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Abstract—The conventional form of the electric-field integral
equation (EFIE), unlike the magnetic-field integral equation, cannot
be solved accurately with the method of moments using pulse basis
functions and point matching. A new form of the EFIE is derived
whose kernel has no greater singularity than that of the free-space
Green’s function. This low-order-singularity form of the EFIE, the
LEFIE, is solved numerically for perfectly electrically conducting
bodies of revolution (BORs) using pulse basis functions and point-
matching. Derivatives of the current are approximated with finite
differences using a quadratic Lagrangian interpolation polynomial.
Such a simple solution of the LEFIE is contingent, however, upon
the vanishing of a linear integral that appears when the original
EFIE is transformed to obtain the LEFIE. This generally restricts
the applicability of the LEFIE to smooth closed scatterers. Bistatic
scattering calculations performed for a prolate spheroid demonstrate
that results comparable in accuracy to those of the conventionally
solved EFIE can be obtained with the LEFIE using pulse basis
functions and point matching provided a higher density of points is
used close to the ends of the BOR.
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1. INTRODUCTION

There are numerous commercial codes available that numerically solve
electric-field integral equations (EFIEs) for the current and scattered
fields produced by an electromagnetic wave incident on a perfectly
electrically conducting (PEC) scatterer. For research purposes and
for certain specialized geometries, however, it is often advantageous to
have the flexibility and control inherent in writing one’s own computer
program. By far, the simplest approach for numerically solving integral
equations is to use the method of moments (MOM) with pulse basis
functions and point matching. Unfortunately, the EFIE, unlike the
magnetic-field integral equation (MFIE), cannot be solved accurately
using pulse basis functions and point matching (as demonstrated in
Figure 4 below), and thus considerably more effort is required to
write a computer code for numerically solving the EFIE. (It can be
shown that it is primarily the higher order singularity of the EFIE
kernel, rather than the derivatives of the current, that prevents an
accurate solution using pulse basis functions and point matching.)
For open scatterers or many thin bodies, the solution to the MFIE
is indeterminate or unstable, respectively, and it becomes necessary to
use the EFIE. Moreover, because confidence in numerical solutions is
greatly enhanced by having two independent numerical solutions that
agree to within a certain accuracy, it is often highly desirable to obtain
the solution to the EFIE even if the MFIE is also applicable.

The main purpose of this paper is to derive a low-order-singularity
electric-field integral equation (LEFIE) that can be accurately solved
using the MOM with pulse basis functions and point matching. This
LEFIE, whose kernel, like that of the MFIE, has no singularity greater
than that of the free-space Green’s function, is solved numerically
for perfectly conducting bodies of revolution (BORs) using pulse
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basis functions and point matching. Derivatives of the current are
approximated with finite differences using a quadratic Lagrangian
interpolation polynomial. This simple solution of the LEFIE is
contingent, however, upon the vanishing of a line integral that appears
when the original EFIE is transformed to obtain the LEFIE. This
requirement generally restricts the simple applicability of the LEFIE
to smooth closed surfaces.

Bistatic scattering calculations performed for scattering of a
plane wave by a prolate spheroid demonstrate that numerical results
comparable in accuracy to those of the conventionally solved EFIE
can be obtained with the LEFIE using pulse basis functions and point
matching, provided a higher density of points is used close to the ends
of the BOR generating curve to compensate for the use of one-sided
finite difference approximations of the first and second derivatives of
the current.

The paper is organized as follows. Section 2 contains the
derivation and analysis of the low-order-singularity electric-field
integral equation especially as it is applied to BOR scattering problems.
It is divided into four subsections beginning with the derivation of the
general LEFIE in Subsection 2.1 and its restatement for a BOR in
Subsection 2.2. The solution of the LEFIE for a closed BOR using
pulse basis functions and point matching is outlined in Subsection 2.3.
In Appendix A detailed expressions are given for 1) the elements of
the Z matrices that multiply the column vectors of the surface current
expansion function coefficients to be determined, 2) the elements of
the V column vectors in the right-hand side of the matrix equation
formulation of the LEFIE, 3) the currents induced on the surface of
a BOR by a transverse electric (TE) and transverse magnetic (TM)
linearly polarized plane wave in terms of the solution to the LEFIE
matrix equation, and 4) the components of the far scattered electric
field. Subsection 2.4 determines the number of angular Fourier modes
required to accurately compute the induced current and scattered fields
for a BOR.

Section 3 contains the numerical results of calculations performed
with a computer program written to implement and validate the
solution of the LEFIE formulated in Section 2 for a BOR. The paper
concludes with a brief summary in Section 4.
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2. ANALYSIS

2.1. Derivation of the Low-Order-Singularity Electric-Field
Integral Equation

We begin the derivation of the LEFIE with the conventional form of the
EFIE for the surface current K(r) on the surface S of a PEC scatterer
[1]:

jn̂×
∮
S

[
k2K(r′)G(r, r′) −

(
∇′

S · K(r′)
)
∇′G(r, r′)

]
dS′ =

k

Z0
n̂×Einc(r).

