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Abstract—This paper studies solitons and its perturbations that is
governed by the generalized nonlinear Schrödinger’s equation with non-
Kerr law nonlinearity. The quasi-stationarity is applied to the non-Kerr
law case and an approximate solution is obtained. A few special cases
of the non-Kerr law nonlinearity are considered, as examples, with the
nonlinear damping type perturbation.
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1. INTRODUCTION

The nonlinear Schrödinger’s equation (NLSE) plays a vital role in
the various areas of physical, biological and engineering sciences. It
appears in many applied areas like Fluid Dynamics, Nonlinear Optics,
Plasma Physics, Protein Chemistry just to name a few [1]. In this
paper, we are going to study an important generalization of the NLSE
known as the generalized Nonlinear Schrödinger’s Equation (GNLSE)
that is given by:

iqt +
1
2
qxx + F

(
|q|2

)
q = 0. (1)

where F is a real-valued algebraic function and we need to have the
smoothness of the complex function F

(
|q|2

)
q : C �→ C. Considering

the complex plane C as a two-dimensional linear space R2, we say that
the function F

(
|q|2

)
q is k times continuously differentiable so that we

can write

F
(
|q|2

)
q ∈ ∪∞

m,n=1C
k((−n, n) × (−m,m);R2)

Equation (1) is a nonlinear partial differential equation (PDE) of
parabolic type that is not integrable, in general. The non-integrability
is not necessarily related to the nonlinear term in it. Higher-order
dispersion or birefringence, for example, can also make the system non-
integrable, while it remains Hamiltonian. The special case, F (s) = s,
also known as the Kerr law of nonlinearity, is integrable by the
method of Inverse Scattering Transform (IST) [2]. The IST is the
nonlinear analog of Fourier transform that is used for solving the
linear partial differential equations. Schematically, the IST and the
technique of Fourier transform are similar [3]. This special case falls
in the category of S-integrable equation [4]. In this case, (1) is known
as the cubic NLSE. The solutions are known as solitons. It arises
in Fluid Dynamics, Nonlinear Optics and α-helix proteins in Protein
Chemistry.
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The general case F (s) �= s takes us away from the IST picture
as it is not of Painleve type [2]. In a rigorous sense, the pulses of the
non-integrable systems are not solitons. However, the term “solitons”
has been used broadly for the solutions of the nonintegrable system as
well, and this has become common. So in this paper we shall refer to
the pulses as ‘solitons’. Unlike the cubic NLSE which has an infinite
number of conserved quantities, the GNLSE given by (1) has only
a few. Although, stationary pulses exist, and some solutions can be
written in the analytic form, their behaviour is different from that of
the solutions of the cubic NLSE [5].

As we have mentioned, (1), unlike the Kerr law case, does not have
infinitely many conserved quantities. In fact, it has as few as three [5].
They are the energy (E), linear momentum (M) and the Hamiltonian
(H) that are respectively given by:

E =
∫ ∞

−∞
|q|2 dx (2)

M =
i

2

∫ ∞

−∞
(q∗qx − qq∗x) dx (3)

H =
∫ ∞

−∞

[
1
2
|qx|2 − f(I)

]
dx (4)

where we have

f(I) =
∫ I

0
F (ξ) dξ (5)

and the intensity I is given by I = |q|2. The first conserved quantity
(E), given by (2), has various definitions depending on the context in
which the equation arises. It is commonly known as the [6] wave energy
and is also known as the mass, wave action or plasmon number while
in optics it is called the wave power and mathematically speaking it is
known as the L2 norm.

One can see that (1) can be written in a canonical form [4]

iqt =
δH

δq∗
(6)

iq∗t = −δH

δq
(7)

This defines a Hamiltonian dynamical system on an infinite
dimensional phase space of two complex functions U and V which
decrease to zero at infinity. It can be analyzed using the theory of
Hamiltonian systems. This means that a behaviour of the solution is
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defined, to a large extent, by the singular points of the system, namely
the stationary solutions of (1) and depends on the nature of these
points as determined by the stability of its stationary solutions [7].

We shall assume that the soliton solution of (1), although not
integrable, is given in the form [8]:

q(x, t) = A(t)g
[
B(t)

{
θ − θ̄(t)

}]
eiφ (8)

where
∂θ

∂x
= 1,

∂θ

∂t
= 0,

dθ̄

dt
= v (9)

and
∂φ

∂t
=

B2

2
I0,0,2,0
I0,2,0,0

− κ2

2
+

1
I0,2,0,0

∫ ∞

−∞
g2(s)F

(
A2g2(s)

)
ds (10)

with
∂φ

∂x
= −κ (11)

Here, we have defined the integral

Iα,β,γ,ν =
∫ ∞

−∞
ταgβ(τ)

(
dg

dτ

)γ (
d2g

dτ2

)ν

dτ (12)

for non-negative integers α, β, γ and ν with τ = B(t)(θ− θ̄(t)). In (8),
g represents the shape of the soliton described by the GNLSE and it
depends on the type of nonlinearity in (1). The parameters A(t) and
B(t), in (8), respectively represent the soliton amplitude and the width
of the soliton respectively while φ represents the phase of the soliton
and therefore κ is the frequency of the soliton while v is the velocity.
The soliton width and the amplitude are related as B(t) = λ (A(t))
where the functional form λ depends on the type of nonlinearity in
(1). Also, θ̄(t) represents the mean position of the soliton. For such
a general form of the soliton given by (8), we have the integrals of
motion, from (2), (3) and (4), given by:

E =
∫ ∞

−∞
|q|2 dx =

A2

B
I0,2,0,0 (13)

M =
i

2

∫ ∞

−∞
(qq∗x − q∗qx) dx = −κA

2

B
I0,2,0,0 (14)

H =
∫ ∞

−∞

[
1
2
|qx|2 − f

(
|q|2

)]
dx

=
A2B

2
I0,0,2,0 +

κ2A2

2B
I0,2,0,0 −

∫ ∞

−∞

∫ I

0
F (s)dsdx (15)
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2. PARAMETER DYNAMICS

For the soliton given by (8), the parameters are now defined as follows
[8]:

κ(t) =
i

2

∫ ∞

−∞
(qq∗x − q∗qx) dx∫ ∞

−∞
|q|2 dx

(16)

θ̄(t) =

∫ ∞

−∞
θ |q|2 dθ∫ ∞

−∞
|q|2 dθ

(17)

Also, the parameter dynamics of the unperturbed soliton is given by

dκ

dt
= 0 (18)

dθ̄

dt
= −κ (19)

We note that, the parameter dynamics for the amplitude and the width
of the soliton can be obtained for the special cases of F (s) once the
functional form of F is known.

