
2
( �E × �H∗) · d�s

(13)

The clarification of the concept of the electric and magnetic field energy
stored in the open system is helpful to gain insight into the nature of
the generalized resonance.

3. GENERALIZED RESONANCE IN MULTI-ANTENNA
SYSTEM

The generalized resonance is based on an open system and is caused
by the strong interaction of multi-object. If there is only one object
or antenna in the system, its self-resonance behaviors belong to the
generalized resonance presented in this paper. But there are not the
special phenomena of the generalized resonance in the mono-object
system, such as strong and sharp fields in the near zone around objects.
So it is not emphasis of our study. We mainly analyze the generalized
resonance in the N -antenna system, as shown in Fig. 2. Let V , enclosed
by S, contain N antennas and Vi be the region occupied by ith antenna.
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Figure 2. A system containing N antennas.

If we choose S = S∞, using complex Poynting theorem over the region
V∞ − ∑N

i=1 Vi, we obtain

∫
S∞

1
2
( �E × �H∗) · d�s+

N∑
i=1

∫
Si

1
2
( �E × �H∗) · d�s = −j2ω(Wm −We) (14)

We choose Si is coincident with the ith antenna surface and assume the
antenna surface is perfectly conducting, and then ( �E× �H∗)·d�s vanishes
everywhere on Si except over the input terminal. For a single-mode
transmission line we have

1
2

N∑
i=1

ViI
∗
i =

∫
s∞

1
2
( �E × �H∗) · d�s+ j2ω(Wm −We) (15)

where Vi and Ii are equivalent voltage and current at the feeding
reference plane of ith antenna, respectively. Introduce the equivalent
impedance matrix of the multi-antenna system as follows

[V ] = [Z][I] (16)

Hence, (15) may be expressed concisely in matrix form

[I]+[Z][I] = Prad + j2ω(Wm −We) (17)

where superscript + indicates conjugation and transposition. The
antenna open system shown in Fig. 2 can be viewed as the generalized
closed system which enclosed by the surface S∞ and

∑N
i=1 Si. Similar

to the definition of resonance in the circuit system, we define the
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generalized resonance as the balance of the stored electric and magnetic
fields energy in the antenna system, which is

W ′
m = W ′

e (18)

From previously theory, we know W ′
m = Wm−W rad

m ,W ′
e = We−W rad

e ,
and W rad

m = W rad
e . Thus (18) can be expressed as Wm = We. From

(17), we can obtain the matrix description of the generalized resonance
as follows

Im([I]+[Z][I]) = 0 (19)
If the antenna system is reciprocal network, (19) can be reduced to

[I]+[X][I] = 0 (20)

where [I] is the equivalent current vector, and [X] is the imaginary part
matrix of the equivalent impedance matrix of the antenna system. The
generalized resonant factor (GRF ) can be defined as

GRF = Im([I]+[Z][I]) (21)

By analyzing GRF , we can accurately determine the generalized
resonant frequencies that are the solutions to the equation GRF = 0.
In other words, the prediction of the generalized resonance occurred
in the N -antenna system can be made by observing GRF . The dual
form of GRF , using the equivalent admittance matrix of the antenna
system, can be expressed as

GRF = Im([V ]+[Y ]+[V ]) (22)

The above relations indicate that the generalized resonance is related to
not only the antenna system itself and modes, but also the complicated
excitations and loads. When W ′

m = W ′
e, the generalized resonance will

take place. In this case, not only the stored electric and magnetic field
energy in the near zone but also the radiated electric and magnetic
field energy in the far zone are identical. Therefore, the generalized
resonance may take on the phenomena of strong and sharp fields in
the near zone and the large frequency sensitivity in the far zone of the
antenna system. If an optimal excitation and design of gain were made,
the antenna system would realize the super-directive characteristics
[9, 21].

4. GENERALIZED FOSTER REACTANCE THEOREM
AND RADIATION Q FOR ANTENNAS

An important parameter specifying selectivity, and performance in
general, of a resonant system is the quality factor, Q. A general
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definition of Q applicable to all resonant systems is [22]

Q =
ω(time − average energy stored in system)

energy loss per second in system
(23)

For the antennas open system, we introduce radiation Q to further
describe the generalized resonance behaviors, which can be defined as

Q =




2ωW ′
e

Prad
W ′

m ≤ W ′
e

2ωW ′
m

Prad
W ′

m ≥ W ′
e

(24)

where W ′
e and W ′

m are the time-average, nonpropagating, stored
electric and magnetic energy respectively, and Prad is the radiated
power. Since the generalized resonance condition requires W ′

m = W ′
e =

W ′ and GRF = 0, the generalized resonance Q is expressed as

QG =
2ω0W

′

Prad
(25)

where ω0 is the generalized resonant frequency. Prad and W ′ can be
calculated by (6) and (12), we rewrite them as