(1)
Here G(r, r′) is the free-space Green’s function for harmonic time
dependence exp(jωt) with the frequency ω > 0. That is

G(r, r′) =
exp(−jk | r − r′ |)

4π | r − r′ | (2)

where r and r′ are the vectors to the field and source points respectively,
K(r′) is the electric current on S to be determined, µ0 and ε0 are the
permeability and permittivity of free space respectively, k = ω/c with
c the speed of light in free space, Z0 = (µ0/ε0)1/2 is the free-space
impedance, and the operator ∇′

S · is the surface divergence [2, Appendix
2, 18]. The incident electric field is denoted by Einc(r) and n̂ is the
unit normal out of the surface S at the position r.

The “◦” on the integral sign in (1) indicates that a small “principal
area” isolates the singularity of the Green’s function from the surface
integration. The form of the EFIE in (1) is conditional upon the choice
of the principal area being a circle with the singular point at its center
(or another principal area that is adequately symmetric with respect
to the singular point) [3].

The gradient operator acting on the free-space Green’s function
in (1) results in a higher order singularity, 1/| r − r′ |2, instead of the
1/| r − r′ | singularity for the free-space Green’s function itself. What
we want to do is to recast the conventional form of the EFIE into a new
form that has no singularity higher than that of the free-space Green’s
function. To do this we begin by writing the gradient operating on the
free-space Green’s function as the sum of the surface gradient ∇′

S and
the gradient in the normal direction so that (1) becomes

jn̂ ×
∮
S

[k2K(r′)G(r, r′) −
(
∇′

S · K(r′)
)
∇′

SG(r, r′)

−
(
∇′

S · K(r′)
) ∂G(r, r′)

∂n′ n̂′]dS′ =
k

Z0
n̂ × Einc(r). (3)
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The term in (3) with the normal derivative of G includes the cross
product n̂ × n̂′ and does not have a singularity higher than G itself
at r = r′. Focusing on the surface gradient term, we use the vector
identity [2, Appendix 2, 26]

∇S(AB) = A∇SB + B∇SA (4)

to write

(∇′
S · K)∇′

SG = ∇′
S [(∇′

S · K)G] −G∇′
S(∇′

S · K). (5)

Using a Gauss integral theorem [2, Appendix 2, 43], we then obtain∮
S

∇′
S [(∇′

S · K)G]dS′ = −
∮
S

J ′(∇′
S · K)Gn̂′dS′ +

∫
C

(∇′
S · K)Gm̂′|dc′|.

(6)
In (6)

J ′ =
1
R′

1

+
1
R′

2

(7)

where R′
1 and R′

2 are the principal radii of curvature at the surface
point r′, and C is a set of closed curves (defined below) on the surface
of the PEC scatterer. The unit vector m̂′, defined at each point on
the curves comprising C, is in the tangent plane to the surface at the
point and perpendicular to the curve.

Since (6) is the key step in obtaining a new form of the EFIE
it is important to understand the meaning of S and C in applying
it. We assume that the surface S of a general PEC scatterer can
be divided into a finite number of open subsurfaces sharing bounding
curves in common with one another, such that on each subsurface the
surface charge density σ(r′) = −1/(jω)∇′

S ·K(r′), its surface derivative,
and J ′ are continuous and integrable, and n̂′ and m̂′ are continuous.
In applying (6) to the surface S of the PEC scatterer, S is to be
regarded as the superposition of these subsurfaces, and the surface
and line integrations are performed separately for each subsurface with
its bounding curve. The set of bounding curves comprise C. The
unit vector m̂′ on each of the bounding curves comprising C points
away from the subsurface it encloses. The surface of a closed finite
cylinder, for example, is to be regarded as the superposition of three
subsurfaces, the side cylindrical surface and the two end disks. The
surface of a sphere, a simple smooth scatterer, can be regarded as the
superposition of two hemispheres.

Combining (3) and (6) we obtain a new form of the EFIE with a
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self-term singularity equal to that of the free-space Green’s function

jn̂×
∮
S

{ [
k2K(r′) + ∇′

S

(
∇′

S · K(r′)
)
+ J ′ (∇′

S · K(r′)
)
n̂′

]
G(r, r′)

−
(
∇′

S · K(r′)
) ∂G(r, r′)

∂n′ n̂′
}
dS′−jn̂×

∫
C

(
∇′

S · K(r′)
)
G(r, r′)m̂′|dc′|

=
k

Z0
n̂ × Einc(r) (8)

which, unlike the original EFIE in (1), is not conditional upon the
shape of the principal area used to isolate the singularity of the Green’s
function.

