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with potential application to data communication is investigated.
As the core of investigation, a ring model utilizing relativistic
electrons is introduced and the operating characteristics such as
coupled wavelengths, gain and power are derived for a circular type
of interaction. Advantages are addressed and practical challenges
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in light of advances in fundamentally similar relativistic free electron
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1. INTRODUCTION AND OBJECTIVES

There has been considerable effort to advance the state of coherent
sources of radiation using relativistic electrons [1]. In the so-called
free-electron lasers (FELs), wavelength of the emitted light is found
by Doppler shifting the electron modulation frequency, i.e., λL ≈
λΛ/2γ2, where λΛ is the spatial periodicity of the electron modulation,
γ = (1 − (v/c)2)−1/2 is the relativistic energy of the electrons and,
v is the center velocity of the electron beam. Conserving the main
principle that is the interaction of high-energy electrons with the field
(magnetic or electromagnetic) to create short wavelength emission,
various configurations have been devised and realized. Among them
are wiggler-type free-electron lasers [2–5], wiggler-free free-electron
lasers and Orotron or Smith-Purcell free-electron lasers [6]. The steady
progress in FEL generation of coherent radiation has been accompanied
by advances in the electron injection technology [1, 7], to achieve high
quality electron beam in terms of energy spread and brightness.

There has also been increasing growth in number and nature of
usage of FELs radiation. Such radiations have been proven to be ideal
for a vast variety of applications due to FELs tunability, short pulse
length, synchronize operation, bandwidth and beam quality [1]. One
class of applications are the research and experimentations in areas
such as atomic physics, plasmas and nanoscale structures. Another
potential class of applications are the ones with wide-bandwidth
requirements.

Advances in Microsystems offer the possibility of downsizing the
free-electron lasing scheme, and therefore, realization of such sources
of coherent radiation in an economic and compatible size. Considering
the described trend of progress in the technology and salient features
of the FEL generators of violet and ultraviolet coherent radiation, it
is reasonable to investigate the application of a similar scheme in high
bit-rate data communication systems as an electro-optical modulator
[8–11].

In this paper, we investigate a ring type of such interactions
for data applications in two parts. Throughout the main part, the
electro-optical coupling process is formulated to establish a theoretical
frame of reference relating the operating characteristics (e.g., coupled
wavelengths, gain, power) to the model key specifications (e.g., electron
beam energy, EM modulation). In the second part; certain operating
characteristics particular to this type of scenario such as bandwidth
and tunability are described, effect of deviations from assumed or
ideal model parameters such as energy spread are discussed, practical
challenges and some potential solutions are addressed. These are
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done by referring to the fundamentally similar FELs operations,
reported achievements [12–29], and previously published work(s) such
as dispersion analysis [8]. It should be noted that we cannot capture all
aspects of a practical realization or the associated required assumptions
to be included in the formulations. This is an insurmountable task that
is ongoing challenge for the theoretical and experimental professionals
in the area. The goal is to explore the potentials by formulating
the key characteristics and basic physics. Effects of model elements
uncertainty and deviation from ideal operation can be estimated from
such formulations providing the underlying basic assumptions are valid.

The interaction model will be introduced in the next section
and the cross-field requirements for guiding the electrons will be
determined. In Section 3, the electro-optical coupling will be
investigated through formulation of optical emission for certain field
modulations. Section 4 will include discussions, practical challenges
and conclusions.

2. INTERACTION MODEL

In the scheme proposed here, relativistic free-electrons are forced to
travel along a circular path with a mean radius r0 due to the action
of a cross-field, i.e., perpendicular electric and magnetic fields. The
cross-field requirements will be derived later in this section. Presence
of a transversal electric/magnetic modulating field which is radially
polarized with the azimuthal periodicity φΛ, causes the electrons to
wiggle about their circular motion path. This results in a short-
wavelength radiation which is strongly confined in a small cone around
the circular or azimuthal direction of electrons’ motion due to the so-
called Bremsstrahlung phenomenon. Therefore, the laser emission is
expected to be dominantly propagating in the azimuthal direction at a
radius r ≈ r0 and be polarized in the radial direction (radiation gauge).
These observations that are based on the basic physics of relativistic
electron’s interaction with radiation will be analytically confirmed in
the next section. One advantage of this scheme is that electrons can
be re-used for another interaction cycle. Another advantage is that for
the same physical dimensions, this design offers a longer interaction
length which results in the gain and power enhancement.