2.1. Perturbation Terms

We, now, consider the NLSE along with its perturbation terms that is
given by

iqt +
1
2
qxx + F

(
|q|2

)
q = iεR[q, q∗] (20)

Here R is a spatio-differential operator and ε is a perturbation
parameter with 0 < ε 	 1. This perturbation parameter depends
on the type of nonlinearity. For example, in the context of optics, ε
is called the relative width of the spectrum that arises due to quasi-
monochromaticity [9]. In presence of the perturbation terms, we have
the adiabatic dynamics of the soliton parameters as:

dE

dt
= ε

∫ ∞

−∞
(q∗R + qR∗) dx (21)

dκ

dt
=

ε

I0,2,0,0

B

A2

[
i

∫ ∞

−∞
(q∗xR− qxR

∗)dx−κ

∫ ∞

−∞
(q∗R+qR∗)dx

]
(22)
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dθ̄

dt
= −κ +

ε

I0,2,0,0

B

A2

∫ ∞

−∞
θ (q∗R + qR∗) dθ (23)

∂φ

∂t
=

B2

2
I0,0,2,0
I0,2,0,0

− κ2

2
+

1
I0,2,0,0

∫ ∞

−∞
g2(s)F

(
A2g2(s)

)
ds

+
iε

I0,2,0,0

B

2A2

∫ ∞

−∞
(qR∗ − q∗R) dx (24)

We can, now, rewrite equations (20) to (23) in the following alternative
form:

dE

dt
= 2ε

A

B

∫ ∞

−∞
g(τ)


[
Reiφ

]
dτ (25)

dκ

dt
= − 2ε

I0,2,0,0

κ

A

∫ ∞

−∞
g(τ)


[
Reiφ

]
dτ

− 2ε
I0,2,0,0

1
A

∫ ∞

−∞

{
κg(τ)


[
Reiφ

]
−B

dg

dτ
�

[
Reiφ

]}
dτ (26)

dθ̄

dt
= −κ +

2ε
I0,2,0,0

1
A

∫ ∞

−∞
xg(τ)


[
Reiφ

]
dτ (27)

∂φ

∂t
=

B2

2
I0,0,2,0
I0,2,0,0

− κ2

2
− 1

I0,2,0,0

∫ ∞

−∞
g2(s)F

(
A2g2(s)

)
ds

+
ε

I0,2,0,0

1
A

∫ ∞

−∞
g(τ)�

[
Reiφ

]
dτ (28)

where we have τ = B(t)(θ−θ̄). Equations (24)–(27) gives the adiabatic
dynamics of the soliton parameters in presence of a perturbation terms.

2.2. Observation

Here, in this paper, as an example, we shall consider a particular form
of the perturbation term R that is given by

R = δ|q|2mq (29)

The parameter m is a non-negative integer depending on the degree
of nonlinearity. This kind of perturbation is commonly known as the
nonlinear damping (gain) depending on the parameter m as well as the
coefficient δ. It arises, for example, in the context of fiber optics as a
stauration term to suppress the unbounded growth [10, 11]. So, we are
going to study the equation

iqt +
1
2
qxx + F

(
|q|2

)
q = iεδ|q|2mq (30)
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For this perturbation, we have the adiabatic parameter dynamics as:

dE

dt
= 2εδ

A2m+2

B
I0,2m+2,0,0 (31)

dκ

dt
= 0 (32)

dθ̄

dt
= −κ (33)

∂φ

∂t
=

B2

2
I0,0,2,0
I0,2,0,0

− κ2

2
+

1
I0,2,0,0

∫ ∞

−∞
g2(s)F

(
A2g2(s)

)
ds (34)

3. QUASI-STATIONARY SOLUTION

3.1. Introduction

The idea of quasi-stationarity for solving the nonlinear evolution
equations was first introduced in 1981 [12] by Kodama and Ablowitz.
Later, this idea was extended to study the NLSE with Hamiltonian and
non-Hamiltonian type perturbation [10]. This paper is a generalization
of the study of quasi-stationarity to the case of NLSE with non-Kerr
law nonlinearity.

The basic idea of a quasi-stationary (QS) method can be explained
as follows. In a general setting, we study the solution of a perturbed
nonlinear dispersive wave equation that is of the type

K (q, qt, qx, · · ·) = εF (q, qx, · · ·) (35)

Here, K and F are nonlinear functions of q, qx, · · · while 0 < ε 	 1.
The unperturbed equation (for ε = 0)

K
(
q(0), q

(0)
t , q(0)

x , · · ·
)

= 0 (36)

has a solution q(0) that is taken as a solitary wave or a soliton solution.
We write this solution in terms of certain natural fast and slow variables
as

q(0) = q̂(0) (θ1, θ2, · · · θm, T,X : P1, P2, · · · , PN ) (37)

where, θi for 1 ≤ i ≤ m are the, so called, fast variables while T = εt
and X = εx are the slow variables and Pl for 1 ≤ l ≤ N are the
parameters that depend on the slow variables. In many problems, we
need only one fast variable, namely θ = x − P1t in the unperturbed
problem. We generalize θ to satisfy ∂θ/∂x = 1 and ∂θ/∂t = −P1
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and use P1 = P1(X,T ) to remove the secular terms. With this, we
can call such a solution (44) as a quasi-stationary solution and write
q = q̂(θ,X, T, ε). It is necessary that we develop equations for the
parameters P1, . . . , PN by using the appropriate conditions such as the
secularity conditions. There must be N such conditions. Some of these
conditions are formed from Green’s identity, as follows.

We assume an expression for q̂ of the form

q̂ = q̂(0) + εq̂(1) + · · ·
(after introducing the appropriate variables θi, X, T etc.). Then (36)
is the leading order problem, and (if we assume that K has only first
order in time derivatives)

L
(
∂θi

, q̂(0)
)
q̂(1) = F

(
q̂(0

)
− ∂K

∂qt
· qT = F (38)

is the first order equation. Here L
(
∂θi

, q̂(0)
)
, u = 0 is the

linearized equation of K (q, qt, qx, · · ·) = 0 after (x, t) is transformed
to the appropriate coordinate θi. Calling vi the M solutions of
the homogenous adjoint problem satisfying the necessary boundary
conditions (e.g. vi → 0, as |θi| → ∞)

LAvi = 0 (39)

for 1 ≤ i ≤ M and M ≤ N with LA being the adjoint operator to L,
we form

Lq̂(1) · vi −
(
LAvi

)
· q̂(1) = F̂ vi (40)

The left side of (38) is always a divergence (Green’s Theorem). It
may be integrated to give the secularity conditions also known as
the Fredholm’s Alternative (FA). These secularity conditions allow us
to compute a solution q̂(1) to (37) that satisfies suitable boundary
conditions (e.g. q̂(1) is bounded as |θ| → ∞). However, as it
is standard in perturbation problems there is still freedom in the
solution. This is due to the fact that some terms in the solution
q̂(1) can be absorbed in the leading order solution q̂(0) by shifting
other parameters. The solution q̂(1) can be made unique by imposing
additional conditions which reflect specific initial conditions or other
normalizations. Continuation to higher order q̂(N) is straightforward.