Now our recasting of the conventional EFIE (1) into this new low-
order-singularity form (8) is motivated by the desire to be able to solve
the EFIE with the method of moments using pulse basis functions and
point matching. Therefore we would like to avoid the line integral
over C in (8). Assume that the surface S of the scatterer is closed
and smooth enough so that σ(r′) = −1/(jω)∇′

S · K(r′), its surface
derivative, and J ′ are continuous and bounded, and n̂′ and m̂′ are
continuous over S. Then (8) can be applied to any two contiguous
open surfaces (with a smooth bounding curve) comprising the closed
surface, the two line integrals over the common bounding curve of the
two contiguous surfaces cancel, and (8) reduces to

jn̂ ×
∮
S

{[
k2K(r′) + ∇′

S

(
∇′

S · K(r′)
)
+ J ′ (∇′

S · K(r′)
)
n̂′

]
G(r, r′)

−
(
∇′

S · K(r′)
) ∂G(r, r′)

∂n′ n̂′
}
dS′ =

k

Z0
n̂ × Einc(r). (9)

If the scatterer has an open surface, edges, tips, or any boundary
where σ or J ′ become singular or discontinuous, or n̂′ and m̂′

become discontinuous, the line integral over C cannot, in general, be
omitted and the numerical solution to the LEFIE in (8) may be more
complicated than that of the original EFIE. Accordingly we will restrict
our treatment of the LEFIE in this paper to PEC scatterers with closed
smooth surfaces such as spheroids for which σ, its surface derivative,
and J ′ are continuous and bounded, and n̂′ and m̂′ are continuous, so
that the line integral over C can be omitted and the LEFIE takes the
form (9).
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Figure 1. Body of revolution and coordinate system.

2.2. LEFIE for a BOR

We seek to determine the surface current and the far scattered field of
a perfectly electrically conducting (PEC) closed body of revolution
(BOR) excited by an incident plane wave. The geometry of the
BOR is shown in Figure 1. Circular cylinder coordinates (ρ, φ, z) are
employed with (ρ̂, φ̂, ẑ) denoting the corresponding unit vectors, and
with the z axis chosen as the axis of revolution. The origin of the
circular cylindrical coordinate system lies on the z axis but does not
necessarily coincide with the lower pole of the BOR as in Figure 1. The
coordinates (t, φ), with t the path length along the generating curve of
the BOR from the lower pole, form an orthogonal curvilinear system
on the surface S of the BOR; the corresponding unit vectors are (t̂, φ̂).
Figure 2 shows the propagation vector kinc = k k̂inc of the incident
plane wave. The propagation vector is assumed to lie in the xz plane
(φ = 0), with −k̂inc making an angle of θinc with the positive z axis
and with kinc

x ≤ 0 so that

kinc = −k(sin θincx̂ + cos θincẑ). (10)

Also shown in Figure 2 are the spherical polar angles of the far field
observation point rfar = (r, θfar, φfar) and the associated unit vectors
θ̂far and φ̂far. For TM illumination the incident electric field is given



136 Shore and Yaghjian

Figure 2. Plane wave scattering by a body of revolution.

by
Einc = kZ0exp(−jkinc · r)θ̂inc (11)

while for TE illumination it is given by

Einc = kZ0exp(−jkinc · r)φ̂inc. (12)

In (11) and (12) r is the vector from the origin to any point in space
and the factor of kZ0 is inserted to simplify the later expressions.

Thus, for a BOR (9) can be replaced by the equivalent pair of
equations

jt̂ ·
∮
S

{ [
k2K(r′) + ∇′

S

(
∇′

S · K(r′)
)
+ J ′ (∇′

S · K(r′)
)
n̂′

]
G(r, r′)

−
(
∇′

S · K(r′)
) ∂G(r, r′)

∂n′ n̂′
}
dS′ =

k

Z0
t̂ · Einc(r) (13a)

and

jφ̂ ·
∮
S

{ [
k2K(r′) + ∇′

S

(
∇′

S · K(r′)
)
+ J ′ (∇′

S · K(r′)
)
n̂′

]
G(r, r′)

−
(
∇′

S · K(r′)
) ∂G(r, r′)

∂n′ n̂′
}
dS′ =

k

Z0
φ̂ · Einc(r). (13b)

The LEFIE for a PEC scatterer with a closed smooth surface in
(9) and for closed smooth BORs in (13), like the original EFIE in
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(1), produces a unique solution for the surface current K except at
frequencies equal to the resonant frequencies of the cavity formed by
the closed surface S of the scatterer. These spurious resonances can be
eliminated from the LEFIE in the same way they have been eliminated
from the EFIE. For example, the LEFIE can be combined with the
magnetic-field integral equation [4] or added to a corresponding LEFIE
that is satisfied on a dual surface just inside the surface S of the
scatterer [5–9]. To concentrate on the subject of lowering the order
of the singularity of the EFIE and not on the details of these methods
for eliminating spurious resonances, we shall choose frequencies in our
numerical examples that are sufficiently far from any cavity resonance
to avoid numerical instabilities.

