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Abstract—An efficient algorithm combining the fast multipole
method (FMM) and the characteristic basis function method (CBFM)
for analysis of scattering from microstrip antennas over a wide band is
introduced in this paper. In the hybrid algorithm, the characteristic
basis function method is used to construct the currents on microstrip
antennas by using characteristic basis functions (CBFs) which are
constructed from the solution vectors at several samples using the
singular value decomposition (SVD), thus obviating the need to
repeatedly compute using a computational electromagnetic code and
repeatedly solve a large method of moments matrix system at each
point within the wide band of interest. The fast multipole method
is used to obtain the solution vectors at these samples and speed up
the matrix-vector product in the characteristic basis function method
(CBFM). The resultant hybrid algorithm (FMM-CBFM) eliminates
the need to generate and store the usual square impedance matrix and
repeatedly use an iterative solver at each point and thus leads to a
significant reduction in memory requirement and computational cost.
Numerical examples are given to illustrate the accuracy and robustness
of this method.
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1. INTRODUCTION

The method of moments (MoM) has been widely used for the
analysis of microstrip structures. However, the numerical solution
of the MoM matrix equation requires O(N3) operations and O(N2)
memory to store the matrix elements. The large operation count
and memory requirement render the MoM solutions for large-scale
problems prohibitively expensive. When an iterative solver is employed
for solving the MoM matrix equation, the operation count is O(N2)
per iteration because of the need to evaluate the matrix-vector
multiplication. This operation count is too high for an efficient
simulation.

To make the iterative method more efficient, it is necessary
to speed up the matrix-vector multiplication. There are several
techniques developed for this purpose, including the adaptive integral
method (AIM) [1], the fast multipole method (FMM) [2, 3], the
impedance matrix localization (IML) [4], the conjugate-gradient fast
Fourier transform method (CG-FFT) [5], and the precorrected-FFT
method [6]. Recently, efforts have been made to extend these fast
algorithms to microstrip problems. One such example is [7] where the
FMM is adopted to analyze radiation from microstrip antennas with
the aid of the discrete complex image method (DCIM) [8]. In this
paper, the fast multipole algorithm is extended to solve scattering
problems in microstrip environment. Though the FMM reduces
memory requires and speeds up the matrix-vector multiplication, an
iterative solver has to be adopted repeatedly at each point within the
wide band of interest, and this, in turn, places an inordinately heavy
burden on the CPU in terms of time, especially when the convergence
rate of the iterative solver is very slow and the wideband response is
very complicated in nature. Furthermore, it is very difficult to find a
general iterative solver and preconditioner which is very efficient for
all problems at an arbitrary frequency point.

One of the popular techniques for realizing a fast parameter
sweep is the asymptotic waveform evaluation (AWE) technique [9].
This technique has been extended to the MoM solution of scattering
from microstrip antennas so that the reduced order model is obtained
to efficiently evaluate the frequency response over a broadband [10].
However, in the AWE algorithm, the LU factorization of the impedance
matrix is necessary, and the derivative of the impedance matrix
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with respect to the parameter must also be computed and stored,
which make AWE only applicable to problems involving small matrix
dimensions. However, for large finite arrays of microstrip antennas,
the number of unknowns could run into over several thousands, the
application of AWE to matrix equations resulting from the MoM has
been rather limited. Furthermore, for microstrip structures, it is very
difficulty to compute the monostatic RCS using AWE because the high
order derivative of the excitation vector with respect to the incident
angle must be calculated. In addition, it is also difficult to combine
AWE with AIM or FMM or other fast algorithms to obtain the wide
responses. Another approach aimed at enhancing the computational
efficiency in wide band is the adaptive sampling algorithm [11]. This
method may need a lot of sample points when the response is very
complex. Furthermore, it is very difficult to determine the accuracy of
solutions in this method.

In this paper, we introduce a new fast and efficient hybrid
algorithm combining the fast multipole method (FMM) and the
characteristic basis function method (CBFM) [12] for analysis of
scattering from microstrip antennas over a given wide band. In
this method, the characteristic bases (CBs) are constructed firstly
from the solution vectors at several samples using the singular value
decomposition (SVD), and the current at any other sample points
within the band is expressed as a linear combination of the CBs,
which thus obviates the need to repeatedly solve a large method of
moments matrix system at each sample point. Then, to make this
algorithm applicable to large-scale structures, the FMM is used to
obtain the solutions at several selected samples, and speed up the
matrix-vector multiplication in the CBFM at the remaining points.
Hence, the resultant hybrid algorithm (FMM-CBFM) eliminates the
need to generate and store the usual square impedance matrix and
calculate repeatedly with an iterative solver and thus leads to a
significant reduction in memory requirement and computational cost.
Furthermore, even if CBFM does not give the accuracy solution at
some point within the band, the current at this point expressed as
a linear combination of the CBs will be a more efficient initial guess
which can help reduce the number of iterations over a typical choice of
a zero initial guess. Several typical examples demonstrate the efficiency
and accuracy of the proposed technique.

