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Abstract—The intra-channel collision of optical solitons, with Kerr
law nonlinearity, is studied in this paper by the aid of quasi-particle
theory. The perturbation terms that are considered in this paper
are the nonlinear gain and saturable amplifiers along with filters.
The suppression of soliton-soliton interaction, in presence of these
perturbation terms, is achieved. The numerical simulations support
the quasi-particle theory.
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1. INTRODUCTION

The propagation of pulses through an optical fiber, for a Kerr nonlinear
medium [1, 2], in an optical communication system, is governed by the
Nonlinear Schrodinger’s Equation (NLSE). The NLSE is given as a
result of balance, to the lowest order, in the Taylor series expansion of
the wave number about its carrier frequency, between dispersion and
nonlinearity. The dimensionless form of the NLSE is given by

i
∂q

∂Z
+

1
2
∂2q

∂T 2
+ |q|2q = 0 (1)

Here q is the normalized effective amplitude of the wave electric field
while Z & T are the independent variables. Here Z represents the
distance along the fiber while T is the time.

Mathematically speaking, NLSE is a nonlinear partial differential
equation (PDE). It belongs to a class of integrable PDEs called S-
integrability. In this class all nonlinear PDEs are integrable by the
method of Inverse Scattering Transform (IST). NLSE, being a member
of this class, is also integrable by the method of IST.

In the anomalous dispersion regime, the particularly relevant
solutions to (1) are called solitons, or nontopological solitons. In most
cases, the interest is confined to a single pulse described by the 1-
soliton solution of the NLSE. However, in this paper, the effects of the
perturbation terms in NLSE on two soliton interaction will be studied.
It is necessary to launch the solitons close to each other for enhancing
the information carrying capacity of the fiber. If two solitons are placed
close to each other then it can lead to their mutual interaction thus
providing a very serious hindrance to the performance of the soliton
transmission system. However, the presence of the perturbation terms
of the NLSE can lead to the suppression of the two soliton interaction
thus solving our problem.

The perturbed NLSE that is going to be studied in this paper for
the SSI is

i
∂q

∂Z
+

1
2
∂2q

∂T 2
+ |q|2q = iR[q, q∗] (2)

where

R = δ |q|2m q + σq

∫ T

−∞
|q|2 dt+ β

∂2q

∂T 2
(3)

Here, δ is called the nonlinear gain, while σ is the coefficient of
saturable amplifiers. Also, in (3), m could be 0, 1 or 2. For m = 0,
there is linear gain, while for m = 1 it is called quadratic gain and
for m = 2, it is quintic gain or gain saturation. The coefficient of β is
called the bandpass filtering term.
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The quasi-particle theory (QPT) of soliton-soliton interaction
(SSI) has been investigated [1, 3–9] and it will be proved by virtue
of it that the interaction can be suppressed due to the perturbation
terms given in (3).

In (2) setting ε = 0, (1) is recovered which is the NLSE and is
exactly integrable by IST [2]. The 1-soliton solution of (1) has the
form [10–15]

q(Z, T ) =
η

cosh [η(T − vZ − T0)]
e(−iκT+iωZ+iσ0) (4)

with
κ = −v (5)

and

ω =
η2 − κ2

2
(6)

Here η is the amplitude (or the inverse width) of the soliton, v is its
velocity, κ is the soliton frequency while T0 and σ0 are the center of
the soliton and the center of the soliton phase respectively.