2.3. Solution of the LEFIE for a BOR by the Method of
Moments

To solve the LEFIE (13) for the surface current, we begin by expanding
K in a Fourier series

K(t′, φ′) =
N∑

n=−N

[
Kt

n(t′)t̂(t′, φ′) + Kφ
n(t′)φ̂(φ′)

]
ejnφ′

. (14)

The choice of the value of N is discussed in Subsection 2.4. To
obtain separate integral equations for each of the Fourier modes we
multiply both sides of (13a) and (13b) by e−jmφ,m = 0,±1,±2, · · · ,
and integrate with respect to φ from −π to π. As will be seen below,
the integrands of the left-hand sides of (13a) and (13b) are of the form
F (t, t′, φ′ − φ)ejnφ′

if the dot products of t̂ and φ̂ are taken inside
the integral signs. Noting that dS′ = ρ′dt′dφ′ and performing the
integration with respect to φ′ from −π to π as well as the integration
with respect to φ we then have

π∫
−π

dφe−jmφ

π∫
−π

dφ′ejnφ′
F (t, t′, φ′ − φ)

=
π∫

−π

dφej(n−m)φ

π∫
−π

dφ′ejn(φ′−φ)F (t, t′, φ′ − φ)

= 2πδnm

π∫
−π

dφ′ejnφ′
F (t, t′, φ′) (15)

where the Kronecker delta δnm equals 0 for m 	= n and equals 1 for
m = n. The orthogonality of the Fourier modes thus enables separate
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integral equations to be obtained for each Fourier mode ejnφ.
Following the φ and φ′ integrations we approximate Kt

n(t′) and
Kφ

n(t′) by pulse basis functions defined as follows. The generating
curve of the BOR is parameterized in terms of t, the distance along
the curve measured from the lower pole of the BOR. For each value
of t, the corresponding point on the generating curve is given by
[ρ(t), z(t)]. A set of M+1 points p�

1, p
�
2, · · · , p�

M+1 is chosen to discretize
the generating curve with p�

1 = (ρ�
1, z

�
1) being the lower pole of the

generating curve corresponding to t = 0, and p�
M+1 = (ρ�

M+1, z
�
M+1)

being the upper pole of the generating curve. The generating curve is
approximated by straight line segments between adjacent points. The
midpoints of the approximating straight line segments are given by

(ρi, zi) =
(
ρ�

i + ρ�
i+1

2
,
z�
i + z�

i+1

2

)
, i = 1, 2, · · · ,M (16)

with the length of the ith straight line segment denoted by

di =
[(
ρ�

i+1 − ρ�
i

)2 +
(
z�
i+1 − z�

i

)2
]1/2

. (17)

For calculation purposes the discretized generating curve completely
replaces the original generating curve and the parameter t now becomes
the length along the discretized curve from the lower pole instead of the
length along the original generating curve from the lower pole. Thus,
for example, t(p�

1) = 0, t(p�
2) = d1, t(p�

3) = d1 + d2, etc. A pulse basis
function pi(t) is defined as

pi(t) =
{

0, t ≤ t�i , t ≥ t�i+1
1, t�i ≤ t ≤ t�i+1

. (18)

Then

Kt
n(t′) ≈

M∑
i=1

Kt
n(t′i)pi(t′) (19a)

and

Kφ
n(t′) ≈

M∑
i=1

Kφ
n(t′i)pi(t′). (19b)

A set of 2M equations for the 2M unknowns Kt
n(ti),Kφ

n(ti), i =
1, 2, · · · ,M, is then obtained by using point-matching: the left-hand
side and right-hand side of the integral equations for each Fourier mode
are equated at t = ti, i = 1, 2, · · · ,M. This set of 2M equations can
be expressed in matrix form as[

[Ztt
n ] [Ztφ

n ]
[Zφt

n ] [Zφφ
n ]

] [
Kt

n

Kφ
n

]
=

[
Vt

n

Vφ
n

]
, n = 0,±1,±2, · · · ,±N. (20)
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In (20) the [Zpq
n ], p, q = t or φ, are M × M matrices obtained from

the left-hand sides of (13a) and (13b). The index p corresponds to the
external dot product factor t̂ or φ̂, and the index q corresponds to the
t or φ component of K. The ith row of [Zpq

n ] corresponds to the value
of the observation point ti, and the jth column of [Zpq

n ] corresponds
to Kq

n(tj). The ith value of the M × 1 vectors Kt
n and Kφ

n equals
Kt

n(ti) and Kφ
n(ti) respectively. The vectors Vt

n and Vφ
n on the right-

hand side of (20) contain the values of the right-hand sides of (13a)
and (13b), respectively, evaluated at t = ti, i = 1, 2, · · · ,M, following
multiplication by e−jnφ and integration with respect to φ from −π to
π.

