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Abstract—The propagation of waves in a random medium is a
very complex phenomena which presents numerous difficulties in its
experimental approach, and in its theoretical analysis. In this work,
the case of a laser beam direction during its random propagation
through a hot free jet of air, is considered using geometrical optics.
Some experiments are done in the jet and from the hypothesis of
the Markovian process, the main stochastic characteristics of the
laser beam direction are studied. In addition, the sensitivity of the
probability density of the beam random direction with respect to the
jet turbulent diffusion is determined.
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1. INTRODUCTION

In several laser based systems such as laser radar, remote sensing,
satellite communication, distance measuring, detection, various
techniques for obtaining local or global information about turbulence
are encountered. One usually uses the statistical properties of the
laser beam random propagation through the corresponding turbulent
medium. Sometimes, the inverse problem is also studied, that is, the
possibility to obtain local or global stochastic properties of the laser
beam random propagation using turbulence flow information. About
these techniques, we can cite contributions by Wilson [1], Sirazetdinov
et al. [2], Joia et al. [3], Gagnaire and Tailland [4], Benzirar et al.
[5]. In [1], an experimental method for obtaining statistical properties
of turbulent fluctuations in a circular jet is described. In [2], it
is experimentally proved that the laser angular divergence increases
with decreasing cross-angle. Results of different experiments showed
that the average angle of the narrow one-micron beam disturbed
by a jet aircraft engine is less than that of the ten-micron beam
which is characterized by a large diffraction divergence, and that
of the half-micron beam stronger subjected to disturbances. In [3],
the propagation of a laser beam through a plane turbulent jet is
considered; the intensity fluctuations arising in the beam are measured
and their spectra and variance determined at various distances from
the jet. Another problem has been treated in [4] where the temperature
fluctuations created in a hot jet of air are measured from a laser beam
intensity fluctuations. The propagation of a laser beam through a hot
turbulent jet is studied again in [5]: Benzirar et al. have determined
the value of the jet diffusion coefficient defined as a proportionality
factor between the mean square of the deflection angle fluctuations
and the length of the corresponding finite laser beam path. In the
above works [3, 4] and [5], the statistical properties of the laser
beam direction are not studied. The present paper is devoted to the
determination of the characteristics of a laser beam random direction
during its propagation, using geometrical optics and the hypothesis of
the Markovian process. It is well known [6–8] and proved in [9] that
the hypothesis of Markovian process which is used in the present paper
leads to the Einstein-Fokker-Planck-Kolmogorov (EFPK) equation.
For solving this equation the calculation procedure in our work uses
the value of the diffusion coefficient obtained in [5]. Our calculus
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are essentially numerical and are done by using the experimental
impact of the laser beam on the plane of the photoelectric cell. For
theoretical analysis about interaction between waves and turbulent
flows, Klyatskin and Tatarskii [6] have presented a consistent write
up on the principal results and have described the conditions for the
wave propagation process to be considered as a diffusion process.

In order to understand the present work, the paper consists of
four sections. The first section is devoted to the description of the
experimental setup and to the approximations that we have made for
justifying the validity of the geometrical optics.

In the second section, we describe the modified experimental setup
which allows the separation of the laser beam intensity fluctuations
from the total fluctuations (intensity and direction), in order to prove
that, in the jet considered, the intensity fluctuations may be neglected.

In the third section, we are concerned with the validity of the
hypothesis of Markovian process for the laser beam random direction.
It follows the description of the numerical calculation procedure for
solving the EFPK equation. From that solution, the main stochastic
characteristics of the laser beam direction are determined.

In the last section of the present paper, the methods of
measurement are described and the results and various plots are
presented and discussed.

