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Abstract—Laplace’s equation is solved analytically for lossy shielded
coupled microstrip transmission lines. The solution is represented in
fourier series expression and is being used to determine the capacitance
and conductance matrices of the structure. The method is examined
using some examples and then some results are obtained.
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1. INTRODUCTION

The multiconductor coupled microstrip transmission lines are used
in RF, microwave and high-speed digital circuits extensively. To
analyze these transmission lines one has to find the capacitance
and conductance matrices of the structure [1]. The capacitance
matrix of lossless structures is determined using conformal mapping
transformations [2, 3], variational methods [4, 5], spectral domain
techniques [6, 7], method of moments and green’s function [8, 9],
analytically for certain particular geometries [10] and solving Laplace’s
equation [11–13]. Some ones solve Laplace’s equation numerically, e.g.,
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finite difference method [11] and some others analytically, e.g., fourier
series or fourier integral method [12, 13].

In this paper, both capacitance and conductance matrices of
lossy structures are determined simply by solving Laplace’s equation
using fourier series method. The solutions are exact but they are
expressed by means of infinite linear equations. Using these methods
one can determine the voltage and current distribution on the strips,
also. In Section 2, Laplace’s equation is solved using fourier series
method and the complete solution, i.e., after finding the unknown
voltage coefficients, is used directly to determine the capacitance and
conductance matrices of lossy structures. In Section 3, the solution of
Laplace’s equation is used to determine capacitance and conductance
matrices of lossy structures without finding the unknown voltage
coefficients. Finally, in Section 4 the capacitance and conductance
matrices of some lossy and lossless structures are determined using the
presented methods.
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Figure 1. The cross section of a lossy shielded coupled microstrip
transmission line.

Fig. 1 shows the cross section of the structure under analysis.
There are M strips with arbitrary width of wi, air gaps of si between
them, located at xi (i = 1, 2, . . . ,M). The dimension of the shield, a
and b, the thickness of the substrate, h, and real and imaginary parts
of dielectric constant of the substrate are shown in the figure.
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2. THROUGH FINDING UNKNOWN COEFFICIENTS

In this section the capacitance, C, and conductance, G, matrices
of the lossy structures are determined, after finding the unknown
coefficients of the voltage distribution. For simplicity, it is assumed
that the principal propagation mode of the lines is Quasi-TEM. This
assumption is valid when the strip widths and their distances from the
shield be small enough compared to the wavelength. Now, solving
the two dimensional Laplace’s equation with boundary conditions
V (x, 0) = V (x, b) = V (0, y) = V (a, y) = 0 and the continuity of voltage
on the y = h, the voltage distribution is obtained as follows.

V (x, y) =


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(1)
The normal component of the total current density (displacement plus
viscosity) on the y = h boundary is obtained using (1) as follows

Jz(x, h) = Jz2(x, h)−Jz1(x, h)=jωε0
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The real and imaginary parts of Gn are related to the displacement and
viscosity current density, respectively. Now, if it is assumed a constant
voltage V0 on the i-th strip and zero voltage on the other strips, the
boundary conditions for the voltage and total normal current density
(the continuity condition) on the y = h will become, respectively as
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follows
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a
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=
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0; On the other strips
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(5)

The relations (4) and (5) are a system of dual series equations that
must be solved. Using (4), one equation is found for An coefficients.
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Also, using (5) another equation is found for An coefficients.
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Now, using (1) for V (x, h) in (6) and using (2) for Jz(x, h) in (7) and
some mathematical operations, two infinite linear equations are found,
respectively as follows
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In (8),W and S are the total width of strips and the total gaps between
the strips, respectively. Truncating n to N , two relations (8) and (9)
become a linear equation system with 2N equations. Letting m and
n = 1, 2, 3, . . . , N , two equations (8) and (9) can be written in a matrix
form, respectively as follows

DN×NAN×1 = A0N×1 (10)

HN×NAN×1 = AN×1 (11)

in which, A = [A0, A1, A2, . . . , AN ]T is the vector of unknown
coefficients. Either of equations (10) or (11) has more than one
solution, because they are related to only the strips or the gaps between
them. But the combination of these two equations, which is followed,
must have a unique solution.[

D
H − 1

]
A =

[
A0

0

]
(12)

In (12), 1 is an N × N identity matrix. The matrix equation (12)
can be solved by pseudo-inverse matrix method. Obviously, as the
number of harmonics, i.e., N , increases, the accuracy of the solution is
increased. According to the arguments of the sinc function in equations
(8) and (9), N must be several times of 2a/min(wj). Meanwhile, since
the vector A0 is real, the imaginary part of solution of (12), i.e., the
imaginary part of unknown coefficients An, becomes very small. Also,
regarding to (3) and (9), the unknown coefficients An, are obtained
independent of the frequency ω.