A quadratic Lagrangian interpolation polynomial [10] is used to
obtain the necessary approximations for both the first and second
derivatives in (13), namely [11]

d

dt′

[
ρ′Kt

n(t′)
]
t′=tj

≈
1∑

k=−1

c′j+kρj+kK
t
n,j+k (21a)

d

dt′

[
1
ρ′
Kφ

n(t′)
]
t′=tj

≈
1∑

k=−1

c′j+k

1
ρj+k

Kφ
n,j+k (21b)

d2

dt′2

[
ρ′Kt

n(t′)
]
t′=tj

≈
1∑

k=−1

c′′j+kρj+kK
t
n,j+k (21c)

where we have denoted Kt
n(tj) and Kφ

n(tj) by Kt
n,j and Kφ

n,j

respectively. When j = 1 in (21), k is summed form 0 to 2; and
when j = M in (21), k is summed form -2 to 0. That is, one-sided
finite-difference approximations to the derivatives are used at either
end of the BOR.

Detailed expressions for the Z matrices, the V vectors, the
surface currents K, and the far scattered electric fields are given in
Appendix A.

2.4. Number of Fourier Modes for Expansion and Testing
Functions

The φ dependence of the current given by (14) is expressed as a
summation from −N to N of the Fourier modes ejnφ. The value of N
can be set equal to the number of Fourier modes sufficient to represent
(to the desired accuracy) the φ variation of the tangential component
of the incident electric field on the surface of the BOR. Let a be the
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largest value of ρ of a point (ρ, z) on the generating curve of the BOR.
Then from (10)–(12) it can be seen that the φ variation of the incident
field along the circle on the BOR corresponding to the point (a, z) is
given by

f(φ) = cosφejka sin θinc cos φ or f(φ) = sinφejka sin θinc cos φ. (22)

For axial incidence θinc = 0 and f(φ) equals cosφ or sinφ so that only
the e±jφ modes are excited. For oblique incidence, we can express f(φ)
as the Fourier series

f(φ) =
N∑
−N

cne
jnφ (23a)

such that

cn =
1
2π

2π∫
0

f(φ)e−jnφdφ. (23b)

With the help of (22) and the definition of the Bessel function, we find

| cn |= 1
2

∣∣∣Jn+1(ka sin θinc) ± Jn−1(ka sin θinc)
∣∣∣ . (24)

As n increases beyond ka sin θinc, Jn(ka sin θinc) decreases rapidly and
it suffices to choose

N = I + M (25)
where

I = Int[(1 + α)ka sin θinc] , 0 < α � 1 (26)
and M is the smallest integer for which

JN (ka sin θinc)
JI(ka sin θinc)

≤ ε (27)

with ε a small positive number depending on the desired accuracy. If
the value of N given by (25) is plotted as a function of Int[ka sin θinc],
the plot is found to be almost linear. For ε = 0.005, for example,

N ≈ Int[1.04ka sin θinc] + 7. (28)

A similar expression

N ≈ Int[k+(a sin θ) + λ] (29)

with k+ denoting a value a few percent larger than k was obtained by
Yaghjian [13] for the reciprocal problem of estimating the number of
angular modes needed to represent the far field of a radiator in the θ
direction.
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Figure 3. Geometry of the prolate spheroid.

3. NUMERICAL RESULTS

The analysis presented in Section 2 was implemented in a FORTRAN
computer program which was then used to obtain numerical results for
several different BORs. In this section we show some representative
results using the LEFIE to calculate scattering from a prolate spheroid.
The geometry of the spheroid is shown in Figure 3. The semi-major
axis of the spheroid is a and the semi-minor axis is b. For the
calculations we show, ka = 20 and kb = 10. The TM illuminating
plane wave makes an angle of 45◦ with the major axis of the spheroid.
For these values of ka and kb, no spurious resonances are encountered;
see end of Subsection 2.2.

The solid curve in Figure 4 shows the E-plane radar cross section
(RCS) pattern calculated with the combined field integral equation
(CFIE) implemented in the computer code CICERO [14] using a
discretization of the spheroid generating curve of 40 points/λ. The
dotted curve in Figure 4 is the pattern obtained by solving the
conventional EFIE with the Galerkin form of the method of moments
and overlapping triangle basis functions with a point density of 20
points/λ. The dot-dashed curve and the dashed curve in Figure 4 are
the patterns obtained solving the conventional EFIE with pulse basis
functions and point matching at point densities of 20 points/λ and 80
points/λ, respectively. We note that the CFIE and EFIE solved with
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Figure 4. E-plane pattern of a prolate spheroid with ka = 20 and
kb = 10 illuminated by a TM plane wave incident at an angle of
45◦ with the major axis, as calculated by the CFIE with a density
of 40 points/λ, by the EFIE solved with overlapping triangle basis
functions at a density of 20 points/λ, and by the EFIE solved with
pulse basis functions and point matching at a density of 20 points/λ
and 80 points/λ.

overlapping triangle basis functions yield results that agree closely, but
the patterns obtained with pulse basis functions and point matching
are highly inaccurate. Moreover, these pulse basis function patterns are
not significantly improved upon by considerably increasing the point
density.