2. EXPERIMENTAL CONDITIONS AND SOME
REMARKS ABOUT THE PHYSICS OF THE PROBLEM

The experimental setup is shown schematically in Fig. 1. We are
concerned with a light beam created from a 1 mW He-Ne laser and
having initial diameter a = 0.8 mm, wavelength λ = 6328 A and
spectral width ∆λ = 6.4 × 10−4 A. This laser beam is placed in the
(xx1) plane and traverses the jet at a distance x1 = 200 mm from the
nozzle exhaust. The distance corresponding to the mean trajectory of
the laser beam in the jet is taken along the Ox axis and is equal to :
X = 200 mm. We choose (x, x1, x2) as the three cartesian coordinates
axis. Outside the jet, at a distance d = 500 mm from the jet border, is
placed a photoelectric cell (PC1) on which the laser beam can produce
an impact after having traversed the jet. The very important character
of this cell is that the electric signals transmitted by the cell depend
only on the two coordinates x1 and x2 of the beam impact position.

Before heating the jet, the ambient medium is at rest and the jet is
at ambient temperature. Under these conditions, the beam trajectory
is nearly rectilinear and produces on the cell, a constant impact which
is taken as the origin O of the cell plane. When the jet is heated,
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Figure 1. Experimental setup 1.

we can measure along the whole mean path of the laser beam, some
parameters which allow us to assume that the jet is plane, that is, the
mean temperature 〈T 〉 by means of a thermocouple, the rms of the
temperature fluctuations by using an anemometer with cold wire, and
the mean velocity 〈U〉 by means of a Pitot’s tube.

About the physics of the problem, it is useful to specify that all
measurements were done when the jet turbulence is fully developed
and does not depend on time, in order to obtain stable results.
Furthermore, we assume that the pressure at ant point of the jet
remains nearly constant and is equal to the air pressure Po, that is,
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the pressure gradient for two neighboring points inside the jet can
be neglected. This hypothesis holds if the variations of pressure in
the heated jet spread at very high speed. Consequently, the thermic
turbulence can be considered as the unique cause of the refractive index
fluctuations.

The inner scale � and the outer scale L of the jet turbulence being
measured in [5] under the same conditions (� = 1 mm, L = 10 mm), we
can say that the classical conditions X � L, and λ � � are then
satisfied in the jet considered. It is well known that under those
two conditions, the Maxwell equations give the stochastic Helmholtz
equation for the wave electric field, which then leads to the equation
of the geometrical optics approximation. It is obvious that the above
conclusion is valid if diffraction may be neglected, that is if the size of
the first Fresnel zone

√
λX is less than the inner scale of the turbulence,

and if the intensity fluctuations of the laser beam remain very weak.
Knowing that

√
λX = 0.356 mm and � = 1 mm, we can say that the

condition
√
λX < � is satisfied. It remains to prove that the laser beam

intensity fluctuations can be neglected in the jet considered. That is
the purpose of the section below.

3. THE EXPERIMENTAL SETUP FOR THE
SEPARATION OF THE INTENSITY FLUCTUATIONS
FROM THE TOTAL FLUCTUATIONS

With the aim to estimate the intensity fluctuations, the previous
experimental system can be modified and the new system is shown
in Fig. 5. The laser beam already used in Section 2 is expanded in
diameter by a first afocal system, after passing through the heated
jet. It then falls onto two holes P1 and P2 (equal diameter = 2ao,
P1P2 = do) situated on a vertical screen, symmetrically with respect
to the initial direction of the laser beam. By means of a second nearly
afocal system, the interference pattern can be obtained on a plane
(x1, x2) where the aperture of a photomultiplier is placed. Only three
fringes are sufficient and permit to know all geometrical properties of
the interference pattern. If Xo denotes the first zero of the Bessel’s
function J1 and xo the first zero of the function x2 = cos2 x1, it is well-
known that the interference pattern contains only three fringes if the
condition Xo/xo = 3 is satisfied. Knowing that the lenses L1, L2, and
the objectives l1, l2 have focal distances F1 = 100 mm, F2 = 100 mm,
f1 = 17 mm and f2 = 4.7 mm respectively, the above condition leads
to a0/d ≈ 0.814. In order to obtain large and well-illuminated fringes,
we have taken: 2ao = 0.4 mm and 2do = 0.5 mm.
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4. NUMERICAL CALCULATIONS PROCEDURE