Prad = Re
N∑

i=1

∫
Si

1
2
( �E × �H∗) · d�s (26)

W ′ =
1
2

∫
V∞−

N∑
i=1

Vi

(wm + we)dv −
r∞
2c

Prad (27)

It is well known that the Foster reactance theorem is usually stated
for a lossless network and is a very important tool for the synthesis
of networks. From the viewpoint of network theory, an antenna is
essentially equivalent to a one-port lossy network. The loss represents
the radiated power from the antenna, which prohibits the direct use
of the Foster reactance theorem, because the slope versus frequency of
a reactance or susceptance function for the antenna can be negative
[19, 25]. In the following section, we will derive strictly the generalized
Foster reactance theorem for antennas and lossy networks, for the
purpose of clarifying the physical characteristics of slope of reactance or
susceptance. Taking the frequency derivatives of Maxwell’s equations
in a passive lossless isotropic medium, we have

∇ ·
(
∂ �E

∂ω
× �H∗ − ∂ �H

∂ω
× �E∗

)
= −jµ �H · �H∗ − jε �E · �E∗ (28)
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Taking the integration of (28) over the passive region V∞−∑N
i=1 Vi, as

shown in Fig. 2, and using divergence theorem to the left term, we get
∫

S∞+
N∑

i=1

Si

(
∂ �E

∂ω
× �H∗ − ∂ �H

∂ω
× �E∗

)
· d�S = −j4

∫
V∞−

N∑
i=1

Vi

(wm + we)dv

(29)
Now if we assume that the antenna surface is perfectly conducting,
(∂ �E

∂ω × �H∗) · d�s and (∂ �H
∂ω × �E∗) · d�s vanish everywhere over S0 except

over the input terminals. The integral on the left-hand side of (29) can
be related to the input voltage [V ] and current [I] of the antennas, and
thus (29) can be changed into as follows:

[I]+
∂[V ]
∂ω

+ [V ]+
∂[I]
∂ω

=
∫

S∞

(
∂ �E

∂ω
× �H∗ − ∂ �H

∂ω
× �E∗

)
· d�s

+ j4
∫

V∞−
N∑

i=1

Vi

(wm + we)dv (30)

where [V ] and [I] are the voltage and current vectors at the
antenna array terminals. In the far field region, we can write
�E = �E∞(ω) e−jkr

r , �H = �H∞(ω) e−jkr

r , where �E∞(ω) and �H∞(ω) are
independent of the position r, and �E∞ = η · �H∞ × n̂. Substituting
these into (30), we obtain

[I]+
∂[V ]
∂ω

+ [V ]+
∂[I]
∂ω

=
∫

S∞

1
r2

(
∂ �E∞
∂ω

× �H∗
∞ − ∂ �H∞

∂ω
× �E∗

∞

)
· d�s

+ j




4
∫

V∞−
N∑

i=1

Vi

(wm + we)dv

−4r∞
c

Re
∫

S∞

1
2
( �E × �H∗) · d�s


 (31)

From (11), we know that the net term in square brackets of
(31) represents the total time-average, nonpropagating, stored
electromagnetic fields energy, which is convergent. Introducing �E∞ =
η · �H∞ × n̂ and �E∞(ω) = | �E∞(ω)|ejθE∞ into (31), where θE∞ denotes
the phase of �E∞, n̂ is the unit normal to S∞ and that n̂ · �E∞ = 0, we
get

[I]+
∂[V ]
∂ω

+ [V ]+
∂[I]
∂ω

=
∂(2Prad)

∂ω
+ j4

(
Wm +We −

r∞
c
Prad

)
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+ j4
∫

S∞

�S · n̂∂θE∞

∂ω
ds (32)

where �S = 1
2
�E × �H∗ is the complex Poynting vector, Prad =∫

S∞
�S · n̂ds =

∫
S∞

1
2ηr2 | �E∞(ω)|2ds is the radiated power, and c is the

speed of light. Introduce the impedance matrix of the antenna array
[Z] = [R] + j[X] and let

[I] =




ejθI1 0
ejθI2

. . .

0 ejθIN


 ·




|I1|
|I1|
...

|IN |


 = ej[θI ][|I|] (33)

where |I1|, |I2|, · · · , |IN | denote the magnitude of the N -port currents,
and θI1 , θI2 , · · · , θIN

denote the phase of the N -port currents and [θI ]
represents the current phase diagonal matrix of N ×N dimensions.

[I]+
∂[V ]
∂ω

+ [V ]+
∂[I]
∂ω

= [I]+
∂[Z]
∂ω

[I] + 2[I]+[R]
∂[I]
∂ω

=
∂(2Prad)

∂ω
+ j[|I|]T

(
∂[X]
∂ω

+ 2[R]
∂[θI ]
∂ω

)
[|I|]

(34)

where Prad = 1
2 [|I|]T [R][|I|], and superscript T denotes transposition.