3.2. Application

In this paper, we shall obtain a quasi-stationary solution to (29) using
the method that was discussed in the previous sub-section. The main
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part of this work is to implement a perturbation scheme to solve (29)
as follows:

q = q̂(θ, T,X; ε)e
i
ε
ρ(T,X;ε) (41)

where
∂θ

∂x
= 1,

∂θ

∂t
= 0

and
T = εt X = εx

Here, as mentioned, θ is a fast variable while X and T are the slow
variables in space and time respectively. We note that, here in (39)
we are allowing a slow variation in both the spatial and time variable.
When we turn on the perturbation terms of the NLSE, we have the
soliton parameters A and B are slowly varying functions, namely
A = A(X,T ) and B = B(X,T ).

We now substitute (39) into (29) and expand

q̂ = q̂(0) + εq̂(1) + ε2q̂(2) + · · ·
ρ = ρ(0) + ερ(1) + ε2ρ(2) + · · ·
v = v(0) + εv(1) + ε2v(2) + · · ·

to get at the leading order

−
{
ρ
(0)
T +

1
2

(
ρ
(0)
X

)2
}
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+ q̂(0)F

[(
q̂(0)

)2
]

= 0 (42)

and (
ρ
(0)
X − v(0)

) ∂q̂(0)

∂θ
= 0. (43)

Now, (41) implies
ρ
(0)
X = v(0) (44)

We now set:

h(B2) = ρ
(0)
T +

1
2

(
ρ
(0)
X

)2
= ρ

(0)
T +

1
2

(
v(0)

)2
(45)

where the function h depends on the nonlinearity F . Thus, (40)
changes to:

−h(B2)q̂(0) +
1
2
∂2q̂(0)

∂θ2
+ q̂(0)F

[(
q̂(0)

)2
]

= 0 (46)
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whose solution is (on comparing with (8)):

q̂(0) = Ag[B(θ − θ̄)] (47)

where
dθ̄

dt
= v (48)

At O(ε), we decompose q̂(1) = φ̂(1) + iψ̂(1) into its real and imaginary
parts. Now, the equations for φ̂(1) and ψ̂(1), by virtue of (43), are
respectively:

−h(B2)φ̂(1) +
1
2
∂2φ̂(1)

∂θ2
+ 2

(
q̂(0)

)2
φ̂(1)F ′

[(
q̂(0)

)2
]

+φ̂(1)F

[(
q̂(0)

)2
]

=
{
ρ
(1)
T + v(0)ρ

(1)
X

}
q̂(0) − ∂2q̂(0)

∂θ∂X
(49)

and

−h(B2)ψ̂(1) +
1
2
∂2ψ̂(1)

∂θ2
+ F

[(
q̂(0)

)2
]
ψ̂(1) =

−∂q̂(0)

∂T
− v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X −v(1)

} ∂q̂(0)

∂θ
−ρ

(0)
XX q̂

(0)+δ
(
q̂(0)

)2m+1
(50)

By FA, applied to (47), we get:

B
∂A

∂X
I0,0,2,0 + A

∂B

∂X
I0,0,2,0 + A

∂B

∂X
I1,0,0,1 = 0 (51)

and

ρ
(1)
T + v(0)ρ

(1)
X = 0 (52)

whereas, if applied to (48), yields:

B
∂A

∂T
I0,0,2,0 + A

∂B

∂T
I1,1,1,0 + v(0)B

∂A

∂X
I0,0,2,0 + v(0)A

∂B

∂X
I1,1,1,0 =

δA2m+1BI0,2m+2,0,0 − ρ
(0)
XXABI0,0,2,0

(53)

and

ρ
(1)
X = v(1) (54)
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Since A(t) and B(t) are related, depending on the functional form of
F (s), (49) leads to the conclusion

∂A

∂X
=

∂B

∂X
= 0 (55)

so that A and B are functions of T only.
Also, in an ideal soliton-based communication system in fiber

optics, input pulses launched into the fiber should be unchirped in
order to avoid shedding part of the pulse energy as a dispersive tail
during the process of soliton formation [13]. So, in (51) we use (53)
and we set ρ(0)

XX = 0 to eliminate frequency chirp to give

B
dA

dT
I0,0,2,0 + A

dB

dT
I1,1,1,0 = δA2m+1BI0,2m+2,0,0 (56)

Now (47), by virtue of (50) and (53), reduces to:

−h(B2)φ̂(1)+
1
2
∂2φ̂(1)

∂θ2
+2

(
q̂(0)

)2
φ̂(1)F ′

[(
q̂(0)

)2
]
+φ̂(1)F

[(
q̂(0)

)2
]

= 0

(57)
while (48), by virtue of (52) and (53), gives:

−h(B2)ψ̂(1)+
1
2
∂2ψ̂(1)

∂θ2
+F

[(
q̂(0)

)2
]
ψ̂(1) =−∂q̂

(0)

∂T
+ δ

(
q̂(0)

)2m+1
(58)

The solutions to (55) and (56) are respectively:

φ̂(1) = 0 (59)

and

ψ̂(1) =
2A
B

∂θ̄

∂T
g(τ)

∫ τ 1
g2 (s2)

(∫ s2
g (s1) g′ (s1) ds1

)
ds2

− 2
B2

dA

dT
g(τ)

∫ τ 1
g2 (s2)

(∫ s2
g2 (s1) ds1

)
ds2

− 2
B3

dB

dT
g(τ)

∫ τ 1
g2 (s2)

(∫ s2
s1g (s1) g′ (s1) ds1

)
ds2

+2δ
A2m+1

B2
g(τ)

∫ τ 1
g2 (s2)

(∫ s2
g2m+2 (s1) ds1

)
ds2 (60)

The O(ε) solution of (29) finally is:

q ≈ Peiψ (61)
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where

P = q̂(0) (62)

and

ψ = εQ(θ) +
1
ε
ρ(X,T ) (63)

with

Q(θ) = ψ̂(1)/q̂(0) (64)

Equation (59) is finally the quasi-stationary solution to (29).

4. OBSERVATION

In this section, we shall implement the quasi-stationary solution, that
was derived in the previous section, to three particular cases of the
function F given in (1), apart from the Kerr law itself. The three
cases are the power law, parabolic law and the dual-power law. These
are studied in details in the following two subsections.