After finding unknown coefficients An, one can now detemine the
capacitance and conductance matrices of the lossy microstrip structure.
The element C(j, i) is determined from integral of the surface charge
density ρs on the j-th strip, in which the i-th strip is hold in V0 voltage
and the other strips are hold to zero voltage. Therefore, using (2)

C(j, i) =
1
V0

xj+wj∫
xj

ρs(x, h)dx =
1
ωV0

xj+wj∫
xj

Im(Jz(x, h))dx

=
wj

V0ω

∞∑
n=1

[
Im(GnAn) sin

(
nπ

a

(
xj +

wj

2

))
sin c

(
n
wj

2a

)]
(13)



272 Khalaj Amirhosseini

Also, the element G(j, i) is determined from integral of total normal
viscose current density on the j-th strip, in which the i-th strip is hold
in V0 voltage and the other strips are hold to zero voltage. Therefore,
using (2)
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3. WITHOUT FINDING UNKNOWN COEFFICIENTS

In this section the capacitance and conductance matrices of the lossy
structures are determined without finding the unknown coefficients An.
For this purpose we define a current function, using (2) as follows
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in which
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The voltage and defined current function are constant on the strips and
on the gaps between them, respectively. So, there will be two following
boundary conditions.
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In (17) and (18), Vi and Ii are the voltage and total current of the i-th
strip, respectively. Now, the system of dual series equations containing
(17) and (18) must be solved. Using (17) and (18), two following
equations are found for An coefficients.
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Now, using (1) for V (x, h) in (24) and using (15) and (16) for I(x)
in (20) and by some mathematical operations, two infinite linear
equations are found, respectively as follows
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In (21), W and S are the total width of strips and the total gaps
between the strips, respectively. Truncating n to N , two relations
(21) and (22) become two N linear equations. Letting m and n =
1, 2, 3, . . . , N , these two N linear equations can be written, respectively
in matrix forms, as follows

DN×NAN×1 = EN×MV M×1 (23)

AN×1 = F N×NAN×1 + GN×MIM×1 (24)

In (23) and (24), A = [A0, A1, A2, . . . , AN ]T , V = [V0, V1, V2, . . . , VM ]T

and I = [I0, I1, I2, . . . , IM ]T are vectors representing the unknown
coefficients An, the strip voltages and total currents of the strips,
respectively. Eliminating the vector A between (23) and (24), and
regarding to

I = (G + jωC)V (25)

the capacitance and conductance matrices are determined, as follows

G + jωC =
[
E−1D(1 − F )−1G

]−1
(26)

in which 1 is an N ×N identity matrix.

4. EXAMPLES AND RESULTS

In this section, first we investigate the validity of the proposed
method using two examples about the lossless structures and then a
comprehensive example for the lossy structures is presented.

As a first example, consider an M = 8 conductor lossless
microstrip coupler with parameters w1 = . . . = w8 = 1, h =
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16, s1 = . . . = s7 = 1, a = 175, b = 116 and εr = 12.9.
The 20 different coefficients of the capacitance matrix (normalized to
ε0 = 8.842 × 10−12) obtained from the presented methods and from
that proposed in [12] (reported in [13]) have been compared in Table 1.

Table 1.
 C11 C22 C33 C44 C12 C23 C34 C45 C13 C24

[12] 14.451 17.556 17.705 17.731 -6.610 -5.940 -5.875 -5.865 -1.473 -1.182 

Proposed 14.267 17.259 17.407 17.432 -6.454 -5.796 -5.732 -5.722 -1.462 -1.177 

 C35 C14 C25 C36 C15 C26 C16 C27 C17 C18 

[12] -1.150 -0.647 -0.492 -0.477 -0.351 -0.261 -0.214 -0.163 -0.145 -0.137 

Proposed -1.145 -0.643 -0.491 -0.475 -0.349 -0.261 -0.212 -0.162 -0.143 -0.134 

For a second example consider an M = 2 conductor lossless
microstrip coupler with parameters w1 = w2 = w, h = 1, s = 1, a
and b very large (e.g., a = b = 30h) and εr = 2.35. The even and
odd mode characteristic impedances of this coupler obtained from the
presented methods and by that proposed in [3] (reported in [13]) have
been compared in Table 2.

Table 2.

 Proposed Method Wan Method [3] 

w/h Zeven Zodd Zeven Zodd 

0.10 229.2 170.2 228.8 168.2 

0.25 182.7 132.3 182.4 130.0 

0.50 145.9 105.7 145.3 103.0 

0.75 122.7 89.5 123.2 88.1 

1.00 107.3 79.4 107.6 78.0 

1.25 95.6 71.8 95.9 70.4 

1.75 79.0 60.7 79.0 59.4 

2.25 67.4 53.0 67.3 52.0 
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Figure 2. The elements of capacitance and conductance matrices of
a lossy shielded coupled microstrip transmission line versus the loss
tangent (a) C11 (b) −C12 (c) G11/ω (d) −G12/ω.

As it is clear from these two examples, the results of the presented
method have a little discrepancy compared to [3] and [12]. Therefore
one may satisfy about the accuracy of the presented methods.

Now, as a third example consider an M = 2 conductor lossy
microstrip coupler with parameters w1 = w2 = 1, h = 1, s = 1, a =
b = 20 and εr = 10. Fig. 2 shows the values of C11, C12, G11/ω and
G12/ω versus the loss tangent of substrate, tan(δ) = ε′′r/εr.

From Fig. 2 and the obtained relations, the following results are
obtained.

1. The self capacitances C(i, i) will be increased and the coupling
capacitances C(j, i) will be decreased, if the loss tangent is
increased severely. This is because as the loss tangent is increased,
the electric field is concentrated under the strips more and more.

2. The capacitance matrix is independent from frequency and
the conductance matrix is proportional to frequency. So, the
conductance matrix will become important in the high frequencies.

3. The capacitance matrix of the lossy structures will be equal to
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the capacitance matrix of the lossless structure, only if the loss
tangent is being very small, e.g., smaller than 0.01.

5. CONCLUSION

Two methods are given for determination the capacitance and con-
ductance matrices of a lossy shielded coupled microstrip transmission
lines. Fourier series solution of Laplace’s equation is used and the ex-
act solutions are expressed in terms of infinite but simple evaluated
linear equations. The losses of substrate change the values of elements
of the capacitance matrix a little.
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