2. THE FAST MULTIPOLE METHOD

Consider a general microstrip structure residing on an infinite substrate
having relative permittivity εr and thickness h. The microstrip is in the
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x-y plane and excited by an applied field Ea. The induced current on
the microstrip can be found by solving the well-known mixed potential
integral equation (MPIE) [13]. First, the microstrip is divided into
triangular elements and then the current is expended using RWG basis
functions [14]. Applying the Galerkin’s method results in a matrix
equation

ZI = V (1)

in which the impedance matrix has the elements given by

Zij = jω

∫
Ti

∫
Tj

[
fi(r ) ·GA(r, r ′) · fj(r ′)

− 1
ω2

∇ · fi(r )∇ · fi(r ′)Gq(r, r ′)
]
dr′dr (2)

where fi and fj represent the testing and basis function, respectively,
Ti and Tj denote their supports, GA is the Green’s function for vector
potential, and Gq is the Green’s function for scalar potential. In
general, both GA and Gq can be expressed as an inverse Hankel
transform of their spectral domain counterparts, which is commonly
known as the Sommerfeld integral (SI). The analytical solution of the
SI is generally not available, and the numerical integration is time
consuming. This problem can be alleviated using DCIM [8], which
yields closed-form expressions as

G(r, r ′) =
Nc∑
p=0

ap
e−jkrp

4πrp
, rp =

∣∣r − (r ′ + ẑbp)
∣∣ (3)

where ap and bp are the complex coefficients obtained from DCIM.
To use FMM, we first divide the entire structure into groups

denoted by Gm(m = 1, 2, . . . ,M). Letting ri be the field point in
a group centered at rm and rj be the source point in a group centered
at rm′ , we have

rij = ri − (rj + ẑbp) = (ri − rm) + (rm − rm′) + (rm′ − rj) − ẑbp
= rim + rmm′ − rjm′ − ẑbp (4)

Employing the addition theorem [2], we can rewrite the Green’s
function in (3) as

G(ri, rj) ≈
k

j16π2

∮ Nc∑
p=0

ape
−j�k·ẑbp × e−j�k·(�rim−�rjm′ )T (k̂ · r̂mm′)d2k̂ (5)
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where

T (k̂ · r̂mm′) =
L∑

l=0

(−j)l(2l + 1)h(2)
l (k · rmm′)Pl(k̂ · r̂mm′) (6)

Substituting (5) into (2), we obtain

Zij =
ωk

16π2

[∮
SA(k̂)Uim(k̂) · T (k̂, r̂mm′)U∗

jm′(k̂)d2k̂

− 1
ω2

∮
Sq(k̂)Vim(k̂) · T (k̂, r̂mm′)V ∗

jm′(k̂)d2k̂

]
(7)

where

Uim(k̂) =
∫

Ti

e−j�k·�rim fi(r )dr,

Vim(k̂) =
∫

Ti

e−j�k·�rim∇ · fi(r )dr and S(k̂) =
Nc∑
p=0

ape
−j�k·ẑbp

When an iterative method is used to solve (1), the matrix-vector
multiplication can be performed in such a way that the contributions
from nearby groups are calculated directly and the far interactions are
calculated using (7).

In this algorithm, the image sources are grouped with the original
source and hence the translation keeps unchanged for different images.
Obviously, the algorithm requires little extra computation compared
with that applied to free space problems. However, the method above is
often affected by complex images’ locations. To overcome this problem,
a simple and efficient scheme presented in [15] can be used.