4.1. Kerr Law

In this case, we have F (s) = s and so we get f(s) = s2/2. So, the
GNLSE modifies to

iqt +
1
2
qxx + |q|2q = 0 (65)

This case, as we have mentioned, is integrable by the IST [2]. The
form of the soliton is given by

q(x, t) =
A

cosh [B(x− x̄(t))]
ei(−κx+ωt+σ0) (66)

where A = B and

κ = −v (67)

and

ω =
A2 − κ2

2
(68)

Here, κ is called the soliton frequency while ω is the wave number of
the soliton and σ0 is the center of phase of the soliton. The Kerr law of
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nonlinearity arises in the context of fiber optics where the propagation
of solitons or pulses is governed by the NLSE given by (60). It is also
studied in the context of Fluid Dynamics. Here, the corresponding
parameter dynamics are:

dA

dt
= 0 (69)

dB

dt
= 0 (70)

dκ

dt
= 0 (71)

dx̄

dt
= −κ (72)

In the Kerr law case, however, we have infinitely many integrals of
motion. The first three integrals of motion that matches with those of
the GNLSE are respectively

E =
∫ ∞

−∞
|q|2 dx = 2A (73)

M =
i

2

∫ ∞

−∞
(qq∗x − q∗qx) dx = −2κA (74)

H =
1
2

∫ ∞

−∞
(|qx|2 − |q|4) dx = 2

(
κ2A− 1

3
A3

)
(75)

4.1.1. Perturbation Term

Here, we are going to study the perturbed equation

iqt +
1
2
qxx + |q|2q = iεδ |q|2m q (76)

For the Kerr law case, we shall use the soliton given by (61) in equations
(30)–(33) and in (62)–(63) to give

dE

dt
= 2εδA2m+1

Γ
(

1
2

)
Γ (m + 1)

Γ
(
m + 3

2

) (77)

dA

dt
= εδA2m+1

Γ
(

1
2

)
Γ (m + 1)

Γ
(
m + 3

2

) (78)

dB

dt
= εδB2m+1

Γ
(

1
2

)
Γ (m + 1)

Γ
(
m + 3

2

) (79)
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dκ

dt
= 0 (80)

dx̄

dt
= −κ (81)

Here, Γ(x) is the usual gamma function.

4.1.2. Quasistationarity

For obtaining a quasi-stationary solution to (71) we use the same
asnatz as given by (39). Then, by virtue of Section 3.2, we get

−
{
ρ
(0)
T +

1
2

(
ρ
(0)
X

)2
}
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)3
= 0 (82)

and (
ρ
(0)
X − v(0)

) ∂q̂(0)

∂θ
= 0 (83)

Now, (79) implies

ρ
(0)
X = v(0) (84)

We now set:

B2

2
= ρ

(0)
T +

1
2

(
ρ
(0)
X

)2
= ρ

(0)
T +

1
2

(
v(0)

)2
(85)

so that (78) changes to:

−B2

2
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)3
= 0 (86)

whose solution is:

q̂(0) =
A

cosh
{
B(θ − θ̄)

} (87)

where A = B and

dθ̄

dt
= v (88)

At O(ε) level, we get on decomposing q̂(1) = φ̂(1) + iψ̂(1)

−B2

2
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ 3

(
q̂(0)

)2
φ̂(1) =

{
ρ
(1)
T + v(0)ρ

(1)
X

}
q̂(0) − ∂2q̂(0)

∂θ∂X
(89)
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and

−B2

2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2
ψ̂(1) =

−∂q̂(0)

∂T
−v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X −v(1)

} ∂q̂(0)

∂θ
−ρ

(0)
XX q̂

(0)+δ
(
q̂(0)

)2m+1
(90)

Here, as discussed in the previous section, we set ρ
(0)
XX = 0 in (86) to

eliminate frequency chirp to give:

−B2

2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2
ψ̂(1) =

−∂q̂(0)

∂T
− v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X − v(1)

} ∂q̂(0)

∂θ
+ δ

(
q̂(0)

)2m+1
(91)

The FA, when applied to (85) gives

∂B

∂X
= 0 (92)

and

ρ
(1)
T + v(0)ρ

(1)
X = 0 (93)

whereas if, applied to (87), gives

dB

dT
= δB2m+1

Γ
(

1
2

)
Γ(m + 1)

Γ
(
m + 3

2

) (94)

and

ρ
(1)
X = v(1) (95)

Equation (88) shows that B is a function of T only and so is A, since
A = B. Thus, these O(ε) equations reduce to:

−B2

2
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ 3

(
q̂(0)

)2
φ̂(1) = 0 (96)

and

−B2

2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2
ψ̂(1) = −∂q̂(0)

∂T
+ δ

(
q̂(0)

)2m+1
(97)
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whose solutions are respectively

φ̂(1) = 0 (98)

and

ψ̂(1) =
∂θ̄

∂T

τ

cosh τ
− 1

2B2

dB

dT

(
τ2

cosh τ
+ cosh τ

)

+2δ
B2m−1

cosh τ

∫ τ

cosh2 s2

(∫ s2 1
cosh2m+2 s1

ds1

)
ds2 (99)

which leads to the QS solution (59) for the Kerr law of nonlinearity.

4.2. Power Law

Here, we have F (s) = sp so that f(s) = sp+1/(p + 1). We note that if
we set p = 1, we recover the case of Kerr law nonlinearity. The GNLSE
reduces to

iqt +
1
2
qxx + |q|2pq = 0 (100)

We note that here in (96) we have to have 0 < p < 2 to avoid wave
collapse and, in particular, we need p �= 2 to avoid the issue of self-
focussing singularity [2]. We write the soliton solution of (96) as [14]:

q(x, t) =
A

cosh
1
p [B(x− x̄(t))]

ei(−κx+ωt+σ0) (101)

where

B = Ap
(

2p2

1 + p

) 1
2

(102)

and

κ = −v (103)

with

ω =
B2

2p2
− κ2

2
(104)

The power law of nonlinearity arises in nonlinear plasmas that solves
the problem of small K-condensation in weak turbulence theory. It also
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arises in the context of nonlinear optics. Physically, various materials
including semiconductors, exhibit power law nonlinearities [15]. The
corresponding parameter dynamics for the solitons are given by

dA

dt
= 0 (105)

dB

dt
= 0 (106)

dκ

dt
= 0 (107)

dx̄

dt
= −κ (108)

The three integrals of motion, in this case, are respectively given by
[14]

E =
∫ ∞

−∞
|q|2 dx = A2−p

(
1 + p

2p2

) 1
2 Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

)