A view of the described interaction scenario utilizing relativistic
electrons with circular trajectories is depicted as an interaction model
in Figure 1. Assuming one-dimensional model in the transversal
direction, dynamics of electrons are formulated in a cylindrical
coordinate system (r, φ, z). The operating wavelength of the optical
emission λL is determined by allowing these kinematics to interact
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Figure 1. 2-dimensional model for the electro-optical modulator.

with the radiation. The latter is done by using the Lienard-Wiechert
potentials that describe radiation from moving particles.

The high-energy electrons with the relativistic energy γ are
injected into the interaction space and undergo a circular motion with
a radius r0 (mean radius associated with the electrons in the electron
beam) under the influence of the cross-field and in the absence of
modulating field. In the cylindrical coordinate system, the modulating
static field has an azimuthal period φΛ and is located at a radius R0.
Electrons passing through interaction region execute NΛ wiggles as
a result of interaction with the respective modulating field which is
radially polarized. As a result, an optical pulse with the wavelength
λL is generated which tends to propagate in the azimuthal direction.

Therefore, it can be captured through coupling by a circular
waveguide structure positioned in a close proximity of the electron
beam. The wiggler arc length is given by:

Larc = NΛφΛ = 2πR0 (1)

Characteristics of the coherent or laser emission resulted from electron
beam-field interaction are studied in the next section. First, however, it
is necessary to investigate the cross-field requirements for the desired
electron’s circular motions (e.g., radius and angular velocity) which
determine specifications of the output laser pulse.



Emission from relativistic free electrons 139

2.1. Cross-Field Formulation

A relativistic electron moving in the (r, φ)-plane (2-dimensional
interaction model) can be forced to undergo a circular motion by
applying a cross-field configuration. This arrangement is formed
through application of an uniform radial electric field E

(c)
r , and an

uniform magnetic field in the z-direction B
(c)
z .

Motions of the high-energy electron with relativistic energy γ
in the presence of the cross-field can be characterized by using the
relativistic force equation:

d

dt
(γmv) = e(E + v × B) (2)

and the following kinematics equations:

d2r

dt2
− r

(
dφ

dt

)2

=
e

γm

(
E(c)

r + rB(c)
z

dφ

dt

)
(3)

r
d2φ

dt2
+ 2

dφ

dt

dr

dt
= − e

γm

(
B(c)

z

dr

dt

)
(4)

Since we are interested in cyclotron motion of electrons at some angular
velocity and/or angular frequency,

dφ

dt
= ωc = cte. (5)

with a cyclotron radius r0, (3), (4) can be simplified as:

d2r

dt2
+ r

(
dφ

dt

)2

=
e

γm
E(c)

r (6)

2
dφ

dt
= − e

γm
B(c)

z (7)

Equations (6), (7) indicate that by choosing the cross-field components
E

(c)
r and B

(c)
z , circular motion of the relativistic electron can be

characterized in terms of the cyclotron radius r0 and cyclotron
frequency ωc = dφ

dt . Thus, we can determine the cross-field components
for a desired circular motion. Since the prime purpose of the cross-field
application is to create certain radius for the cyclotron motion of the
relativistic electrons, it appears that there is no particular constraint
on the cyclotron frequency ωc and, therefore, there is one degree of
freedom in determination of the required cross-field from (6), (7).
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However, considering the fundamental mechanism of relativistic free-
electron’s emission in the direction of electron’s motion on which the
present interaction scheme is based, we require that the electrons be
relativistic in the azimuthal direction, i.e., radial momentum be small
compared with the azimuthal momentum (pφ � pr). Accordingly,
pφ = γmr0

dφ
dt ≈ γmc. Thus,

r0
dφ

dt
≈ c (8)

and the cyclotron frequency can not be chosen arbitrarily. Application
of (8) in (6) and (7) assuming d2r

dt2
/r � 1 yields:

B(c)
z = −2γmc

er0
(9)

E(c)
r =

γmc2

er0
(10)

Applying (10), one can show that,

δr

r0
=
er0E

(c)
r

γmc2
(11)

Equation (11) indicates that for a fixed cross-field arrangement,
variations of the electron energy results in the change in the cyclotron
radius r0. This should be taken into the considerations when designing
the interaction parameters.