3. THE CHARACTERISTIC BASIS FUNCTION
METHOD

To obtain the responses over a band of interest, we have to repeat the
calculation at each discrete point. This will be very time consuming for
the electromagnetic devices with complicated responses. To alleviate
this problem, the characteristic basis function method [12] is proposed.
To derive a parameter-independent characteristic basis set, we first
compute the solution vectors by using the MoM at the starting (f1) and
ending (fM ) points. At the first level of the binary tree, an additional
point is added at the center by averaging f1 and fM . Repeating the
procedure to level $m gives us 2m +1 samples. Let I(m) be the current
expansion coefficient vectors at level m. The set of vectors {I(m)(fi)},
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with i = 1, . . . , 2m + 1 define a reduced-order subspace Ξ(m) of the
original Hilbert space span

Ξ(m) = span{I(m)(fi)} (8)

If too few basis vectors are chosen, there would be an unacceptable
loss of accuracy in the representation of I(f). In order to define an
orthonormal basis of Ξ(m), vectors {I(m)(fi)} are arranged columnwise
in a matrix A of size N ×M , where M = 2m + 1. Next, the SVD of A
is carried out as follows:

A = U
∑

V H (9)

where U and V are unitary, and
∑

= diag(σ1, . . . , σr), r = min(N,M)
with σ1 ≥ σ2 ≥ · · ·σr ≥ 0.

However, different from the circuit problems, the current
coefficients for the scattering problems are very small because a plane
wave with a unit magnitude is often used as the excitation. In fact,
the elements of A are often on the order of 1.0E-3∼1.0E-4 and thus it
is invalid to implement directly SVD of A. To overcome this problem,
a simple and efficient method is introduced here that the elements of
A can be largened by multiplying a large constant such as 1.0E+4.

Then the current at any other point within the band of interest is
approximated as a linear combination of the individual columns of U
that form a characteristic basis specific to the geometry

I(f) = [U1 U1 · · · UM ]αT (10)

where U1, U1, . . . , UM are the column vectors, and α is an complex
expansion coefficient vector to be determined.

Equation (10) is substituted into (1), giving rise to a M×M linear
system of algebraic equations after taking inner products with each of
the characteristic basis



〈
UH

1 ZU1

〉
· · ·

〈
UH

1 ZUp

〉
...

...
...〈

UH
p ZU1

〉
· · ·

〈
UH

p ZUp

〉






α1
...
αM


 =




〈
UH

1 V
〉

...〈
UH

p V
〉


 (11)

The above equation is solved for the α′s, which, when substituted in
(10), gives the solution at the point of interest within the band from
which the scattering responses can be easily evaluated.
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4. THE HYBRID METHOD COMBINING THE FAST
MULTIPOLE METHOD AND THE CHARACTERISTIC
BASIS FUNCTION METHOD

Obviously, the CBFM above obviates the need to repeatedly solve
a large method of moments matrix system at each point within the
wide band of interest. In this method, the computationally intensive
parts are comprised of (i) the computation of the solution vectors at
samples, and (ii) the fill of the impedance matrix ant the matrix-vector
multiplications at other points. Hence it is still expensive for the direct
analysis of electrically large problems. In addition, the impedance
matrix must also be stored in this method. These make this algorithm
only applicable to small or moderate structures.

On the other hand, though the FMM reduces memory requires and
speeds up the matrix-vector multiplication, an iterative solver has to
be adopted repeatedly at each point within the wide band of interest,
and this, in turn, places an inordinately heavy burden on the CPU
in terms of time, especially when the convergence rate of the iterative
solver is very slow and the wideband response is very complicated in
nature.

It is clear that if the CBFM is combined with the FMM, their
advantages are both used. In this resultant hybrid algorithm, the
FMM is used firstly to obtain the solution vectors at sample points and
then speed up the matrix-vector product in CBFM at other points and
an iterative solver with a preconditioner can be avoided. Furthermore,
even if CBFM does not give the accuracy solution at some point within
the band, the current at this point expressed as a linear combination of
the CBs will be a more efficient initial guess which can help reduce the
number of iterations over a typical choice of a zero initial guess. Hence,
this hybrid algorithm (FMM-CBFM) eliminates the need to generate
and store the usual square impedance matrix and calculate repeatedly
at each discrete point using an iterative solver and thus leads to a
significant reduction in memory requirement and computational cost.