In contrast with the very poor results obtained when the
conventional EFIE is solved using pulse basis functions and point
matching, in Figure 5 we show the spheroid patterns obtained solving
the conventional EFIE with the method of moments and overlapping
triangle basis functions with a density of 20 points/λ, and the patterns
obtained by solving the LEFIE with pulse basis functions and point
matching at densities of 40 pointsλ and 20 points/λ. The LEFIE
solved at a density of 40 points/λ yields a pattern quite close to the
conventional EFIE pattern obtained at a density of 20 points/λ. The
LEFIE solved with a density of 20 points/λ, however, has some pattern
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Figure 5. E-plane pattern of a prolate spheroid with ka = 20 and
kb = 10 illuminated by a TM plane wave incident at an angle of 45◦
with the major axis, as calculated by the EFIE solved with overlapping
triangle basis functions at a density of 20 points/λ, and by the LEFIE
solved with pulse basis functions and point matching at a density of
40 points/λ and 20 points/λ.

errors of approximately 1.5 dB. The point density required to obtain
results with the LEFIE comparable in accuracy to those obtained
with the conventional EFIE can be improved upon considerably by
the stratagem of using a higher point density for only a very small
region – say λ/4 – in the vicinity of the ends of the spheroid generating
curve, and a low point density elsewhere as shown in Figure 6. In the
LEFIE pattern shown in Figure 6 a density of 80 points/λ was used
close to the ends of the spheroid generating curve (i.e., the poles of
the spheroid) and a density of 20 points/λ was used elsewhere. The
reason why a high point density may be required at the ends of the
BOR generating curve is that the finite-difference approximation of the
first and second derivatives used in solving the LEFIE is less accurate
at the beginning and end of the generating curve because one-sided
derivative approximations must be used there; see (21). Using a higher
point density at the ends of the generating curve compensates for the
use of the one-sided finite-difference derivative approximations.
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Figure 6. E-plane pattern of a prolate spheroid with ka = 20 and
kb = 10 illuminated by a TM plane wave incident at an angle of 45◦
with the major axis, as calculated by the EFIE solved with overlapping
triangle basis functions at a density of 20 points/λ, by the LEFIE
solved with pulse basis functions and point matching at a density of 80
points/λ in an interval of λ/4 at either end of the spheroid generating
curve and 20 points/λ elsewhere, and by the LEFIE at a uniform
density of 20 points/λ.

4. SUMMARY

Unlike the magnetic-field integral equation, the conventional form
of the electric-field integral equation cannot be solved accurately
using pulse-basis functions and point matching. Moreover, it can be
demonstrated that it is the highly singular kernel of the EFIE, rather
than the derivatives of the current, that precludes the use of the pulse-
basis-function point-matching MOM. A new form of the EFIE has
been derived whose kernel has no greater singularity than the free-space
Green’s function. This new low-order-singularity form of the EFIE, the
LEFIE, has been applied to a perfectly electrically conducting body
of revolution using a pulse-basis function point-matching MOM, and
a computer program has been written to implement the numerical
solution. Derivatives of the current are approximated with finite
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differences using a quadratic Lagrangian interpolation polynomial.
Such a simple solution of the LEFIE is contingent, however, upon
the vanishing of a linear integration term that appears when the
original EFIE is transformed to obtain the LEFIE. The vanishing of
this linear integration term restricts the applicability of the LEFIE to
smooth closed scatterers without tips, edges, or any other features
that might result in a discontinuous or unbounded surface charge
density, its surface derivative, and the sum of the reciprocals of the
principal radii of curvature, or a discontinuous unit normal vector to
the surface. Bistatic RCS calculations performed for a prolate spheroid
demonstrate that results comparable in accuracy to the conventional
EFIE results (obtained with a triangular-function Galerkin MOM) can
be obtained with the LEFIE using pulse-basis functions and point
matching provided that a higher density of points is used close to the
ends of the BOR generating curve to compensate for the use of one-
sided finite difference approximations of the first and second derivatives
of the current.

APPENDIX A. DETAILED EXPRESSIONS FOR THE Z
MATRICES, THE V VECTORS, SURFACE CURRENTS
K, AND FAR SCATTERED FIELDS

The Zpq
n matrices in (20) can be expressed as the sum of four

submatrices corresponding to each of the four terms under the integral
signs in the LEFIE (13) [11]

[Zpq
n ] = [Zpq

n ]1 + [Zpq
n ]2 + [Zpq

n ]3 + [Zpq
n ]4 , p, q = t or φ (A1)

where

[Ztt
n ]1;ij = jk2dj [sin vi sin vjG2,n(ρi, ρj , zi − zj)

+ cos vi cos vjG1,n(ρi, ρj , zi − zj)]

[Zφt
n ]1;ij = −k2djρj sin vjG3,n(ρi, ρj , zi − zj)