= B
2−p

p

(
1 + p

2p2

) 1
p Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

) (109)

M = i

∫ ∞

−∞
(q∗qx − qq∗x) dx

= 2κA2−p
(

1 + p

2p2

) 1
2 Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

)

= 2κB
2−p

p

(
1 + p

2p2

) 1
p Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

) (110)

and

H =
∫ ∞

−∞

[
1
2
|qx|2 −

1
p + 1

|q|2p+2
]
dx

=
B

2
p

2p2

(
1 + p

2p2

) 1
p


(

B2 + κ2p2
)

B

Γ
(

1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

) − 2B
Γ

(
1
2

)
Γ

(
p+1
p

)
Γ

(
p+1
p + 1

2

)



=
A2

2p2





Ap

(
2p2

1 + p

) 1
p

+
κ2p2

Ap

(
1 + p

2p2

) 1
2




Γ
(

1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

)
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−2Ap
(

2p2

1 + p

) 1
2 Γ

(
1
2

)
Γ

(
p+1
p

)
Γ

(
p+1
p + 1

2

)

 (111)

4.2.1. Perturbation Terms

Now, we are going to study the perturbed NLSE as

iqt +
1
2
qxx + |q|2pq = iεδ |q|2m q (112)

For the power law case, we use the soliton form (97) in (30)-(33) and
(99) to obtain the adiabatic parameter dynamics as [8]:

dE

dt
= 2εδ

(
1 + p

2p2

)m+1
p

B
2m+2−p

p

Γ
(

1
2

)
Γ

(
m+1
p

)
Γ

(
m+1
p + 1

2

)

= 2εδA2m−p+2

(
2p2

1 + p

)2m2−2p2+4m−mp−p+2
2p(m+1) Γ

(
1
2

)
Γ

(
m+1
p

)
Γ

(
m+1
p + 1

2

) (113)

dA

dt
=

2εδ
2 − p

A2m+1
(

1 + p

2p2

) 1
2p Γ

(
1
p + 1

2

)
Γ

(
1
p

) Γ
(
m+1
p

)
Γ

(
m+1
p + 1

2

) (114)

dB

dt
=

2εδp
2 − p

B
2m+p

p

(
1 + p

2p2

)m
p Γ

(
1
p + 1

2

)
Γ

(
1
p

) Γ
(
m+1
p

)
Γ

(
m+1
p + 1

2

) (115)

dx̄

dt
= −κ (116)

dκ

dt
= 0 (117)

As pointed out, we see in (110) and (111) that we need p �= 2 to avoid
the self-focussing singularity issue.

4.2.2. Quasistationarity

If we apply the quasi-stationarity asnatz to (108) we get the leading
order equation as

−
{
ρ
(0)
T +

1
2
(ρ(0)
X )2

}
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)2p+1
= 0 (118)
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and (
ρ
(0)
X − v(0)

) ∂q̂(0)

∂θ
= 0 (119)

Now (116) implies

ρ
(0)
X = v(0) (120)

For the power law nonlinearity, we set

B2

2p2
= ρ

(0)
T +

1
2

(
ρ
(0)
X

)2
= ρ

(0)
T +

1
2

(
v(0)

)2
(121)

so that (115) changes to:

−B2

2p2
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)2p+1
= 0 (122)

whose solution is:

q̂(0) =
A

cosh
1
p

{
B(θ − θ̄)

} (123)

where

B = Ap
(

2p2

1 + p

) 1
2

(124)

and

dθ̄

dt
= v (125)

The O(ε) equations, in this case, reduce to

−B2

2p2
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ (2p + 1)

(
q̂(0)

)2p
φ̂(1) =

(
ρ
(1)
T + v(0)ρ

(1)
X

)
q̂(0) − ∂2q̂(0)

∂θ∂X
(126)

and

−B2

2p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2p
ψ̂(1) =

−∂q̂(0)

∂T
−v(0)∂q̂

(0)

∂X
−ρ

(0)
XX q̂

(0)+
(
v(1)−ρ

(1)
X

) ∂q̂(0)

∂θ
+δ

(
q̂(0)

)2m+1
(127)
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Again, in (124) we set ρ
(0)
XX = 0 to eliminate the frequency chirp as

explained, in the previous section.

−B2

2p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2p
ψ̂(1) =

−∂q̂(0)

∂T
− v(0)∂q̂

(0)

∂X
+

(
v(1) − ρ

(1)
X

) ∂q̂(0)

∂θ
+ δ

(
q̂(0)

)2m+1
(128)

The FA applied to (123), gives:

∂B

∂X
= 0 (129)

and

ρ
(1)
T + v(0)ρ

(1)
X = 0 (130)

whereas if, applied to (125) gives

dB

dT
=

2δp
2 − p

(1 + p)
m
p

(2p2)
m
p

B
(

2m+p
p

)Γ
(

1
p + 1

2

)
Γ

(
1
p

) Γ
(
m+1
p

)
Γ

(
m+1
p + 1

2

) (131)

and

ρ
(1)
X = v(1) (132)

By virtue of (126) we get

∂A

∂X
= 0 (133)

Thus, we see from (126) and (130) that A and B are functions of T
alone. From (121) and (128) we get

dA

dT
=

2δ
2 − p

A2m+1
(

1 + p

2p2

) 1
2p Γ

(
1
p + 1

2

)
Γ

(
1
p

) Γ
(
m+1
p

)
Γ

(
m+1
p + 1

2

) (134)

The O(ε) equations are now

−B2

2p2
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ (2p + 1)

(
q̂(0)

)2p
φ̂(1) = 0 (135)

and

−B2

2p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

(
q̂(0)

)2p
ψ̂(1) = −∂q̂(0)

∂T
+ δ

(
q̂(0)

)2m+1
(136)
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whose solutions are respectively

φ̂(1) = 0 (137)

and

ψ̂(1) = −2B
1
p

p

(
1 + p

2p2

) 1
2p

[
∂θ̄

∂T

τ

cosh
1
p τ

∫ τ

cosh
2
p s2

(∫ s2 tanh s1

cosh
2
p s1

ds1

)
ds2

− 1
B2

dB

dT

∫ τ

cosh
2
p s2

(∫ s2 tanh s1

cosh
2
p s1

ds1

)
ds2

+
1
B3

dB

dT

∫ τ

cosh
2
p s2

(∫ s2 tanh s1

cosh
2
p s1

ds1

)
ds2

]

+2δB
2m+1−2p

p

(
1 + p

2p2

) 2m+1
2p

∫ τ

cosh
2
p s2

(∫ s2 tanh s1

cosh
2m+2

p s1

ds1

)
ds2

(138)

Equation (135) now leads to the QS solution (59) for the power law of
nonlinearity.