5. DISCUSSIONS OF THE PARAMETERS IN THE
CBFM

The singular vectors in U define a set of orthogonalized problem-
matched basis functions of the reduced-order subspace. The dynamic
range of the singular values (log(σ1/σM )) is a strong indicator of the
span of the CBs, as has been demonstrated in [12]. However, it
should be also noted that the large dynamic range of the singular
values does not always mean that the solution is correct. We find
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that the dynamic range of the singular values required to accurately
simulate the structure is dependent on the scattering responses and the
bandwidth. Hence, to determine more efficiently the accuracy of the
solution, the residual ε of the matrix system (1) is evaluated using the
solution obtained from (10). Here the residual ε is defined as follows:

ε =
‖ZX − V ‖2

‖V ‖2
(12)

In this paper, our numerical experiments involving wide frequency
scattering problems reveal that the residual will be so large at resonant
frequency points that it is very difficult to determine the accuracy of
the solution even if a lot of frequency samples are selected if they are
not near these resonant frequency points. On the other hand, using
only a few frequency samples, the characteristic basis function method
can give the correct results at non-resonant frequency points. Based
on the discussion above, we can start to estimate the solution at other
frequencies by using the CBs constructed by several samples. If the
redusial in (12) is not met at some frequency point, we can include it in
the CBs by carrying out the SVD on this new set. The process is gone
on until all the solutions are obtained with the small residuals. In this
method, by placing new samples at the larger value of the residual,
this residual is minimized with respect to frequency. In fact, these
new samples often lie near the resonance frequency points. Hence this
algorithm automatically selects and minimizes the number of sample
points. Furthermore, the adaptive algorithm does not require any a
priori knowledge.

Our numerical experiments reveal when (log(σ1/σM )) reaches to 2,
the basis vectors have sufficient span at non-resonant frequency points.
Hence this condition is chosen in this paper. However, numerical
experiments in [12] involving the circuit problems revealed that this
number should be at least 3 to ensure that the basis vectors have
sufficient span. It is clear that for the scattering problems, constraint
can be relaxed. If this condition is not met, we move to the next level
of the binary tree by adding additional frequency samples, which, in
turn, expands the dynamic range. Of course, we also think that sample
points are enough if the solution obtained from (10) gives small residual
at a new sample point. This often takes place when the monostatic
RCS from microstrip structures is considered or the band of interest is
very narrow.

On the other hand, in the conventional iterative solvers, e.g., the
CG scheme, ε is chosen to be on the order of 0.5%–1% to obtain
an accurate solution vector. One of the reasons for imposing such a
stringent condition is to prevent the CG scheme from getting trapped
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in local minima. However, our studies indicate that this constraint can
be relaxed to 15%–20% in the present approach because the solution is
tightly controlled by the CBs constructed from the solutions at other
points — and this represents an important advantage. Of course, if
the solution constructed from the CBs is not sufficiently accurate, we
proceed to compute it using FMM, and then include it in the CBs by
carrying out the SVD on this new set. Here, the current at this point
expressed as a linear combination of the CBs is a more efficient initial
guess which can help reduce the number of iterations over a typical
choice of a zero initial guess.

It should also be noted that if the band of interested is too much
wide, more basis vectors must be chosen to ensure the accuracy in
the representation of the solutions at non-sample points. Because the
CPU time is proportional to the number of CBFs in the CBFM, it
is desirable to keep the number of sample points as small as possible.
To alleviate this problem, the entire band can be divided into several
sub-bands so that only a few CBs are needed in each sub-band and
then the computing efficiency is enhanced furthermore.

6. NUMERICAL RESULTS

To illustrate the validity and accuracy of the method described above,
we present several typical numerical examples. All of the computations
are performed on a PC equipped with 512 MB of RAM and a 2.4-GHz
processor. As a first example, we consider the scattering from a circle
patch microstrip antenna with the radius of 7.1 mm. The substrate
parameters are h = 0.7874 mm and εr = 2.2. The patch is illuminated
by an θ-polarized incident plane wave traveling along the direction of
θi = 63◦ and ϕi = 0◦.

A modeling of this structure requires 492 unknowns, and it
remains unchanged over the frequency range of interest, which is from
6 to 18 GHz in steps of 100 MHz. Because this structure is too small
and thus the method of moments is adopted to obtain the solutions
at sample points instead of the fast multipole method. We begin by
computing the current on the structure at 6 and 18 GHz directly by
solving (1). In the first level, an additional frequency point at 12 GHz
is added and its solution is constructed from the CBs derived from 6
and 18 GHz. The residual is found to be unacceptable and, hence, the
MoM matrix system is solved directly. We then go to the second level
by adding two more frequency points at 9 and 15 GHz, respectively. At
9 GHz, the residual also turns out to be high, and we then compute the
solution directly. Now the dynamic range increases to 2.0954, as shown
in Fig. 1, and we thus stop sampling. At this stage, we solve (1) directly
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Figure 1. Distribution of singular values at various levels for the circle
patch.

at four frequency points, and construct four CBs. The distribution of
singular values at each of the levels is presented in Fig. 1, and it can be
seen that the dynamic range (log(σ1/σM )) increases with adding more
frequency points. The ratio is just 0.71487 at level 1, while it increases
to 3.7629 finally.