3. LASER FIELD

To characterize the short-wavelength radiation associated with the
described interaction scheme, the single-electron phase must be
formulated through kinematic considerations.

Mechanism of lasing or coherent radiation is similar to the
spontaneous emission. However, electrons develop a new phase due to
their interaction with each other and with the radiation field and form
bunches which are spaced a wavelength apart. As a result of this spatial
bunching, the radiation from individual electrons add coherently and
amplifies the laser field. To describe the transition toward coherent
state, electron’s behaviour in the process of interaction with the laser
field are characterized.
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3.1. Electron Kinematics

We assume a radially polarized modulating or electric/magnetic field
is distributed along the circumference of a ring with the radius R0

with NΛ number of gratings and with the grating period lΛ, i.e.,
NΛlΛ = 2πR0 or

NΛφΛ = 2π (12)
where φΛ is the angular or azimuthal period of the static modulating
field. Observing from the electron’s reference frame, the electrons
experience effects of the modulating field through an interaction length
of:

L = NΛλΛ (13)
where

λΛ = r0φΛ (14)
The length λΛ can be viewed as the spatial period of the modulating
field seen by the electrons.

Adopting an one-dimensional model in the transversal plane (r, z),
the vector potential associated with the magnetic wiggler field seen by
the relativistic electrons can be written as:

AΛ =
√

2AΛ sin(KφΛφ)r̂ 0 < φ < 2π
= 0 otherwise (15)

where KφΛ = 2π
φΛ

is the static field’s azimuthal wavenumber, AΛ is the
rms electric vector potential. It can be seen that electrons execute NΛ

wiggles as they travel through the interaction cycle.
Similarly, one gets for the electric wiggler field seen by the

relativistic electrons,

EΛ =
√

2EΛ sin(KφΛφ)r̂ 0 < φ < 2π
= 0 otherwise (16)

where EΛ is the rms electric field. Amplitude of the modulating
electric field is assumed to be constant within the interaction space,
i.e., EΛ = cte.

Next step to formulate the particle or electron kinematics is to
apply the relativistic force equation (2). Assuming invariance in the z
direction, one can set pz = vz = 0 where p denotes the vector electron
momentum. Neglecting effects of laser or radiation field on the particles
to derive the resonant kinematics and using BΛ = ∇× AΛ, one finds:

γm
dvr

dt
= −edφ

dt

dAr

dφ

= −edAr

dt
(17)
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Thus:
vr = −

√
2
c

γ
aΛ sin(KφΛφ) (18)

where the dimensionless vector potential is given by:

aΛ =
eAΛ

mc
(19)

Using the relativistic Hamiltonian in a cylindrical coordinate system:

γmc2 =
(
(mc2)2 + c2

(
p2

r + p2
φ

))1/2
(20)

where pr = γmvr, pφ = γmvφ, and considering the approximation
based on the design objective, i.e., pφ � pr, we find:

d

dφ
(pφpr) ≈ pφ

dpr

dφ
(21)

For the electric modulating field (16), the force equation becomes:

γm
dvr

dt
= e(EΛ) · r̂ (22)

Where (21) yields,
vr ≈

√
2
c

γ
eΛ sin(KφΛφ) (23)

and
eΛ =

r0eEΛ

mc2KφΛ
(24)

is the dimensionless electric field.
Making use of (18), we obtain the magnetic wiggler field

modulation:

pφ = γmvφ ≈ γmc

{
1 − 1

2γ2

[
1 + a2

Λ − a2
Λ cos(2KφΛφ)

]}
(25)

Similarly, one gets the electric wiggler field modulation (23):

pφ = γmvφ ≈ γmc

{
1 − 1

2γ2

[
1 + e2Λ − e2Λ cos(2KφΛφ)

]}
(26)

Examining (25)–(26), we observe:

r

c

dφ

dt
= 1 +O

(
1
γ2

)
(27)
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which is expected since we require that r dφ
dt ≈ c. Setting r =

r0 + δr( vr
vφ � 1) and combining (27) and (18) we find:

dδr

dt
≈

√
2

aΛ

γKφΛ
r0 cos(KφΛφ) � 1 (28)