Before describing the calculation procedure, we have to give the reason
which allows us to use the hypothesis of Markovian process for the laser
beam random direction. By way of proof, we use the works done by
Benzirar et al. [5]. We can say that the above authors have determined
by using the same hypothesis, under the same experimental conditions,
the diffusion coefficient D defined as:

D = −
(
〈µ2〉
2

) ∫ ∞

0
∆Rµ(0, 0, r)dr (1)

where µ denotes the refractive index fluctuations, Rµ the correlation
coefficient of µ and ∆ the Laplacian operator. After having compared
the value that they obtained with the value measured by means of the
hot wire technique by Gagnaire in [4], they showed that the model
based on the hypothesis of Markovian process may be applied for the
laser beam random direction in the jet considered.

Let us define the unit vector U characterizing the laser beam
direction, by writing the cartesian components (Ux, Uy, Uz) of U as
follows:

Ux = sin θ cosφ (2a)
Uy = sin θ sinφ (2b)
Uz = cos θ (2c)

where φ is the polar angle and θ the azimuthal angle. Using the
definition of Markovian process and taking into account the fact
that for any small difference length of a given path, the laser beam
direction may undergo only small variations, it is proved in [9] that
the probability P (σ, θ, φ) for the laser beam to have the direction U ,
after having traversed the path of length σ, is governed by the second
Kolmogorov’s equation also named the EFPK equation:

∂P

∂σ
=
D

sin θ
∂

∂θ

(
sin θ.

∂P

∂θ

)
+
D

sin2 θ
.
∂2P

∂φ2
(3a)

where D is the jet diffusion coefficient previously defined.
Since the small difference between the small finite path ∆σ and

the corresponding distance ∆x along the x axis can be neglected, the
Equation (3a) is replaced by:

∂P

∂x
=
D

sin θ
∂

∂θ

(
sin θ.

∂P

∂θ

)
+
D

sin2 θ
.
∂2P

∂φ2
(3b)
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The laser beam initial direction before entering in the jet being the Ox

axis, the initial condition associated to the Equation (3a) is:

P (θ, φ, x = 0) = δ
(
θ − π

2

)
δ(θ) (3c)

where δ denotes the Dirac’s distribution. Differentiating (3c) with
respect to the parameter D and assuming ∂2P

∂a∂D = ∂2P
∂D∂a for a = φ, θ,

we obtain:
∂Q

∂x
=
D

sin θ
∂

∂θ

(
sin θ.

∂Q

∂θ

)
+
D

sin2 θ
.
∂2P

∂φ2
+

1
D

∂P

∂x
(4a)

where Q = ∂P
∂D represents the sensitivity of the probability of the

direction of rays to the parameter D or the strength of the turbulent
diffusion. The initial condition associated to the Equation (4a) and
deduced from (3c) is:

Q(φ, θ, x = 0) = 0 (4b)
The coordinates (x1, x2) of the laser beam impact on the photoelectric
cell and the variable x are discretized according to the following
relations:

x1(L) = x10 + L.c, L = 0, 1, 2, . . . , Lmax (5a)
x2(M) = x20 +M.c, M= 0, 1, 2, . . . ,Mmax (5b)
x(0) = 0, (5c)

x(N + 1) − x(N) = ∆x, N = 0, 1, 2, . . . , N max (5d)

It is proved in the following section that the quantities x10, x20, c, Lmax
andMmax will be dictated by the experimental conditions. The value
of Nmax depends on ∆x and the choice of a constant step ∆x along the
x direction is dictated by the flow nature (plane jet) The discretisation
step ∆x must be chosen such that ∆x ≤ l0 where l0 is the integral
scale characterizing the dimension of the turbulent structures in which
the propagation of light can be considered rectilinear (l0 ≈ 8 mm in
[5]).