Next, the solution is constructed at other frequencies by using
the four CBs without directly solving (1). The residual is evaluated
over the entire band, and presented in Fig. 2. This figure shows
that the residual is within 20% over the entire frequency band except
at 7.7, 12.6 and 13.5 GHz. Hence at these three frequency points,
the solution vectors are also computed directly and included in the
CBs by carrying out the SVD on this new set. In contrast, the
iterative solvers such as the CG method use a residual criterion of
1% to terminate the iterations. In fact, in the present algorithm, this
condition can be relaxed to 20% without loss of accuracy. This is
demonstrated by computing the scattering responses from the circle
patch, and the results obtained are presented in Fig. 3, and are seen
to be indistinguishable from those of direct calculation and the results
in [16] over the entire frequency band of interest.

The CPU time for the direct solution of (1) at each frequency point
is 0.44 s, and the time taken to evaluate the response at 121 frequency
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Figure 2. Percentage residual of the MoM system versus frequency
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points is 53.24 s. The present approach involves computing the solution
directly at seven frequency samples, and the solution at any desired
frequency f in the range 6.0 < f < 7.7 GHz is constructed from the
four CBs, and in the range 7.7 < f < 9.0 GHz is constructed from
the five CBs and so on. The CBFM takes just 0.0 s, 0.05 s, 0.05 s and
0.06 s at each frequency sample point if four, five, six and seven CBs
are used respectively. The total time for computing the response over
the entire frequency band is 8.96 s, which makes the present approach
more than 5.9 times faster than the direct computation.

Then we consider the plane wave scattering from two finite
arrays of microstrip patch antennas. The element of the arrays is
a rectangular patch with 36.6 mm width and 26.6 mm length. The
distance between two adjacent elements in both the x and y directions
is 55.517 mm. The geometry can be obtained from [17]. The substrate
parameters are h = 1.58 mm and εr = 2.17. In the FMM, the group
size d is 0.25λ0 with λ0 being the wavelength in free space. The
number of modes L is chosen to be k0d + 3 ln(π + k0d). The patch
is illuminated by an θ-polarized incident plane wave traveling along
the direction of θi = 0◦ and ϕi = 45◦. The 3 × 3 and 7 × 7 arrays are
considered and they have 1737 and 9457 unknowns respectively and
are analyzed from 2 to 4 GHz in steps of 50 MHz leading to a total of
41 frequency points. Similarly, three samples are selected using the
adaptive algorithm above, and the dynamic range increases to 2.20749
and 2.21428 respectively, for the 3 × 3 and 7 × 7 arrays, as shown in
Fig. 4. The residual of (12) is found to be less than 20% from 2 to
4 GHz except at 2.75 GHz (see Fig. 5). Hence the FMM is employed
to compute the current at this point, and then include it in the CBs.
The currents at the remaining 37 frequency points are constructed by
using the CBs, and then the scattering responses are computed. The
RCS as a function of frequency is presented in Fig. 6, by using the
present approach, along with the MoM solution and the results in [17].
An excellent agreement is showed over the entire frequency band.

It should be noted that in the FMM, to speed up the convergence
rate of iterative solvers such as the generalized minimal residual
(GMRES), the incomplete LU (ILU) preconditioner with a dual
dropping strategy is used [18]. In the ILUT preconditioner, the dual
dropping strategy is implemented using the two parameters τ and p,
where τ is the threshold drop tolerance and p is the fill-in parameter.
Here we select τ = 0.01 and p = 0. The iterative numbers are 3, 5, 12,
12 and 3, 5, 9, 14 with a zero initial guess for the 3×3 and 7×7 arrays
at four sample frequencies, respectively. In fact, we can use the current
expressed as a linear combination of the CBs as an initial guess after the
second sample points. Then the iterative numbers are 3, 5, 8, 10 and 3,
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5, 6, 12 for them respectively. Hence this initial guess is more efficient
than a zero initial guess. On the other hand, in the FMM-CBFM,
the main operation involves just M matrix-vector products and the
iterative process and preconditioning can be avoided and thus enhance
the compute efficiency. To illuminate this, the iterative numbers over
the entire frequency band are plotted in Fig. 7. In these two examples,
the maximum number of iterations to allow is 500. Hence it is very clear
that the convergence is not achieved at three frequencies. However, the
iterative process can be avoided in our method and only several CBs
are used to construct the solutions at these three frequencies and thus
the computing time can be saved. In fact, the present approach takes
just 0.55 s and 0.76 s for the 3× 3 array and 15.66 s and 17.68 s for the
7×7 array when three CBs and four CBs are used respectively. At the
same time, it should be noted that the convergence can be achieved
by choosing a smaller value of τ and a larger value of p in the ILUT
implementation at these three frequencies. However, this means more
time and memory must be spent on preconditioning.