Comparing (32) with (34), we finally obtain

[|I|]T ∂[X]
∂ω

[|I|] = 4
(
Wm +We −

r∞
c
Prad

)
+ 4

∫
S∞

�S · n̂∂θE∞

∂ω
ds

− 2[|I|]T
(

[R]
∂[θI ]
∂ω

)
[|I|] (35)

The above expression states the generalized Foster reactance theorem
for an antenna array system, which is also applicable to a multi-port
lossy network. It is well known that whatever the stored reactive
energy or radiated energy is always positive. But the frequency
derivatives of far-field phase and input-current phase can be negative,
therefore the second and third terms of the right-hand of (35) do not
represent the electromagnetic fields energy in principle, which result
from the radiated power loss. In Fante’s and Rhode’s works [18, 23],
the third term of the right-hand of (35) was omitted. It had been
shown that the third term and the phase relation between current
and the parallel component of �E are very important in explaining the
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behaviors of a reactance function of the antennas system. It can be
seen that the slope of the reactance do not completely relate to the
normalized stored energy any more and is not always positive. It is
worthwhile to point out that the generalized Foster reactance theorem
will reduce to the traditional Foster reactance theorem when the loss
vanishes.

From (25), (27) and (35), we can get the radiation Q for the N -
antenna system as follows

QG =
2ω0W

′

Prad
=

1
2[|I|]T [R][|I|]

·
{

[|I|]Tω0
∂[X]
∂ω

[|I|] + 2[|I|]Tω0

(
[R]

∂[θI ]
∂ω

)
[|I|] − 4ω0δ

}
(36)

where δ =
∫
S∞

�S · n̂∂θE∞
∂ω ds. In available work, most of the researchers

directly define and evaluate antenna Q by using the first term in
brackets, and the last two terms of (36) are missing. For some special
antennas, e.g., linear radiators with a symmetric current distribution,
or for very small antennas, the last two terms will cancel out or have
a little contribution to radiation Q. But for a general case, they also
play an important role in determining the radiation Q and the slop of
reactance.

From the above analysis, it can be seen that the accurate
calculation of antenna Q is very difficult because of the presence of
the frequency derivatives of the current phase and far-field phase. The
complex frequency method combined with the model-based parametric
estimation (MBPE) technique has been presented by Li and Liang [24],
which is used to calculate the quality factor of antennas and scattering
resonance systems successfully. By constructing the generalized system
function H(s) in complex frequency domain and analyzing the pole-
zero characteristics, we can effectively analyze the resonance behaviors
and the radiation Q of an arbitrary antenna system. In this paper, the
complex frequency method is employed to compute the radiated Q of
the generalized resonance system.

5. APPLICATIONS AND DISCUSSION

Firstly consider the two parallel dipoles system shown in Fig. 3. Dipole
1 will be excited by the ideal voltage source, and the terminal of
dipole 2 shorted. The length both of them is L = 7.4 m, with radius
a = 0.01 m. The distance between them is d = 1.0 m. The operational
frequency range is from 15 MHz to 25 MHz. The observation points
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Figure 3. Two Parallel dipoles system.

Figure 4. The frequency response of GRF .

locate at (x, y, z) = (0.3, 0.0, 7.4) in the near field zone and at (θ, ϕ) =
(90◦, 0◦) in the far field zone, respectively. A numerically rigorous
method of moments (MoM) is used to calculate GRF and E-fields at
the near-zone and far-zone observation points, with the basis functions
chosen to be pulses and the testing functions being delta functions.
Clearly, a more refined choice can be made if desired. The numerical
results are shown in Figs. 4 and 5 respectively.
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(a) (b)

Figure 5. The special phenomena of the generalized resonance.
(a) Strong and sharp field in the near region. (b) Large frequency
sensitivity in the far region.

By analyzing the frequency characteristics of GRF , we can
accurately determine the generalized resonant frequency, which is the
frequency satisfied with GRF = 0, as shown in Fig. 4. Fig. 5a shows
the frequency response of the observation field point in the near zone
of the two parallel dipole antennas. It is observed that there is a strong
and sharp electric field occurred at the resonant frequency, 19.7 MHz,
which is mutilative to the electric devices located near the antenna.
Therefore, the generalized resonance phenomena must be effectively
considered in EMC analysis and design.

The radiation Q is calculated by using the complex frequency
method and MBPE technique. In this case, one of the complex pole
is s = −α + jβ = −0.05657 + j19.6921 (MHz), and the value of Q is
very large and Q = β

2α = 174.05. The detailed discussion concerning
the complex frequency theory for calculating Q is given in [24]. These
results obtained from complex frequency domain also demonstrate the
validation of GRF and the essentials of the generalized resonance. In
addition, Fig. 5b shows a large frequency sensitivity in the far region
of the antenna system close to the generalized resonant frequency. If
we make optimal excitation and gain design, the antenna system may
realize super-directive characteristics [9, 21].