Application of (28) introduces a major simplification to the derivations
of angular motion because r can be substituted by r0. Moreover,
as long as the angular momentum pφ = γmr dφ

dt has the correct
form, this substitution introduces no error to the overall picture of
interaction because the radial oscillations will be contained in the
angular variations dφ

dt . In other words, we simply set the observation
point at r = r0. Accordingly,

dφ

dt
≈ c

r0

{
1 − 1

2γ2

[
1 + g2

Λ − g2
Λ cos(2KφΛφ)

]}
(29)

where gΛ = aΛ for a magnetic field modulation and, gΛ = eΛ for that
of an electric field.

The angular velocity consists of a mean motion together with an
azimuthal oscillation which causes a figure-eight motion and generates
higher order harmonics. For γ � 1, the solution to (29) is given by:

φ = φ0 + φ′ (30)

where

φ0 =
ct

r0

[
1 − 1 + g2

Λ

2γ2

]
(31)

Also,
dφ′

dt
=

c

2γ2r0
g2
Λ cos(2KφΛ(φ0 + φ′)) (32)

Solving (32) by expanding the right-hand side to orders of 1
γ , we find:

φ′ =
g2
Λ

4γ2KφΛ
sin(2KφΛφ0) (33)

Similarly, one can derive the solution for (18), (23) when taking into
account the condition r|KφΛφ0=π

2
= r0 as:

r = r0 +
√

2r0
gΛ

γKφΛ
cos(KφΛφ0) (34)
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3.2. Resonance

Resonant characteristics are derived by examining the conditions for
stationary phase.

The overall phase is found by making use of the spectral fluence
associated with the emitted radiation [9–11]. Accordingly, the phase
is associated with the integrand:

Int = n × (n × v) exp[j(ωLt−KLn · r)] (35)

where
ωL =

c

r0
KφL (36)

is the angular frequency and

KφL =
2π
φL

(37)

is the angular wavenumber associated with the emitted light observed
at the radius r0 and, φL denotes the azimuthal or angular period of
the light. Thus:

λL =
2π
KL

= r0φL (38)

is the light wavelength. In (35), the unit vector n in the direction of
emission is given by:

n = sin(θc) cos(φc)r̂ + sin(θc) sin(φc)ẑ + cos(φc)φ̂ (39)

and, the electron velocity v and position r = rr̂ denote the electron
trajectories.

Description of θc and φc in a cylindrical coordinate system (r, φ, z)
is given by Figure 2.

Making use of the derived electron trajectories (18), (23) and (25),
(26) in (35) up to the order of 1

γ2 , we find,

ωLt−KLn · r ≈ KφL

KφR
[KφΛφ0 − α cos(KφΛφ0) − ς sin(2KφΛφ0)] (40)

where

KφR =
2γ2KφΛ

1 + g2
Λ + γ2θ2

c

=
2π
φR

(41)

is the resonant angular wavenumber with φR being the resonant
angular period.
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Figure 2. Unit vector in the direction of emission.

Hence, λR = r0φR represents the resonant wavelength. θc is the
half-angle of a cone in which the radiation (Bremsstrahlung) is confined
around the direction of electron motion. The parameters α and ς in
(40) are given by:

α = 2
√

2γθc cos(φc)
gΛ

1 + g2
Λ + γ2θ2

c

(42)

ς =
1
2

g2
Λ

1 + g2
Λ + γ2θ2

c

(43)

Study of the electrons’ mean phase (linear term) yields an appropriate
description of the spontaneous emission as effects of the oscillations
around this mean phase are considered in the development of laser
field. Expression for the phase associated with the mean motions can
be written as:

Φ0 = −ωLt+KLn · r + nKφΛφ0

≈ −KφL

KφR
KφΛφ0 + nKφΛφ0 (44)

where n is the harmonic number.
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The electron mean phase (44) is stationary when,

KφL = nKφR, n = 1, 2, . . . (45)

or
λL =

λR

n
n = 1, 2, . . . (46)

In general, for the overall phase resonance we have:

KφL = nKφR + δkφ (47)

where δkφ is a factor representing all the oscillatory effects around
resonance.