[Ztφ
n ]1;ij = k2djρj sin viG3,n(ρi, ρj , zi − zj)

[Zφφ
n ]1;ij = jk2djG2,n(ρi, ρj , zi − zj) (A2)

[Ztt
n ]2;i,j+k = jdjρj [sin vi sin vjG2,n(ρi, ρj , zi − zj)

+ cos vi cos vjG1,n(ρi, ρj , zi − zj)]

×
(

1
ρj

c′′j+kρj+k − 1
ρ2

j

sin vjc
′
j+kρj+k

)



146 Shore and Yaghjian

+ jn sin vidjG3,n(ρi, ρj , zi − zj)
1
ρ2

j

c′′j+kρj+k

[Zφt
n ]2;i,j+k = −djρj sin vjG3,n(ρi, ρj , zi − zj)

×
(

1
ρj

c′′j+kρj+k − 1
ρ2

j

sin vjc
′
j+kρj+k

)

− ndjG2,n(ρi, ρj , zi − zj)c′j+kρj+k

[Ztφ
n ]2;i,j+k = −ndjρj [sin vi sin vjG2,n(ρi, ρj , zi − zj)

+ cos vi cos vjG1,n(ρi, ρj , zi − zj)] c′j+k

1
ρj+k

− n2dj

ρj
sin viG3,n(ρi, ρj , zi − zj) |k=0

[Zφφ
n ]2;i,j = −jndjρj sin vjG3,n(ρi, ρj , zi − zj)

− jn2dj

ρj
G2,n(ρi, ρj , zi − zj) (A3)

[Ztt
n ]3;i,j+k = jdjJ(tj)[sin vi cos vjG2,n(ρi, ρj , zi − zj)

− cos vi sin vjG1,n(ρi, ρj , zi − zj)]c′j+kρj+k

[Zφt
n ]3;i,j+k = −djJ(tj) cos vjG3,n(ρi, ρj , zi − zj)c′j+kρj+k

[Ztφ
n ]3;i,j = −ndjJ(tj)[sin vi cos vjG2,n(ρi, ρj , zi − zj)

− cos vi sin vjG1,n(ρi, ρj , zi − zj)]

[Zφφ
n ]3;i,j = −jndjJ(tj) cos vjG3,n(ρi, ρj , zi − zj) (A4)

[Ztt
n ]4;i,j+k = −jk2dj [ρi sin vi cos2 vjH4,n(ρi, ρj , zi − zj)

− ρi cos vi cos vj sin vjH2,n(ρi, ρj , zi − zj)

− ρj sin vi cos2 vjH2,n(ρi, ρj , zi − zj)
+ ρj cos vi cos vj sin vjH1,n(ρi, ρj , zi − zj)
− (zi − zj)(sin vi cos vj sin vjH2,n(ρi, ρj , zi − zj)

− cos vi sin2 vjH1,n(ρi, ρj , zi − zj))]c′j+kρj+k

[Zφt
n ]4;i,j+k = k2dj [ρi cos2 vjH5,n(ρi, ρj , zi − zj)

− ρi cos2 vjH3,n(ρi, ρj , zi − zj)
− (z − z′) cos vj sin vjH3,n(ρi, ρj , zi − zj)]c′j+kρj+k

[Ztφ
n ]4;i,j = nk2dj [ρi sin vi cos2 vjH4,n(ρi, ρj , zi − zj)

− ρi cos vi cos vj sin vjH2,n(ρi, ρj , zi − zj)
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− ρj sin vi cos2 vjH2,n(ρi, ρj , zi − zj)
+ ρj cos vi cos vj sin vjH1,n(ρi, ρj , zi − zj)
− (zi − zj)(sin vi cos vj sin vjH2,n(ρi, ρj , zi − zj)

− cos vi sin2 vjH1,n(ρi, ρj , zi − zj))]

[Zφφ
n ]i,j = jk2ndj [ρi cos2 vjH5,n(ρi, ρj , zi − zj)

− ρi cos2 vjH3,n(ρi, ρj , zi − zj)
− (zi − zj) cos vj sin vjH3,n(ρi, ρj , zi − zj) (A5)

with

G1,n(ρ, ρ′, z − z′) =
π∫

0

G0(R) cos(nφ′)dφ′

G2,n(ρ, ρ′, z − z′) =
π∫

0

G0(R) cos(nφ′) cosφ′dφ′

G3,n(ρ, ρ′, z − z′) =
π∫

0

G0(R) sin(nφ′) sinφ′dφ′

G0(R) =
exp(−jkR)

kR
(A6)

and

H1,n(ρ, ρ′, z − z′) =
π∫

0

H0(R) cos(nφ′)dφ′

H2,n(ρ, ρ′, z − z′) =
π∫

0

H0(R) cos(nφ′) cosφ′dφ′

H3,n(ρ, ρ′, z − z′) =
π∫

0

H0(R) sin(nφ′) sinφ′dφ′

H4,n(ρ, ρ′, z − z′) =
π∫

0

H0(R) cos(nφ′) cos2 φ′dφ′

H5,n(ρ, ρ′, z − z′) =
π∫

0

H0(R) sin(nφ′) cosφ′ sinφ′dφ′

H0(R) =
1 + jkR

(kR)3
exp(−jkR). (A7)
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The angles v and v′ are measured positive clockwise from the positive
z axis to t̂ and t̂