4.3. Parabolic Law

In this case, we have F (s) = s+ νs2 where ν is a constant, so that we
get f(s) = s2/2 + νs3/3. The form of the GNLSE here is

iqt +
1
2
qxx +

(
|q|2 + ν |q|4

)
q = 0 (139)

The solution of (136) is now written as

q(x, t) =
A

[1 + a cosh {B (x− x̄(t))}]
1
2

ei(−κx+ωt+σ0) (140)

where

a =
√

1 +
4
3
νA2 (141)

and

B(t) =
√

2A(t) (142)
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while

κ = −v (143)

ω =
A2

4
− κ2

2
(144)

This law is for constant ν is also known as the cubic-quintic
nonlinearity. The term with ν is large for the case of p-toluene sulfonate
crystals. It arises in the nonlinear interaction between Langmuir
waves and electrons and describes the nonlinear interaction between
the high frequency Langmuir waves and the ion-acoustic waves by
pondermotive forces. Furthermore, the parabolic law of nonlinearity
arises in the context of Fiber Optics to consider nonlinearities higher
than the third order to obtain some knowledge of the diameter of the
self-trapping beam. The existence of a significant χ(5) nonlinearity
effects for transparent glass in intense femtosecond pulses at 620 nm has
been experimentally demonstrated [16]. The corresponding parameter
dynamics is given by

dA

dt
= 0 (145)

dB

dt
= 0 (146)

dκ

dt
= 0 (147)

dx̄

dt
= −κ (148)

The three integrals of motion for the parabolic law are

E =
∫ ∞

−∞
|q|2 dx =




√
3
2ν tan−1

[
2A

√
ν
3

]
: 0 < ν < ∞√

− 3
2ν tanh−1

[
2A

√
−ν

3

]
: − 3

4A2 < ν < 0
(149)

M =
i

2

∫ ∞

−∞
(qq∗x − q∗qx) dx

=




−κ
2

√
3
2ν tan−1

[
2A

√
ν
3

]
: 0 < ν < ∞

−κ
2

√
− 3

2ν tanh−1
[
2A

√
−ν

3

]
: − 3

4A2 < ν < 0
(150)

H =
∫ ∞

−∞

[
1
2
|qx|2 −

1
2
|q|4 − ν

3
|q|6

]
dx

=




− 3A
8
√

2ν
+ 3

8ν

√
3
2ν tan−1

[
−
√

3+
√

3+4νA2

2A
√
ν

]
: 0 < ν < ∞

− 3A
8
√

2ν
− 3

8ν

√
− 3

2ν tanh−1
[
−
√

3+
√

3−4νA2

2A
√
−ν

]
: − 3

4A2 < ν < 0
(151)
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4.3.1. Perturbation Terms

Here, we are going to study the perturbed GNLSE with parabolic law
nonlinearity, namely

iqt +
1
2
qxx +

(
|q|2 + ν |q|4

)
q = iεδ|q|2mq (152)

The adiabatic parameter dynamics here are

dE

dt
= 2εδ

A2m+2

B

∫ ∞

−∞

1
(1 + a cosh τ)m+1

dτ (153)

dA

dt
=

√
2

3
εδ
A2m+2

B

(
3 + 4νA2

) ∫ ∞

−∞

1
(1 + a cosh τ)m+1

dτ (154)

dB

dt
=

2
3
εδ
A2m+2

B

(
3 + 4νA2

) ∫ ∞

−∞

1
(1 + a cosh τ)m+1

dτ (155)

dκ

dt
= 0 (156)

dx̄

dt
= −κ (157)

4.3.2. Quasistationarity

For obtaining a quasi-stationary solution to (148) we use the same
asnatz as given by (39) and we arrive at

−
{
ρ
(0)
T +

1
2

(
ρ
(0)
X

)2
}
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)3
+ ν

(
q̂(0)

)5
= 0 (158)

and (
ρ
(0)
X − v(0)

) ∂q̂(0)

∂θ
= 0 (159)

Now, (158) implies

ρ
(0)
X = v(0) (160)

We set

B2

8
= ρ

(0)
T +

1
2

(
ρ
(0)
X

)2
= ρ

(0)
T +

1
2

(
v(0)

)2
(161)

so that (157) changes to

−B2

8
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)3
+ ν

(
q̂(0)

)5
= 0 (162)
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whose solution is

q̂(0) = Ag
[
B(θ − θ̄)

]
(163)

where

g(τ) =
1

(1 + a cosh τ)
1
2

(164)

and

B = A
√

2 (165)

along with

τ = B(t)(θ − θ̄) (166)

while

dθ̄

dt
= v (167)

At O(ε) level, we get

−B2

8
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ φ̂(1)

{
3

(
q̂(0)

)2
+ 5ν

(
q̂(0)

)4
}

=

{
ρ
(1)
T + v(0)ρ

(1)
X

}
q̂(0) − ∂2q̂(0)

∂θ∂X
(168)

and

−B2

8
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2
+ ν

(
q̂(0)

)4
}
ψ̂(1) =

−∂q̂(0)

∂T
−v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X −v(1)

}∂q̂(0)

∂θ
−ρ

(0)
XX q̂

(0)+δ
(
q̂(0)

)2m+1
(169)

Here, as discussed in the previous section, we set ρ(0)
XX = 0 in (166) to

eliminate frequency chirp, to give:

−B2

8
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2
+ ν

(
q̂(0)

)4
}
ψ̂(1) =

−∂q̂(0)

∂T
− v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X − v(1)

} ∂q̂(0)

∂θ
+ δ

(
q̂(0)

)2m+1
(170)

The FA, when applied to (165) gives

∂B

∂X
= 0 (171)
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and

ρ
(1)
T + v(0)ρ

(1)
X = 0 (172)

whereas if, applied to (167), gives

dB

dT
=

2
3
δ
A2m+2

B

(
3 + 4νA2

) ∫ ∞

−∞

1
(1 + a cosh τ)m+1

dτ (173)

and

ρ
(1)
X = v(1) (174)

By virtue of () we therefore get

dA

dT
=

√
2

3
δ
A2m+2

B

(
3 + 4νA2

) ∫ ∞

−∞

1
(1 + a cosh τ)m+1

dτ (175)

Equation (168) shows that B is a function of T only and so is A by
virtue of (138). Thus, these O(ε) equations reduce to:

−B2

8
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ φ̂(1)

{
3

(
q̂(0)

)2
+ 5ν

(
q̂(0)

)4
}

= 0 (176)

and

−B2

8
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2
+ ν

(
q̂(0)

)4
}
ψ̂(1) =

−∂q̂(0)

∂T
+ δ

(
q̂(0)