Limiting our view to the light detection along a circular path
(θc = 0, r = r0), we obtain from (41), (46),

λL = λΛ
(1 + g2

Λ)
2nγ2

(48)

where λΛ is given by (14).

3.3. Electron Dynamics in the Laser Field

To describe the transition toward coherent state, electron’s behaviour
in the process of interaction with the laser field must be characterized.
An important observation is the variation of the electron energy γ in
the process of interaction with the electromagnetic field as represented
by:

dγ

dt
=

e

γm2c2
E · p (49)

where p = γmv and v is the electron velocity. In (49), E represents
the overall electric field which is sum of the laser or radiation field and
the static modulating field.

Applying the radiation gauge, the laser field can be assumed to be
polarized in the r direction (in cylindrical coordinate system) with a
spectrum narrowly distributed about the resonant frequency ωR = 2πc

λR
,

i.e., narrow lasing linewidth. Hence, the electric field of the laser is
given by:

EL = −∂AL

∂t
=

√
2EL cos(KφRφ− ωRt+ ΦL)r̂ (50)

where
AL =

√
2AL sin(KφRφ− ωRt+ ΦL)r̂ (51)
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The laser field amplitude EL(AL) and phase ΦL are slowly varying
functions of space and time.

Since electrons do not exchange energy with the static modulating
field, there is no contribution from the modulating static field to the
variations of electron energy, i.e.,

dγ

dt
=

e

γm2c2
EL · prr̂ (52)

The total phase can be expressed as:

Φ = Φ0 + Φosc (53)

with the mean phase,

Φ0 = KΦRφ0 − ωRt+ nKφΛφ0 (54)

and the phase oscillation Φosc:

Φosc =
KφR

KφΛ

g2
Λ

4γ2
sin(2KφΛφ0) (55)

The mean phase (54) is stationary if

γ2 = γ2
rn =

KφR

2nKφΛ
(1 + g2

Λ) (56)

In derivation of the resonant energy (56), it is assumed that nKφΛ �
KφR. Accordingly (using (54)),

r0
dΦ0

dt
= ncKφΛ

(
1 − γ2

rn

γ2

)
(57)

Substituting the electric laser field expression (50) and (18) in (52) and
averaging over a wiggler period of φΛ while taking into considerations
the orthogonality of Fourier harmonics, we find to the lowest order of

1
2nNΛ

(1/γ2
rn):

dγ

dt
= −eELgΛ

γrnmc

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]
sin(Φ0 + ΦL) n = odd

= 0 n = even (58)

where

ς =
1
2

g2
Λ

1 + g2
Λ

(59)
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and Jn(x) is the Bessel function of order n.
Applying the narrow energy width approximation:

γ − γrn

γrn
=

1
2nNΛ

� 1 (60)

we obtain the mean position and phase equations as following:

r0
dφ0

dt
= c

[
1 +

1 + γ2
Λ

2γ2
rn

]
(61)

r0
dΦ0

dt
= 2ncKφΛ

γ − γrn

γrn
(62)

Equations (61)–(62) are fundamental equations governing phase
motions of electrons in the laser field. Similarly, (58) is an important
equation describing the energy variations of relativistic electrons
interacting with the laser or radiation field.

3.4. Laser Field Solution

The optical or radiation field can be characterized by applying an
electromagnetic theory. Solution of the Helmholtz equation:

∇2A − 1
c2
∂2A

∂t2
= −µ0J (63)

in the cylindrical coordinate system (r, φ, z) yields the necessary
description of the optical field. In (63), A is the optical field vector
potential and the current density J is sum of all point currents
associated with the individual electrons. Substituting (50)–(51) in (63)
and ignoring second derivatives and squares of derivatives of the slowly
varying functions AL and ΦL, we find:

cos(KφRφ− ωRt+ ΦL)
DEL

Dt
− EL sin(KφRφ− ωRt+ ΦL)

DΦL

Dt

= − 1
2
√

2ε0
Jr (64)

where the total derivative is defined by:

D

Dt
=
c

r

∂

∂φ
+

∂

∂t
(65)

The current distribution in (64) is:

Jr(r) =
ne∑

n=1

evr(rn)δ(r − rn) (66)
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where δ denotes the Dirac delta function and,

vr(r) =
√

2
c

γrn
gΛ sin(KφΛφ) (67)

Averaging the partial currents over a volume with an azimuthal
dimension large compared to the lasing wavelength (still small
compared with the distance over which the amplitude and phase vary
significantly), the macroscopic laser field in a phasor form can be
represented by:

DE

Dt
= j

gΛJe

2ε0γrn

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]
〈exp(−jΦ0)〉 n = odd

= 0 n = even (68)

where Je is the electron-beam current density and,

E = EL exp(jΦL) (69)

In (68), effects of the small oscillations around the mean motion have
been averaged over a wiggler period φΛ.

Similarly, we get for the differential gain:

DG

Dt
=

D

Dt

(
ε0E

2
L

)
ε0E2

L

=
gΛJe

ε0ELγrn

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]
〈sin(Φ0 + ΦL)〉 n = odd

= 0 n = even (70)

The refractive index for the resulting active medium is:

n− 1
n

=
r0gΛJe

2cε0KφRELγrn

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]
〈cos(Φ0 + ΦL)〉

n = odd
= 0 n = even (71)

Equation (71) indicates that (n − 1) has the same sign as
〈cos(Φ0 + ΦL)〉. It is shown [11] that the electrons tend to bunch
around the phases |(Φ0 + ΦL)| < π

2 , so n > 1. Since the laser
medium has a greater refractive index than the surrounding vacuum,
the electron beam can confine the light and act as a guiding structure.

Introducing proper dimensionless variables, equations of motions
and the Maxwell’s equation are solved in the small-signal regime to
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obtain the overall gain and the total phase shift during the interaction
as follows:

G− 1 = 2jef(α) (72)

∆Ψ ≈ jeq(α) (73)

with f(α) and q(α) given by:

f(α) = − d

dα




sin
(
α

2

)
α




2

(74)

q(α) =
1
α3

[
sin(α) − α

2
(1 + cos(α))

]
(75)

Definition of dimensionless variables, parameters and details of
mathematical derivations are included in the Appendix A.

Behaviour of the functions f(α) and q(α) are depicted in Figures 3
and 4.

Figure 3 indicates that the gain function f(α) is largest for positive
values of the resonance parameter α. It is also seen that gain vanishes
at the resonance α = 0. The latter is expected because, at the electron

Figure 3. Gain function vs. relative frequency.



Emission from relativistic free electrons 151

Figure 4. phase function vs. relative frequency.

phase resonance, there would be no electron energy loss to the radiation
field.

Inspection of Figure 4 reveals that the overall phase shift is
maximum at the resonance and vanishes at the point of maximum
gain. The peak value of the gain function occurs at α = 2.6, where the
function has a value of fmax = 6.75 × 10−2.

3.5. Optical Power Considerations

In order to estimate the extracted optical power, we rewrite the energy
conservation relation (A10) as:

d

dτ
(2je 〈µ〉) + |ζ|2dG

dτ
= 0 (76)

Assuming the small signal operation, (76) can be integrated over the
interaction space. Doing so when using (72) yields:

|ζ|2 = −〈∆µ〉
f(α)

(77)
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where 〈∆µ〉 is related to the power extraction efficiency η by:

η = − 〈∆µ〉
4πnNΛ

(78)

In (77)–(78), 〈∆µ〉 can be replaced by 〈∆α〉 since we are primarily
interested in the power for certain operating wavelength. It can be
seen that at the saturation limit where 〈∆µ〉 = 2π and |ζ| ≈ π2,

η =
1

2nNΛ
(79)

gives the bucket height.
Amplitude of the electric field is related to the dimensionless field

ζ by:

|E| =
γ2

rnmc
2λΛ

4πr2
0gΛen

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]−1 |ζ|

(2π)2
(80)

Using (80) the extracted power per unit cross section of the optical
beam can be expressed as:

Ps ≈ γ2
rnm

2c5ε0λ
2
Λ

16π2r4
0g

2
Λe

2n2

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]−2 |ζ|2

(2π)4
n = odd

= 0 n = even (81)

The total optical power using the formula for the effective area of the
optical beam [11],

Aeff ≈ L
λL

4
(82)

where L is the interaction length, becomes:

P ≈ γ4
rnm

2c5ε0λ
2
ΛλL

64π2r3
0g

2
Λe

2n2

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]−2 |ζ|2

(2π)3
n = odd

= 0 n = even (83)

The optical power at the saturation limit becomes:

P ≈ γ4
rnm

2c5ε0λ
2
ΛλL

512πr3
0g

2
Λe

2n2

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]−2

n = odd

= 0 n = even (84)

To complete the optical power description, we use Madey relation to
relate the gain to the spontaneous emission by:

G− 1 ≈ −4πr2
0Je

mc2
φ2

R

eγrn

d2Espon

dΩdω
(85)
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At this point, we consider a potential design. In this scheme, electrons
with the relativistic energy γ = 10(≈ 5Mev) are forced to execute
circular motion with a cyclotron radius r0 = 0.5 cm under the influence
of the cross-fields. A static electric/magnetic field with the angular
period φΛ = 0.04 rad (NΛ = 157) and strength gΛ = 0.01 is distributed
along the circumference of an circle with diameter d = 2 cm (R0 =
1 cm). The wiggler period observed by electrons is:

λΛ = r0φΛ = 200 (µm) (86)

Thus, the optical wavelength for the first harmonic is:

λL = λΛ

(
1 + g2

Λ

)
2γ2

≈ 1 (µm) (87)

Amount of the optical power associated with the first harmonic in the
small-signal regime (|ζ| = 0 . . . 0.01) is shown in Figure 5. It can be
seen that even in the very-small signal region the optical power is of
the order of tens of milliwatts.

Figure 5. Optical power vs. dimensionless electric field.
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4. CONCLUDING REMARKS

Feasibility of the present scheme for high-speed (electro-optical) data
communication applications should be investigated in two dimensions.
One is the theoretical consideration based on the key characteristics
and basic physics of electrons, field and radiation interaction which has
been the main focus of present work. Second would be the practical
considerations as how to realize the potential device and account
for the real operating and model characteristics in the formulations.
We discuss the theoretical results and implementation issues in the
following categories.

4.1. Theoretical Results and Their Application for Analysis
and Design

The theoretical framework here expresses operational characteristics
of the electro-optical coupling such as coupled wavelengths, gain
and power in terms of model parameters like interaction length,
electron current, modulation amplitude and wavelength, and cross
fields. Effects of the electron beam quality (e.g.,

〈
δγ2/γ2

φ

〉
) are not

explicitly included here. Such effects, however, have been included
in the dispersion and gain analysis of emission [8] for different beam
currents that can identify the respective limitations. Emittance can be
measured as a function of beam spot size and wavelength (λL) at low
current [12]. An electron beam is described through an ellipse equation,
XTσ−1X = 1, where σ, the beam covariance matrix, determines the
area of beam ellipse or emittance. Measurement of σ (even at the end
of interaction if the beam propagation matrix is known) would then
give the rms emittance. Assuming a Maxwellian distribution for the
particles’ motion, the emittance is found to be proportional to (kT )1/2

[12, 13], where T is the beam temperature . Hence, effects of the beam
emittance is somehow included in the analysis of dispersion through
inclusion of beam temperature (kT ) factor. Furthermore, effects of the
electron beam variance are integrated in the coherent formulation of
emission and power considerations.

Inspection of the power, energy conservation and efficiency
relations (83)–(85), (76), (A10) and (77)–(79) shows that the low
power requirement may be translated to low current and/or short
interaction length requirements for certain coupled wavelengths and
efficiency scenario. This is known in the field of FELs (see Madey
relation (85) and spectral influence of the spontaneous emission). In
the present circular scenario, reduction of number of wiggles results
in a larger angular period φΛ and hence, a shorter travel radius for
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electrons (14). Based on these observations, dispersion characteristics
in terms of electron current and energy spread, results of studies on
electron beam emittance throughout the interaction in a low current
operation [12–14], one concludes that it is more feasible to conserve
the quality of electron beam throughout the interaction period in the
present scenario.