′
, respectively, and their discretized values are given

by

sin vi =
ρ�

i+1 − ρ�
i

di
, cos vi =

z�
i+1 − z�

i

di
. (A8)

We find that the following relationships hold

[Ztt
−n] = [Ztt

n ], [Ztφ
−n] = −[Ztφ

n ], [Zφt
−n] = −[Zφt

n ], [Zφφ
−n] = [Zφφ

n ].
(A9)

Similarly, the components of the Vt
n and Vφ

n vectors can be
expressed as [11]

V tθ
ni = πjn+1k

[
cos θinc sin vi(Jn+1 − Jn−1) + 2j sin θinc cos viJn

]
× ejkzi cos θinc

V φθ
ni = πjnk cos θinc(Jn+1 + Jn−1)ejkzi cos θinc

V tφ
ni = −πjnk sin vi(Jn+1 + Jn−1)ejkzi cos θinc

V φφ
ni = πjn+1k(Jn+1 − Jn−1)ejkzi cos θinc

(A10)

where Jn = Jn(kρi sin θinc) denotes the Bessel functions, and the
following relationships hold

V tθ
−ni = V tθ

ni , V φθ
−ni = −V φθ

ni , V tφ
−ni = −V tφ

ni , V φφ
−ni = V φφ

ni . (A11)

The expressions for the currents induced on the surface of the
BOR by a TM and TE linearly polarized incident plane wave are given,
respectively, by [11]

Kθ(t, φ) = p̃Ktθ
0 t̂(t, φ)

+ 2
N∑

n=1

[
(p̃Ktθ

n ) cosnφt̂ + j(p̃Kφθ
n ) sinnφφ̂(φ)

]

Kφ(t, φ) = p̃Kφφ
0 φ̂

+ 2
N∑

n=1

[
(p̃Ktφ

n ) sinnφt̂(t, φ) + (p̃Kφφ
n ) cosnφφ̂(φ)

]
(A12)

where p̃ = [p1(t), p2(t), · · · pN (t)] and the following relationships hold

Ktθ
−n = Ktθ

n , Kφθ
−n = −Kφθ

n , Ktφ
−n = −Ktφ

n , Kφφ
−n = Kφφ

n . (A13)
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Finally, the expressions for the components of the far scattered
electric field are given by [11]

Esc,θθ(r) r→∞∼ −jkZ0e
−jkr

4πkr

×
[
R̃tθ

0 Ktθ
0 + 2

N∑
n=1

(
R̃tθ

n Ktθ
n + R̃φθ

n Kφθ
n

)
cos(nφfar)

]

Esc,φθ(r) r→∞∼ kZ0e
−jkr

4πkr
2

N∑
n=1

(
R̃tφ

n Ktθ
n + R̃φφ

n Kφθ
n

)
sin(nφfar)

Esc,θφ(r) r→∞∼ kZ0e
−jkr

4πkr
2

N∑
n=1

(
R̃tθ

n Ktφ
n + R̃φθ

n Kφφ
n

)
sin(nφfar)

Esc,φφ(r) r→∞∼ −jkZ0e
−jkr

4πkr

×
[
R̃φφ

0 Kφφ
0 + 2

N∑
n=1

(
R̃tφ

n Ktφ
n + R̃φφ

n Kφφ
n

)
cos(nφfar)

]

(A14)

with

Rtθ
ni = πjn+1kdiρi

×
[
cos θfar sin vi(J

f
n+1 − Jf

n−1) + 2j sin θfar cos viJ
f
n

]
× ejkzi cos θfar

Rφθ
ni = −πjnkdiρi cos θfar(Jf

n+1 + Jf
n−1)e

jkzi cos θfar

Rtφ
ni = πjnkdiρi sin vi(J

f
n+1 + Jf

n−1)e
jkzi cos θfar

Rφφ
ni = πjn+1kdiρi(J

f
n+1 − Jf

n−1)e
jkzi cos θfar

Jf
n = Jn(kρi sin θfar) (A15)

which obey the relationships

Rtθ
−ni = Rtθ

ni, Rφθ
−ni = −Rφθ

ni , Rtφ
−ni = −Rtφ

ni, Rφφ
−ni = Rφφ

ni . (A16)

The radar cross section σ is defined as

σpq = lim
r→∞

4πr2 | Esc,pq |2
| Einc,q |2 (A17)

where p : θ or φ, denotes the component of the far scattered field, and
q : θ (TM) or φ (TE), indicates the polarization of the incident electric
field.
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