The effects of the antenna structures on the generalized resonance
are discussed here in order to obtain some engineering analysis and
design guidelines for EMC. Assume the observation point still locating
at (x, y, z) = (0.3, 0.0, 7.4) in the near field zone, the variations in the
length of dipole 2 and the distance between antennas will change the
generalized resonant behaviors.
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Figure 6. Variation in dipole2 length.

(a) (b)

Figure 7. Comparisons of GRF and near E-field magnitude of the
original antenna system with the new antenna system of dipole2 length
variation. (a) Frequency response of GRF . (b) Frequency response of
the near E-field magnitude.

• Case 1. Variation in length of dipole 2, L1 = 7.4 m, L2 = 7.0 m,
a = 0.01 m, d = 1.0 m;

As shown in Fig. 6, the length of dipole 2 is shortened, i.e.,
L2 = 7.0 m, and other parameters are kept the same as in Fig. 3.
It is observed from Figs. 7a and 7b that if the length of dipole
2 is shortened, the generalized resonance frequency will increase.
The strong and sharp field in near region becomes weak and the
radiation Q decreases.
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Figure 8. Variation in distance between two dipoles.

(a) (b)

Figure 9. Comparisons of GRF and near field magnitude of the
original antenna system with the new antenna system of double
distance. (a) Frequency response of GRF . (b) Frequency response
of the near E-field magnitude.

• Case 2. Variation in distance between two dipoles, L1 = 7.4 m,
L2 = 7.4 m, a = 0.01 m, d = 2.0 m.

The interaction and mutual coupling of two dipoles are mainly
affected by the distance between them. In this case, the distance
is increased, i.e., d = 2.0 m, and the antenna length, radius and
exciting source are kept the same as the original antenna system,
as shown in Fig. 8. It is observed from Figs. 9a and 9b that when
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Figure 10. Five-element circular array for direction finding system.

the distance is increased, the generalized resonance frequency and
the value of Q will decrease.

The other example is a practical five-element circular array for
direction finding (FCADF) system shown in Fig. 10. The antenna
system is a circular array with radius 1.2 m, which consists of five same
dipoles, with length 2.0 m and radius of dipoles 0.015 m. The working
frequency varied from 30 MHz to 110 MHz, and the feed points locate in
the xoy plane. The observation point in the near field region locates at
(x, y, z) = (1.1, 0.0, 0.8). Similarly, a piece of computer code based on
a numerically rigorous method of moments (MoM) is used to calculate
the frequency responses of GRF and near E-fields in the following two
cases.

Fig. 11 shows the GRF and the phenomenon of generalized
resonance in the near region with single excitation. It can be seen that
the generalized resonance behaviors are also remarkable by virtue of the
strong interaction and mutual coupling between the antenna elements
in the FCADF system. The value of Q is still large, approximate 21.6.
But when the excitations are changed, i.e., all dipoles excited by the
ideal voltage sources, the generalized resonant frequency increases and
Q factor reduces to 8.34, as shown in Fig. 12. The above analyses show
that the generalized resonance can be characterized by the GRF and
radiation Q, and some effective methods can be adopted to improve the
generalized resonance behaviors, which can give some design guidelines
for EMC in the complicated electromagnetic environments.
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Case 1. Dipole 1 excited by the ideal voltage source and others
shorted.

(a) (b)

Figure 11. GRF and the generalized resonance behavior in the near
region with single excitation. (a) Frequency response of GRF . (b)
Frequency response of the near E-field magnitude.

Case 2. All dipoles excited by the ideal voltage source.

(a) (b)

Figure 12. GRF and the generalized resonance behaviors in the
near region with full excitation. (a) Frequency response of GRF . (b)
Frequency response of the near E-field magnitude.
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6. CONCLUSION

This paper points out the nature of the generalized resonance is the
balance of the electric and magnetic fields energy stored in a multi-
antenna system. The phenomena, such as strong and sharp fields
in the near zone, large frequency sensitivity in the far zone, are the
special behaviors of the generalized resonance. From (20) and (21), we
know the generalized resonance relates to not only system itself and
modes, but also the complicated excitations and loads. Therefore, we
may take some effective methods to improve the generalized resonance
according to practical applications, which is an important part of the
EMC analysis and design.

In this paper, the generalized Foster reactance theorem for an
antenna array is presented, which physically states that the slope
versus frequency of the reactance function of the antenna system does
not precisely relate to the electromagnetic field energy stored in the
antenna system and is possibly negative because of the presence of
radiated losses. It is worthwhile to point out that the generalized
resonance is analyzed from the viewpoint of an antenna system, but
we believe that the similar phenomena and nature may exist in other
complicated open systems.
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