)2m+1
(177)

whose solutions are respectively

φ̂(1) = 0 (178)

and

ψ̂(1) = − 1√
2
∂θ̄

∂T

1

(1 + a cosh τ)
1
2∫ τ

(1 + a cosh s2)
(∫ s2 a sinh s1

1 + a cosh s1
ds1

)
ds2

+
1

2A2

dA

dT

1

(1 + a cosh τ)
1
2



256 Biswas

∫ τ

(1 + a cosh s2)

(∫ s2 as1 sinh s1

(1 + a cosh s1)
2 ds1

)
ds2

− 1
2A2

dA

dT

1

(1 + a cosh τ)
1
2∫ τ

(1 + a cosh s2)
(∫ s2 1

1 + a cosh s1
ds1

)
ds2

+δA2m−1 1

(1 + a cosh τ)
1
2∫ τ

(1 + a cosh s2)

(∫ s2 as1 sinh s1

(1 + a cosh s1)
m+1ds1

)
ds2 (179)

Equation (175) leads to the QS solution (59) for the parabolic law of
nonlinearity where a is given by (155).

4.4. Dual-Power Law

In this case we have F (s) = sp + νs2p so that we have f(s) =
sp+1/(p + 1) + νs2p+1/(2p + 1). We note that on setting p = 1 for the
case of dual-power law, one recovers the parabolic law. The GNLSE,
thus, is

iqt +
1
2
qxx +

(
|q|2p + ν |q|4p

)
q = 0 (180)

The solution of (180) is given by

q(x, t) =
A

[1 + b cosh {B (x− x̄(t))}]
1
2p

ei(−κx+ωt+σ0) (181)

where

B = Ap
(

2p2

1 + p

) 1
2

(182)

with

κ = −v (183)

ω =
A2p

2p + 2
− κ2

2
(184)
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and

b =

√
1 +

νB2

2p2

(1 + p)2

1 + 2p
(185)

We note that for the dual-power law case the solitons exist for

−2p2

B2

1 + 2p
(1 + p)2

< ν < 0 (186)

The corresponding parameter dynamics of the soliton is given by

dA

dt
= 0 (187)

dB

dt
= 0 (188)

dκ

dt
= 0 (189)

dx̄

dt
= −κ (190)

The three integrals of motion for the dual-power law case are

E =
∫ ∞

−∞
|q|2 dx

=
2
B

[
(b− 1)(2p + 1)

2ν(1 + p)

] 1
p Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

) F

(
1
2
,
1
p
;
1
2

+
1
p
;
1 − b

1 + b

)
(191)

M =
i

2

∫ ∞

−∞
(qq∗x − q∗qx) dx

= −2κ
B

[
(b−1)(2p+1)

2ν(1+p)

]1
p Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p+ 1

2

) F

(
1
2
,
1
p
;
1
2

+
1
p
;
1 − b

1 + b

)
(192)

H =
∫ ∞

−∞

[
1
2
|qx|2 −

|q|2p+2

p + 1
− ν

|q|4p+2

2p + 1

]
dx

=
B

4p2

[
(b− 1)(2p + 1)

2ν(1 + p)

] 1
p Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

)
{

2p
p+1

F

(
−1

2
,
1
p
;
3
2

+
1
p
;
1 − b

1 + b

)
−F

(
1
2
,
1
p
;
1
2
+

1
p
;
1 − b

1 + b

)}
(193)
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Here, F (α, β; γ; z) is the Gauss’ hypergeometric function defined as

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)

∞∑
n=0

Γ(α + n)Γ(β + n)
Γ(γ + n)

zn

n!
(194)

4.4.1. Perturbation Terms

The perturbed NLSE that is going to be considered in this paper is:

iqt +
1
2
qxx +

(
|q|2p + ν |q|4p

)
q = iεδ |q|2m q (195)

In this case, we have the adiabatic variation of the parameters as

dA

dt
=

ε

pLAp−1

(
p + 1
2p2

) 1
2

∫ ∞

−∞
(q∗R + qR∗) dx (196)

dB

dt
=

ε

L

∫ ∞

−∞
(q∗R + qR∗) dx (197)

dκ

dt
=

ε

E

[
i

∫ ∞

−∞
(q∗xR− qxR

∗) dx− κ

∫ ∞

−∞
(q∗R + qR∗) dx

]
(198)

where we have E is the energy as given by (18) while

L =
Γ

(
1
2

)
Γ

(
1
p

)
Γ

(
1
p + 1

2

) [
(b− 1)(2p + 1)

2ν(1 + p)

] 1
p

{
2ν2

bp3

(p + 1)3

(b− 1)(2p + 1)2
F

(
1
2
,
1
p
;
1
2

+
1
p
;
1 − b

1 + b

)

− 2
B2

F

(
1
2
,
1
p
;
1
2

+
1
p
;
1 − b

1 + b

)

− 2ν
bp2

(p + 1)2

(b− 1)2(p + 2)(2p + 1)
F

(
1
2
,
1
p
;
1
2

+
1
p
;
1 − b

1 + b

)}
(199)

Now, substituting the perturbation term R from (24) and carrying out
the integrations in (25), (26) and (27) one finds:

dA

dt
=

2εδ
p

A2m−p+3

BL

(
p + 1
2p2

) 1
2

∫ ∞

−∞

1

(1 + b cosh τ)
m+1

p

dτ (200)

dB

dt
= 2εδ

A2m+2

BL

∫ ∞

−∞

1

(1 + b cosh τ)
m+1

p

dτ (201)
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and

dκ

dt
= 0 (202)

From (22) one can obtain the velocity of the soliton as

v =
dx̄

dt
= −κ (203)

Thus, we have obtained the basic adiabatic parameter dynamics of the
solitons of the NLSE using the soliton perturbation theory (SPT).