Assuming that the propagation of the laser ray is rectilinear from
the jet border to the cell plane, it can be shown that the discrete values
for the angles θ and φ are theoretically related to the coordinates (x1,
x2) of the laser ray impact on a photoelectric cell placed outside the
jet, according to the following relations :

φ(L) = tan−1[x1(L)/(xmax +d)] (6a)
θ(M) = π + tan−1[(xmax +d)/x2(M)], if x2(M) < 0 (6b)
θ(M) = tan−1[(xmax +d)/x2(M)], if x2(M) > 0. (6c)
for L = 0, 1, 2, . . . , Lmax and M = 0, 1, 2, . . . ,Mmax .
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In relations (6), xmax = X denotes the whole path distance of the
laser beam propagation and d represents the distance between the jet
border and the photoelectric cell.

For solving the equations (3b) and (4b) with the initial condition
(3c) and (4b) respectively, the numerical scheme used is based on the
following approximations :

P (φ, θ, x) ≈ PN
L,M (7a)

∂P

∂θ
(φ, θ, x) ≈ −A(M)PN

L,M−1 +B(M)PN
L,M + C(M)PN

L,M+1 (7b)

∂2P

∂θ2
(φ, θ, x) ≈ 2[I(M)PN

L,M−1 − E(M)PN
L,M + F (M)PN

L,M+1] (7c)

∂2P

∂φ2
(φ, θ, x) ≈ 2[X(L)PN

L−1,M − Y (L)PN
L,M + Z(L)PN

L+1,M ] (7d)

Q(φ, θ, x) ≈ QN
L,M (7e)

∂Q

∂θ
(φ, θ, x) ≈ −A(M)QN

L,M−1+B(M)QN
L,M +C(M)QN

L,M+1 (7f)

∂2Q

∂θ2
(φ, θ, x) ≈ 2[I(M)QN

L,M−1−E(M)QN
L,M +F (M)QN

L,M+1] (7g)

∂2Q

∂φ2
(φ, θ, x) ≈ 2[X(L)QN

L−1,M − Y (L)QN
L,M + Z(L)QN

L+1,M ] (7h)

(
∂P

∂x

)N+1/2

L,M
≈ 2

∆x
(PN+1/2

L,M − PN
L,M ) (7i)

with:

A(M) =
h(M)

h(M − 1)[h(M − 1) + h(M)]
, (8a)

B(M) =
[h(M) − h(M − 1)]
h(M − 1)h(M)

(8b)

C(M) =
h(M − 1)

h(M)[h(M − 1) + h(M)]
, (8c)

D(M) =
1

h(M − 1)[h(M − 1) + h(M)]
(8d)

E(M) =
1

h(M − 1)h(M)
, (8e)

F (M) =
1

h(M)[h(M − 1) + h(M)]
(8f)
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X(L) =
1

g(L− 1)[g(L− 1) + g(L)]
, (8g)

Y (L) =
1

g(L− 1)g(L)
(8h)

Z(L) =
1

g(L)[g(L− 1) + g(L)]
(8i)

and:

g(L) = φ(L+ 1) − φ(L), with L = 0, 1, 2, . . . , Lmax−1 (9a)
h(M) = θ(M + 1) − θ(M) with M = 0, 1, 2, . . . ,Mmax−1 (9b)

An explicit discretization scheme with alternating directions is used,
according to the following formulas:

P
N+1/2
L,M = R(M)PN

L,M−1 + S(M)PN
L,M + T (M)PN

L,M+1 (10a)

PN+1
L,M = U(L)PN+1/2

L−1,M + V (L)PN+1/2
L,M +W (L)PN+1/2

L+1,M (10b)

Q
N+1/2
L,M = R(M)QN

L,M−1 + S(M)QN
L,M + T (M)QN

L,M+1

+
1
D

(
∂P

∂x

)N+1/2

L,M
(10c)

QN+1
L,M = U(L)PN+1/2

L−1,M + V (L)PN+1/2
L,M +W (L)PN+1/2

L+1,M

+
1
D

(
∂P

∂x

)N+1

L,M
(10d)

with:

R(M) = D(∆x)[2D(M) −A(M). cot(θ(M))] (11a)
S(M) = 1 −D(∆x)[2E(M) −B(M). cot(θ(M))] (11b)
T (M) = D(∆x)[2F (M) + C(M). cot(θ(M))] (11c)
for M = 0, 1, 2, . . . ,Mmax−1,

and:

U(L) =
2D(∆x)X(L)

sin2 θ(M)
(12a)

V (L) = 1 − 2D(∆x)Y (L)
sin2 θ(M)

(12b)

W (L) =
2D(∆x)Z(L)

sin2 θ(M)
(12c)

for L = 0, 1, 2, . . . , Lmax−1
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Assuming Dirichlet boundary conditions, we have for the numerical
scheme, the following relations:

PN
0,M = PN

Lmax,M = 0. (13a)

QN
0,M = QN

Lmax,M = 0 (13b)
for M = 0, 1, 2, . . . ,Mmax

and,

P
N+1/2
L,0 = P

N+1/2
L,Mmax = 0. (14a)

Q
N+1/2
L,0 = Q

N+1/2
L,Mmax = 0. (14b)

for L = 0, 1, 2, . . . , Lmax

5. MEASUREMENTS AND RESULTS

5.1. Experimental Measurements in the Jet

The thermocouple shown in Fig. 2 measures the mean temperature 〈T 〉.
For measuring the mean velocity 〈U〉, we use a moving graduated drum
whose rotation around a vertical axis causes the vertical displacement
of a cursor situated on a graduated ruler, such that 1 tower of
the drum corresponds to 1 mm on the ruler. The drum helps to
bring back a meniscus in order to measure the difference in level h
between its position which depends on 〈U〉, and the initial level. That
meniscus is illuminated and its displacement can be exactly detected
by using a sight objective. By means of a Pitot’s tube, the mean
velocity can be measured because 〈U〉 is related to h by the relation
〈U〉 = [2ρ−1(Pd − P0)]1/2 = 4h1/2 where Pd is the dynamic pressure,
P0 is the static pressure equal to the atmospheric pressure and ρ is the
air specific mass. In Fig. 3, are presented the variations of 〈T 〉 and
〈U〉. It is shown that the values of 〈T 〉 = 50◦C and 〈U〉 = 8 m/sec
remain constant along the whole mean path of the laser beam except
in a short area at both borders of the stream.

The rms of the temperature fluctuations 〈t2〉1/2 are measured
by means of the cold-wire anemometer technique [10] using a wire
whose diameter and length are respectively equal to 10−6 mm and
0.4 mm, with a current intensity Io = 0.16 mA. Taking into account
the fact that the thermic turbulence is considered as the unique cause
of the refractive index fluctuations, the rms of the refractive index
fluctuations 〈µ2〉1/2 are evaluated by using the Dale-Gladstone law.
After some calculations, we obtain the relation:

〈µ2〉1/2 =
(
aP0

〈T 〉2
)
〈t2〉1/2
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Figure 2. Wind Tunnel: (1) Ventilating fan - (2) Vertical
displacement - (3) Heating resistances - (4) Box for flow homogeneity
- (5) Filter against turbulence - (6) Nozzle - (7) Thermocouple.
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Figure 3. Statistical properties of the turbulent jet as function of the
propagation distance x: (a) Mean temperature. (b) Mean speed.

where a = 79 × 10−6 K(mb)−1 = α/R, α being the Dale-Gladstone
constant and R a constant of the perfect gas.

In Fig. 4, are plotted the variations of 〈t2〉1/2 and 〈µ2〉1/2. It
appears that 〈t2〉1/2 = 2.75◦C and 〈µ2〉1/2 = 2.116 × 10−4. These
values remain constant along the whole mean path of the laser beam
except in a short area at both borders of the jet.

The above measurements 〈T 〉, 〈U〉, 〈t2〉1/2 and 〈µ2〉1/2 done along
the whole mean path of the laser beam are essential and serve to justify
that the jet considered is plane.

5.2. Measurement of the Intensity Fluctuations

In the absence of the jet, the interference pattern is obtained from the
experimental set up described in Section 3; the width of the fringes is
equal to 9 mm. This value must be compared to the theoretical width
equal to 8.85 mm.