Also the 2-soliton solution of the NLSE (1) takes the asymptotic
form [16–19]

q(Z, T ) =
2∑

l=1

ηl

cosh [ηl(T − vlZ − T0l
)]
e(−iκlT+iωlZ+iσ0l

) (7)

with
κl = −vl (8)

and

ωl =
η2

l − κ2
l

2
(9)

where l = 1, 2. In the study of SSI, the initial pulse waveform is taken
to be [20]

q(0, T ) =
A1

cosh
[
A1

(
T − T0

2

)]eiφ1 +
A2

cosh
[
A2

(
T +

T0

2

)]eiφ2 (10)

which represents the injection of 2-soliton like pulses into a fiber. Here
T0 represents the initial separation of the solitons namely the center-
to-center soliton separation. It is to be noted that for T0 → ∞ (10)
represents exact soliton solutions, but for T0 ∼ O (1) it does not
represent an exact 2-soliton solution. In this paper, the case of in-phase
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injection of solitons with equal amplitudes will be studied, namely
A1 = A2, φ1 = φ2. Without any loss of generality, A1 = A2 = 1 and
φ1 = φ2 = 0 are chosen, so that (10) modifies to

q(0, T ) =
1

cosh
(
T − T0

2

) +
1

cosh
(
T +

T0

2

) (11)

2. QUASI-PARTICLE THEORY

The QPT dates back to 1981 since the appearance of the paper by
Karpman & Solov’ev [7]. The mathematical approach to SSI will be
studied using the QPT. Here, the solitons are treated as particles. If
two pulses are separated and each of them is close to a soliton they
can be written as the linear superposition of two soliton like pulses as
[1]

q(Z, T ) = q1(Z, T ) + q2(Z, T ) (12)

with
ql(Z, T ) =

Al

cosh [Al (T − Tl)]
e−iBl(T−Tl)+iδl (13)

where l = 1, 2 and Al, Bl, Tl and δl are functions of Z. Here, Al and Bl

do not represent the amplitude and the frequency of the full wave form.
However, they approach the amplitude and frequency respectively for
large separation namely if ∆T = T1 − T2 → ∞, then Al → ηl and
Bl → κl. Since the waveform is assumed to remain in the form of two
pulses, the method is called the quasi-particle approach. First, the
equations for Al, Bl, Tl and δl using the soliton perturbation theory
will be derived. Substituting (12) into (2) yields [1, 2]

i
∂ql
∂Z

+
1
2
∂2ql
∂T 2

+ |ql|2ql = iεR[ql, q∗l ] −
(
q2
l q

∗
l̄ + 2|ql|2ql̄

)
(14)

where l = 1, 2 and l̄ = 3 − l. Here, the separation

|q|2q =
(
|q1|2 q1 + q2

1q
∗
2 + 2 |q1|2 q2

)
+

(
|q2|2 q2 + q2

2q
∗
1 + 2 |q2|2 q1

)
(15)

was used based on the degree of overlapping. By the soliton pertur-
bation theory, the evolution equations are

dAl

dZ
= (−1)l+14A3e−A∆T sin(∆φ) + εMl (16)

dBl

dZ
= (−1)l+14A3e−A∆T cos(∆φ) + εNl (17)
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dTl

dZ
= −Bl − 2Ae−A∆T sin(∆φ) + εQl (18)

dδl
dZ

=
1
2

(
A2

l +B2
l

)
− 2ABe−A∆T sin(∆φ)

+6A2e−A∆T cos(∆φ) + εPl (19)

where

Ml =
∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

} 1
cosh τl

dτl (20)

Nl = −
∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

} tanh τl
cosh τl

dτl (21)

Ql =
1
A2

l

∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

} τl
cosh τl

dτl (22)

Pl =
1
Al

∫ ∞

−∞
�

{
R̂[ql, q∗l ]e

−iφl

} (1 − τl tanh τl)
cosh τl

dτl (23)

Here, in (20)–(23), � and � stands for the real and imaginary parts
respectively. Also, the following notations are used

R̂[ql, q∗l ] = R[ql, q∗l ] − i
(
q2
l q

∗
l̄ + 2|ql|2q∗l̄

)
(24)

τl = Al (T − Tl) (25)
φl = Bl (T − Tl) − δl (26)

∆φ = B∆T + ∆δ (27)
∆T = T1 − T2 (28)
∆δ = δ1 − δ2 (29)