4.4.2. Quasistationarity

Here, at the leading order, we arrive at

−
{
ρ
(0)
T +

1
2

(
ρ
(0)
X

)2
}
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)2p+1
+ ν

(
q̂(0)

)4p+1
= 0

(204)
and

(
ρ
(0)
X − v(0)

) ∂q̂(0)

∂θ
= 0 (205)

Now, (40) implies

ρ
(0)
X = v(0) (206)

We set

B2

4p2
= ρ

(0)
T +

1
2

(
ρ
(0)
X

)2
= ρ

(0)
T +

1
2

(
v(0)

)2
(207)

so that (39) changes to

−B2

4p2
q̂(0) +

1
2
∂2q̂(0)

∂θ2
+

(
q̂(0)

)2p+1
+ ν

(
q̂(0)

)4p+1
= 0 (208)

whose solution is

q̂(0) = Ag
[
B(θ − θ̄)

]
(209)

where

g(τ) =
1

(1 + b cosh τ)
1
2p

(210)
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and

B = Ap
(

2p2

1 + p

) 1
2

(211)

along with

τ = B(θ − θ̄) (212)

while

dθ̄

dt
= v (213)

At O(ε) level, we decompose q̂(1) = φ̂(1) + iψ̂(1) into its real and
imaginary parts. Now, the equations for φ̂(1) and ψ̂(1), by virtue of
(43), are respectively:

−B2

4p2
φ̂(1) +

1
2
∂2φ̂(1)

∂θ2
+ φ̂(1)

{
(2p + 1)

(
q̂(0)

)2p
+ ν(4p + 1)

(
q̂(0)

)4p
}

=
{
ρ
(1)
T + v(0)ρ

(1)
X

}
q̂(0) − ∂2q̂(0)

∂θ∂X
(214)

and

−B2

4p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2p
+ ν

(
q̂(0)

)4p
}
ψ̂(1) =

−∂q̂(0)

∂T
−v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X −v(1)

} ∂q̂(0)

∂θ
−ρ

(0)
XX q̂

(0)+δ
(
q̂(0)

)2m+1
(215)

Once again, setting, ρ(0)
XX = 0, to eliminate the frequency chirp, gives

−B2

4p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2p
+ ν

(
q̂(0)

)4p
}
ψ̂(1) =

−∂q̂(0)

∂T
− v(0)∂q̂

(0)

∂X
−

{
ρ
(1)
X − v(1)

} ∂q̂(0)

∂θ
+ δ

(
q̂(0)

)2m+1
(216)

The FA, when applied to (49) gives

∂B

∂X
= 0 (217)

and

ρ
(1)
T + v(0)ρ

(1)
X = 0 (218)
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whereas if, applied to (51), gives

dB

dT
= 2δ

A2m+2

BL

∫ ∞

−∞

1

(1 + b cosh τ)
m+1

p

dτ (219)

and

ρ
(1)
X = v(1) (220)

Equation (52) shows that B is a function of T only and so is A by
virtue of (46) so that we obtain

dA

dt
=

2δ
p

A2m−p+3

BL

(
p + 1
2p2

) 1
2

∫ ∞

−∞

1

(1 + b cosh τ)
m+1

p

dτ (221)

Although (54) and (56) were obtained before by the SPT, we note that
the relations (52), (53) and (55) cannot be recovered by the SPT and
therefore this method has its limitations. Thus, these O(ε) equations
reduce to:

−B2

4p2
φ̂(1)+

1
2
∂2φ̂(1)

∂θ2
+φ̂(1)

{
(2p + 1)

(
q̂(0)

)2p
+ ν(4p + 1)

(
q̂(0)

)4p
}

= 0

(222)
and

−B2

4p2
ψ̂(1) +

1
2
∂2ψ̂(1)

∂θ2
+

{(
q̂(0)

)2p
+ ν

(
q̂(0)

)4p
}
ψ̂(1)

= −∂q̂(0)

∂T
+ δ

(
q̂(0)

)2m+1
(223)

whose solutions are respectively

φ̂(1) = 0 (224)

and

ψ̂(1) = − A

Bp

∂θ̄

∂T

1

(1 + b cosh τ)
1
2p

∫ τ

(1 + b cosh s2)
1
p


∫ s2 b sinh s1

(1 + b cosh s1)
p+1

p

ds1


 ds2

+
A

B3p

dB

dT

1

(1 + b cosh τ)
1
2p
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∫ τ

(1 + b cosh s2)
1
p


∫ s2 bs1 sinh s1

(1 + b cosh s1)
p+1

p

ds1


 ds2

−2A
B2

dA

dT

1

(1 + b cosh τ)
1
2p

∫ τ

(1 + b cosh s2)
1
p


∫ s2 1

(1 + b cosh s1)
1
p

ds1


 ds2

+2δ
A2m

B2

1

(1 + b cosh τ)
1
2p

∫ τ

(1 + b cosh s2)
1
p


∫ s2 1

(1 + b cosh s1)
m+1

p

ds1


 ds2 (225)

which leads to the QS solution of the perturbed NLSE with dual-power
law nonlinearity.

5. NUMERICAL SIMULATION

We have now carried out the direct numerical simulation of the
equation (78). We have used a hyperbolic secant profile, here, for
the soliton. The Fast Fourier Transform (FFT) of the profile in space
variable is used. The different modes of the FFT are studied. The
program proceeds in the time step by Picard iteration. The evolution
of the nonlinear terms is carried out by the convolution integrals.
The iteration ceases when the difference of values between successive
iterations is at O(h2) where h is the time step.

In the following figures, we have obtained the numerical and the
analytical variation of the amplitude of the perturbed soliton. They
are plotted on the same set of axes for a direct comparison.

Figure 1 is the numerical and analytical variation of the soliton
amplitude given by (73) or (74). Here, the special case m = 0 is plotted
for δ = −0.5.

Now, Figure 2 numerical and analytical variation of the soliton
amplitude in (73) or (74) for m = 1 and δ = −0.5.

Finally, in Figure 3, we have the numerical and analytical variation
of the amplitude of the soliton for m = 2 with δ = −0.5.

Thus, in Figures 1, 2 and 3 we see that the agreement between
the theory and the numerics of the variation of the amplitude of the
soliton, for the Kerr law case, is very good.
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Figure 1. Amplitude variation for m = 0, δ = −0.5.

Figure 2. Amplitude variation for m = 1, δ = −0.5.
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Figure 3. Amplitude variation for m = 2, δ = −0.5.

6. CONCLUSIONS

In this paper, we have obtained the quasi-stationary solution to the
generalized NLSE in presence of the nonlinear damping perturbation
term. The special cases of the Kerr law, power law, parabolic law as
well as the dual-power law of nonlinearity are considered here. The
effect of these four laws are summarized in the following table.

Law F (s) f(s) g(τ) ω

Kerr s s2/2 1
cosh τ

B2−κ2

2

Power sp sp+1/(p + 1) 1

cosh
1
p τ

B2

2p2
− κ2

2

Parabolic s + νs2 s2/2 + νs3/3 1√
1+a cosh τ

A2

4 − κ2

2

Dual-Power sp+νs2p sp+1/(p+1)+νs2p+1/(2p+1) 1

(1+b cosh τ)
1
2p

A2p

2p+2− κ2

2

This technique of QS with the WKB ansatz of the solution can be used
for Hamiltonian as well as the non-Hamiltonian type perturbation. The
application to the conservative type of perturbation will be reported
elsewhere, in future. Moreover, the extension of such studies to the
case of vector solitons will also be carried out in future.
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