The monostatic RCS (σθθ) as functions of θ for these two arrays at
3.7 GHz is also considered. The distribution of singular values finally is
presented in Fig. 8 and Fig. 9 at φ = 0◦ and φ = 90◦, respectively, and
it can be easily seen that the dynamic range is very small. However,
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the solution obtained from (10) gives small residual (< 20%) at 5th
and 8th sample point for the 3 × 3 and 7 × 7 arrays, respectively.
Hence, we think that these sample points are also enough to ensure
that the basis vectors have sufficient span. The residual ε is evaluated
over the entire band, and presented in Fig. 10 and Fig. 11. At φ = 0◦
and θ = 3◦, the residual exceeds 20% for the 7 × 7 array and thus
the current is solved using FMM at this point, and then include it in
the CBs by carrying out the SVD on this new set. The solutions are
shown in Fig. 12 and Fig. 13, respectively. Since 3.7 GHz corresponds
to the (0,1) cavity mode resonance, the broadside response is greatest
at φ = 90◦ and least at φ = 0◦. The results obtained by King and Bow
[17] and Ling and Jin [19] are also given in the figures for comparison.
It is observed that our results agree very well with those given in [17]
and [19]. The iterative numbers and the CPU time at the last sample
point are tabulated in Table 1 using the initial guess from CBFM and
compared to a zero initial guess. We can see clearly the efficiency of
the initial guess from CBFM again. The CPU time for FMM solution
of (1) is also given in this table for compassion with our method in
which four CBs are used and take just 0.93 s for the 3 × 3 array and
seven CBs or eight CBs are used and take just 28.61 s or 32.90 s for the
7 × 7 array. Hence this hybrid algorithm is very efficient.

On the other hand, the monostatic RCS (σθθ) as functions of θ will
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Figure 10. Percentage residual of the MoM system versus frequency
at φ = 0◦.
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at φ = 90◦.
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Figure 12. RCS versus θ for various size arrays at φ = 0◦.
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Table 1. Comparison of the number of iteration and CPU Time (s)
for FMM-CBFM and FMM

Examples The 3 × 3 array The 7 × 7 array

φ = 0◦ φ = 90◦ φ = 0◦ φ = 90◦

The number of iteration with a 17 28 14 18

zero initial guess

The time of solving of (1) 5.19 8.29 80.75 95.73

The number of iteration with a 15 12 9 18

initial guess from CBFM

The time of solving of (1) 4.67 4.07 59.71 95.73

get more complex with increasing the size of the array and thus more
CBs must be chosen to ensure that these basis vectors have sufficient
span which will lead to the degraded efficiency of CBFM. To alleviate
this problem, the entire band can divided into several sub-bands so
that only a few CBs are needed in each sub-band and the computing
efficiency is enhanced furthermore.

7. CONCLUSION

An efficient hybrid algorithm combining the fast multipole method
(FMM) and the characteristic basis function method for fast
computation of the response of large-scale microstrip structures over a
wide band has been presented. The approach has involved expanding
the current at any point within the band as a linear combination of
the CBs that are constructed from the SVD of the solutions obtained
at a few other sampling points. The fast multipole method is used
to obtain the solution vectors at these samples and speed up the
matrix-vector product in the characteristic basis function method
(CBFM). The resultant hybrid algorithm (FMM-CBFM) eliminates
the need to generate and store the usual square impedance matrix
and repeatedly use an iterative solver at each point and thus leads
to a significant reduction in memory requirement and computational
cost. Representative numerical results are presented and illustrate the
accuracy and computational efficiency of the proposed technique.
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