A =
1
2

(A1 +A2) (30)

B =
1
2

(B1 +B2) (31)

∆A = A1 −A2 (32)
∆B = B1 −B2 (33)

Moreover, it was assumed that

|∆A| 	 A (34)
|∆B| 	 1 (35)
A∆T 
 1 (36)

|∆A|∆T 	 1 (37)
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From (16) to (18) one can now obtain

dA

dZ
= εM (38)

dB

dZ
= εN (39)

d (∆A)
dZ

= 8A3e−A∆T sin(∆φ) + ε∆M (40)

d (∆B)
dZ

= 8A3e−A∆T cos(∆φ) + ε∆N (41)

d (∆T )
dZ

= −∆B + ε∆Q (42)

d (∆φ)
dZ

= A∆A+ εN∆T + εB∆Q+ ε∆P (43)

where

M =
1
2

(M1 +M2) (44)

N =
1
2

(N1 +N2) (45)

and ∆M , ∆N , ∆Q and ∆P are the variations of M , N , Q and P
which are written as, for example

∆M =
∂M

∂A
∆A+

∂M

∂B
∆B (46)

assuming that they are functions of A and B only, which is, in fact,
true for most of the cases of interest, otherwise, the equations for

T =
1
2

(T1 + T2) (47)

and
φ =

1
2

(φ1 + φ2) (48)

would have been necessary. In presence of the perturbation terms, as
given by, (3), the dynamical system of the soliton parameters, by virtue
of soliton perturbation theory, are

dA

dZ
=

Γ (1/2) Γ (m+ 1)
Γ (m+ 3/2)

δA2m+1 + 2σA2 − 2
3
βA

(
A2 + 3B2

)
(49)
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dB

dZ
= −4

3
βA2B (50)

so that by virtue of (28), (29), (32) and (33)

d (∆A)
dZ

= 8A3e−A∆T sin(∆φ)

+
δ

22m

Γ (1/2) Γ (m+ 1)
Γ (m+ 3/2)

2m+1∑
r=0

(
2m+ 1
2r + 1

)
(2A)2r+1 (∆A)2m−2r

+4σA∆A− 2β
(
A2 +B2

)
∆A− 4βAB∆B (51)

d (∆B)
dZ

= 8A3e−A∆T cos(∆φ) − 8
3
βAB∆A− 4

3
βA2∆B (52)

d (∆T )
dZ

= −∆B + σ (53)

d (∆φ)
dZ

= A∆A− 4
3
βA2B∆T (54)

where in (51) (
n

r

)
=
n(n− 1) · · · (n− r + 1)

r(r − 1) · · · 3.2.1 (55)

By virtue of (51)–(54), one has the coupled system of equations for
∆φ, the phase difference, and ∆T , the soliton separation, with the
fixed point A = 1 and B = 0 as follows:

d2(∆T )
dZ2

+
4
3
β
d(∆T )
dZ

+ 8e−∆T cos(∆φ) = 0 (56)

d2(∆φ)
dZ2

+ (2β − 4σ)
d(∆φ)
dZ

− δ

22m

Γ (1/2) Γ (m+ 1)
Γ (m+ 3/2)

2m+1∑
r=0

(
2m+ 1
2r + 1

) (
d(∆φ)
dZ

)2m−2r

− 8e−∆T sin(∆φ) = 0 (57)

Equations (56) and (57) implies that inserting filters produces a
damping in both pulse separation and phase difference. In particular,
if the pulses are initially in phase, namely φ0 = 0, then ∆φ remains
zero (using φ0 = 0 and (54) with B = 0), and the filtering simply gives
a reduction in the attractive forces between the pulses.