For measuring the intensity fluctuations, we use a photo-
transmitting cell (PC2) which is fed by an electrical tension equal to
12 V. That cell is simultaneously connected to an oscilloscope and to
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Figure 4. Statistical properties of the turbulent jet as function of the
propagation distance x. (a) rms of temperature fluctuations

√
〈t2〉.

(b) rms of refractive index fluctuations 104
√
〈µ2〉.

a rms-meter. The important character of the cell PC2 is the fact
that the transmitted electrical tension is proportional to the incident
radiation intensity and does not depends on the direction of the
incident radiation if the impact zone is situated inside the sensitive
zone of the cell. For separating the intensity fluctuations from the
total fluctuations (intensity fluctuations + direction fluctuations ), the
measurements are done as follows. For a given point M situated in
the interference pattern, we choose as a reference the mean value of
the light intensity 〈I〉 corresponding to M . This value is measured by
means of an oscilloscope in the absence of the jet. After that, the laser
traverses the heated jet and reaches the photomultiplier connected to
the rms-meter and placed in the interference pattern at the point M .
Under these conditions, that photomultiplier measures the quantity√
〈I2t 〉/〈I〉 where

√
〈I2t 〉 represents the rms of the total fluctuations.

In the absence of the optical system, various polarizers are then
placed in front of the laser-transmitter in order to adjust the mean
value of the light intensity. When the value of 〈I〉 corresponding to
the point M is obtained, the laser beam after having traversed the
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heated jet, is received by the cell PC2 connected to the rms-meter.
The quantity

√
〈i2〉/〈I〉 is then measured,

√
〈i2〉 being the rms of the

intensity fluctuations.
With the 15 mW He-Ne laser beam (λ = 6328 A, ∆λ = 6.4

×10−4 A, initial diameter = 0.8 mm), several comparisons between the
quantities

√
〈i2〉/〈I〉 and

√
〈I2t 〉/〈I〉 have been done for several points

of the interference pattern, that is, for several mean values of the light
intensity. For the values of 〈I〉 corresponding to the following values of
the electrical tension: 0.40 Volt, 0.65 Volt, 0.85 Volt, 1.10 Volt, 1.35 Volt
and 1.65 Volt, the quantity

√
〈i2〉/〈I〉 is respectively equal to 10%,

10.5%, 11%, 10.4%, 11.5% and 10% whereas the quantity
√
〈I2t 〉/〈I〉 is

respectively equal to 85%, 76%, 64%, 58%, 45%, and 35%. It appears
that the intensity fluctuations are all the more strong as the power
of the laser beam is high. In the particular case of the laser beam
used in Section 2, the light power is equal to 1 mW and corresponds to
0.18 Volt, and the intensity fluctuations are equal to 4.2% of the total
fluctuations. Therefore, we can conclude that the laser beam intensity
fluctuations may be neglected during our experiments if we use a laser
transmitter whose power is equal to 1 mW.

5.3. Determination of the Main Stochastic Characteristics of
the Laser Beam Random Direction

When the jet is heated, the experiment shows that the luminous trace
produced by the laser beam on the photoelectric cell (PC1) can be
contained inside a reduced square (S) whose size is s = 20 mm and
whose center is not the initial impact O. The parameters x10 and x20

used in the numerical calculation procedure are then determined, that
is,: x10 = −15+7c (mm) and x20 = −15+12c (mm). The experimental
luminous trace produced by the laser ray is shown in Fig. 6a and must
be compared to the luminous trace predicted by the Markovian model
drawn in Fig. 6b.

For the statistical procedure, the cell plane is cross ruled in 1600
squares of same size c = 0.5 mm used in Equation (5). The values of the
integers Lmax and Mmax defined in (5) are then determined, that is,
Lmax =Mmax = 40. The initial impact of the laser beam corresponds
to the integers L = L0 = 23 and M = M0 = 18; these values are
used in the discretized initial condition for numerical calculations of
the laser impact position probabilities as follows: P (x = 0, L,M) =
δLL0δMM0 , δ being the Kronecker delta.

In the course of the experiment, 2048 ray impact points on the
photoelectric cell (PC1) have been obtained and allow, by using
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Figure 5. Experimental Setup 2 used for estimating intensity
fluctuations.
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(a) (b)

Figure 6. Luminous trace produced by the laser ray on the plane of
the photoelectric cell: (a) Experimental results (b) Results obtained
from the Markovian model.

(a) (b)

Figure 7. Probabilities of the laser ray impact position on the plane
of the cell: (a) Experimental results, (b) Markovian model.

the experimental setup 1, the measurement of the laser impact
position probabilities. In Fig. 7a are plotted the probability values
experimentally obtained. Those values must be compared to those
derived from the Markovian model and plotted in Fig. 7b in which
D = 2.98× 10−9 is the value obtained in [5]. After having determined
the probability P (x, φ, θ) for any distance x by means of the numerical
procedure , some statistical properties for the laser beam direction
can be deduced as function of the distance of propagation, that is,
the maximum of the probability of the laser ray direction, the non-
normalized marginal probability densities for x1 and x2, the mean value
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Figure 8. Maximum value of the probabilities of the laser ray direction
as function of the propagation distance x.

of x1 and x2, the rms of x1 and x2, the asymmetric coefficients Ac for
x1 and x2 and the corresponding flattening coefficients Fc. (For a given
random variable a, Ac and Fc are defined as: Ac = 〈a3〉/〈a2〉3/2 and
Fc = 〈a4〉/〈a2〉2 ).

It is shown in Fig. 8, that the maximum value of the probabilities
of the laser beam direction decreases rapidly for x ≤ 20 mm, as the
propagation distance x increases. For the values of x situated between
x = 20 mm and x = 200 mm, that maximum value continues to
decrease, but it decreases slowly. From that, we can conclude that
the jet diffusion effect for x ≤ 20 mm is greater than the same diffusion
effect corresponding to the values of x such that 20 ≤ x ≤ 200 mm.

That diffusion effect created by the thermic turbulence in the
jet is particularly seen in the Figures 9a and 9b, where it is shown
that the base of the probability density curve for three values of x
(x = 40 mm, x = 120 mm, x = 200 mm) increases as the propagation
distance x increases, whereas the maximum value of the corresponding
probabilities decreases.

At the jet border, the non-normalized marginal probability
densities for the random variables x1 or x2 are equal to the
corresponding Gaussian law. This important result is proved in Fig. 10
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(a) (b)

Figure 9. Non-normalized marginal probability densities correspond-
ing to three values of the distance of propagation x = 40 mm, x =
120 mm and x = 200 mm: (a) For the random variable x1. (b) For the
random variable x2.

Figure 10. Comparison of the non-normalized marginal probability
densities for x1 at the jet border with the Gaussian law (Numerical
results ( — ) and Gaussian law ( −∗− )).
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(a) (b)

Figure 11. Mean values as function of the propagation distance: (a)
For x1. (b) For x2.

where comparisons between the corresponding numerical results and
those derived from the Gaussian law, are carried out.

In Fig. 11a and Fig. 11b, the mean values 〈x1〉 and 〈x2〉 of the
random variables x1 and x2 are plotted, as function of the propagation
distance x. It can be concluded, from these curves that the mean
values 〈x1〉 and 〈x2〉 are simultaneously equal to zero for 0 < x ≤
110 mm, that is, for these values, x1 and x2 may be considered as
centered random variables. When the laser beam undergoes random
perturbation during a propagation distance x such that 110 mm ≤ x ≤
200 mm, the mean value 〈x1〉 remains negative and decreases rapidly
as the propagation distance increases, whereas the mean value 〈x2〉
remains positive and increases slowly. These laws concerning the mean
values of x1 and x2 are the same as the corresponding curves describing
the asymmetry coefficients Ac plotted in Fig. 12a.