For in-phase injection of solitons with equal amplitudes, the initial
conditions, corresponding to the initial waveform (12), are

A = 1, B = 0, ∆A0 = 0, ∆B0 = 0, ∆T0 = T0 & ∆φ0 = 0
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3. OBSERVATIONS

The Mathematical set up, given by (49) to (57), will be used to study
the various situations of the perturbed NLSE (2) to observe how SSI
can be suppressed. In all cases, the initial center-to-center separation
of the solitons is T0 = 9. The following special cases are studied here:

3.1. σ �= 0, δ �= 0, β �= 0, m = 0

In this case, choosing,
β = 3(σ + δ) (58)

yields the stable fixed point of (49) and (50). The system given by
(56)–(57) is subsequently further reduced to

d2(∆T )
dZ2

+ 4(δ + σ)
d(∆T )
dZ

+ 8e−∆T cos(∆φ) = 0 (59)

d2(∆φ)
dZ2

+ 2(σ + 2δ)
d(∆φ)
dZ

− 8e−∆T sin(∆φ) = 0 (60)

Equations (59) and (60) show that there exists damping in pulse
separation and phase difference. This is demonstrated in Figure 1(a)
where σ = δ = 0.005.

Figure 1a. m = 0, β = 3(σ + δ); σ = 0.005, δ = 0.005.
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3.2. σ �= 0, δ �= 0, β �= 0, m = 1

In this case, choosing,
β = 3σ + 2δ (61)

gives a stable fixed point of (49) and (50). The system given by (56)–
(57) is subsequently further reduced to

d2(∆T )
dZ2

+
4
3
(2δ + 3σ)

d(∆T )
dZ

+ 8e−∆T cos(∆φ) = 0 (62)

d2(∆φ)
dZ2

+ 2σ
d(∆φ)
dZ

− 8e−∆T sin(∆φ) = 0 (63)

Equations (62) and (63) show that there is damping in pulse separation
and phase difference. This is demonstrated in Figure 1(b) where
σ = δ = 0.005.

3.3. σ �= 0, δ �= 0, β �= 0, m = 2

In this case, choosing,

β = 3σ +
8
5
δ (64)

Figure 1b. m = 1, β = 3σ + 2δ; σ = 0.005, δ = 0.005, β = 0.025.
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one gets a stable fixed point of (49) and (50). The system given by
(56)–(57) is subsequently further reduced to

d2(∆T )
dZ2

+
4
15

(8δ + 15σ)
d(∆T )
dZ

+ 8e−∆T cos(∆φ) = 0 (65)

d2(∆φ)
dZ2

+
2
15

(15σ − 16δ)
d(∆φ)
dZ

− 8e−∆T sin(∆φ) = 0 (66)

Equations (65) and (66) show that there exists damping in pulse
separation and phase difference. However, a damping in phase
difference exists for σ/δ > 16/15. This is demonstrated in Figure 1(c)
where σ = δ = 0.005.

Figure 1c. m = 2, β = 3σ+ 8/5δ; σ = 0.002, δ = 0.002, β = 0.0092.

4. CONCLUSIONS

In this paper, the SSI of the NLSE in presence of nonlinear gain,
saturable amplifiers and bandpass filters are investigated. It was
observed that the SSI can be suppressed in presence of these
perturbation terms for various values of the degree of nonlinear gain.
The QPT, due to these perturbation terms, was developed and the
analytical reasoning of the suppression of the SSI was established.

Thus, in the applied soliton community two solitons can be
injected into a single channel, close to one another and also suppress
their mutual interaction so that performance enhancement can be
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achieved. This conclusion is based on numerical and analytical results
due to the quasi-particle theory of SSI.

In future, the SSI for non-Kerr law solitons are to be studied and
the QPT corresponding to these non-Kerr law nonlinearities are to
be developed. Moreover, the soliton-soliton interaction due to other
perturbation terms namely higher order dispersion, self-steepening
terms and Raman scattering, just to name a few, will be considered in
a future publication. Also the results of this paper can be generalized
due to 3-soliton interaction and more. Those results are still awaited
at this time and will be reported in future publication.
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