In Fig. 12b, it is shown that, as the propagation distance increases,
the values of the two flattening coefficients Fc for the random variables
x1 and x2 respectively, remain positive and vary between 2.14 and 2.96,
and that, the two curves showing those variations are nearly identical.

We can see in Fig. 13 that, the root mean square (rms) for x1 and
x2 vary according to the same law, and that the corresponding values
are contained between 0.332 × 10−5 m−1 and 2.375 × 10−5 m−1.

In Fig. 14, the sensitivity of the probability density of the laser
beam directions to the strength of the turbulent diffusion of the jet,
is plotted for the values of the propagation distance: x = 40 mm and
200 mm. From these curves, it can be concluded that the maximum
sensitivity occurs for specified directions symmetrically situated with
respect to the initial direction of the laser ray. For those directions,
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(a) (b)

Figure 12. (a) Asymmetric coefficients Ac as function of the
propagation distance. (b) Flattening coefficients Fc as function of the
propagation distance.

distance of propagation x (mm)

Rms

Figure 13. Root mean square of x1 and x2 as function of the
propagation distance.
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(a) (b)

Figure 14. Sensitivity of the probability density of the laser ray to
the strength of the jet turbulent diffusion: (a) For x = 40 mm, (b) For
x = 200 mm.

the probability density increases very much as the turbulent diffusion
increases. Consequently, the corresponding maximum of sensitivity
dP/dD remains positive. The above effect is caused by the fact that,
for absolute values, there exists a highest maximum which occurs when
the probability density of the laser ray direction reaches its maximum.
For that value, the probability density decreases very much as the
turbulent diffusion increases and consequently, the sensitivity dP/dD
remains the negative lowest minimum. For the laser ray directions
corresponding to the boundaries of the luminous trace produced by
the ray on the plane of the photoelectric cell, the turbulent diffusion
has no effect and consequently, the quantity dP/dD vanishes for any
propagation distance.

6. CONCLUSION

In this paper, the main stochastic characteristics of the random
propagation of a laser beam through a heated turbulent jet of air,
are determined, using geometrical optics and Markovian process
hypothesis, applied along the whole path of the laser beam. The
approximation of geometrical optics is proved by the experimental
conditions characterizing our experiments and the validity of the
Markovian model is justified using the previous work done in [5].

By means of a numerical calculation procedure which uses our
experimental results, this paper shows the possibility of obtaining
information about random wave propagation from the diffusion
coefficient of a turbulent hot jet of air, that is, from the spatial
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correlation of the refractive index fluctuations in the turbulent jet,
without introducing any instrument into the flow.

It is useful to indicate that Chernov [8] has analytically solved
the EFPK equation in a general case in which the diffusion coefficient
remains constant and does not depends on spatial coordinates. In
the present work, we did not use that general solution because we
need to create a numerical calculation procedure which is able to take
into account our specific experimental conditions related to the jet
considered. About that, we can mention that our method of calculation
has shown in Fig. 11 the difference in behavior of the mean values of
random variables x1 and x2, whereas the two random variables are
governed by the same marginal probability laws. It has been possible to
put in evidence this interesting result because our experiments proved
that the intervals of variations of x1 and x2 are different in the jet
considered.

The ultimate aim is to use the present calculation procedure
in order to elaborate from it, an efficient calculation procedure for
subsequent works in which the laser beam will be set normal to the jet
exhaust, that is, the case in which the diffusion coefficient depends on
spatial coordinates. Consequently, we need to be sure that the present
calculation procedure, made for constant diffusion coefficient, is valid.
About that, Chernov’s analytical solution can then be used to prove
the validity of our calculation procedure as it is shown in Fig. 10.
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9. Levine, B., Fondements Théoriques de la Radiotechnique
Statistique, Ed. MIR, Vol. 1, Moscow, 1973.

10. Comte-Bellot, G., “Hot-wire anemometry,” An. Rev of Fluid.
Mech., Vol. 8, 1976.

Elisabeth Ngo Nyobe was born on January 31, 1975 at Otélé
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