Making use of the theoretical outcome, operation of the present
coupler can be controlled by choosing proper model elements such
as beam energy, modulating or input field. An additional degree of
tunability is offered here through adjustment of cross-fields. Relations
(9)–(10) and (14) indicate the possibility of wavelength tuning by
varying the cross-field components. One can also make use of (11)
to estimate the wavelength variations due to the change in cyclotron
radius during the interaction and devise a compensation scheme based
on the control of cross-fields.

4.2. Practical Challenges & Feasibility

Free-electron sources of coherent radiation enjoy diverse and wide
spectrum operations with no limitations due to the discrete
energy levels existing in conventional lasers. We discuss practical
implementation of the present scheme in light of progress in FEL
technology through exploration of similarities (or dissimilarities) in
challenges.

Similar to FELs, the ring structure here is tunable and can
produce a wide variety of pulse formats [1, 15]. Using a storage ring
concept [16], high quality electron beam can be achieved. Limitations
associated with the electron brightness have been significantly relaxed
by virtue of laser switched photocathode electron sources [17, 18].
These photoinjectors can improve the electron beam brightness by
two orders of magnitude. As we discussed for the present scenario
(operating in Compton scattering regime), however, the electron beam
quality and current requirements introduce less stringent limitations
considering the current FEL technology achievements and challenges
[19–27].

Another attractive feature of the present coupler is the refractive
guiding or radiation focusing of the electron beam. This light
guiding/confining mechanism which is due to the dielectric response
of the electron beam (overall refractive index of greater than 1, see
(A14) and (A18), significantly reduces the diffractive losses and the
need for guiding mechanisms such as mirrors. Therefore, coupling of
the resultant emission to an output device like optical fiber would be
practical.
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There are challenges particular to this scenario that one should
address. Some ideal features of the electro-optical coupler here, such
as small size and possibility of beam recycling or continuous beam flow,
introduce new challenges. The cross-fields and input modulating fields
(typically strong) with required characteristics must be realized in
small dimensions. This may represent a challenge from Microsystems
point of view. This, however, can be also dealt with by using more
attractive alternatives. One potential approach is to apply strong
but dense electromagnetic fields for cross or input modulating fields.
Described fields are the result of applying the original fields or data
to an intermediate scheme. This scheme can be similar to the present
coupling scenario (i.e., cascading) [28, 29]. One may also make use of
the conventional lasers for this intermediate step.

In order to recycle the electrons or to have continuous beam flow,
the required characteristics of the electron beam such as energy and
quality must be maintained and refreshed for different input cycles or
pulses. Accordingly, energy recovery techniques should be developed
to counteract the energy and quality decay. Slippage and lethargy
effects in pulsed beam operation of conventional FELs, adversely
affect the radiation growth. The slippage and lethargy effects that
are due to mismatch between the electron beam velocity (axial) and
group velocity of radiation, cause the electron beam pulse lag behind
the radiation pulse. This delay in electron response throughout the
interaction would eventually cause a distortion of output optical pulse.
To prevent the described distortion that could lead to Inter-Symbol
Interference (ISI) for data applications, the average slippage time must
be made less than the pulse period [1]. For the electro-optical coupler
here, the electron beam flow can be assumed to be continuous (not
pulsed). The input modulating field, however, is in pulsed or digital
format that makes the scenario similar to that of a pulsed electron
beam and optical pulse interaction. Therefore, a technique should be
devised to make the respective slippage time (when travelling around
the ring) small compared to the input pulse period. The cavity tuning
to synchronize the electron beam and optical pulses is not a critical
factor here (partly because the optical emission is coupled out).

There are challenges particular to the present scenario associated
with the convenient assumption of continuous beam flow. As is shown
(Section 2.1.), there is a change of electron trajectories associated with
the cross-fields’ action. In addition, after each interaction cycle or
period, there will be a reduction in overall electron beam energy due
to interaction and coupling with the optical field, i.e., δγφ. A potential
way to compensate for these variations is to devise forward or adaptive
schemes for re-adjustment of the cross-field components after each
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interaction cycle (9)–(11). There is also a potential to take advantage
of these variations for multiplexing purposes (e.g., WDM). As can be
seen from (9)–(14) and (46)–(48), after each interaction period and for
the same type of input, the optical wavelength is shifted.

Another challenge particular to this scenario is the heat problem.
The thermal energy that heats the lasing medium is carried away at
near light speed in conventional FELs. Here, however, the energy must
be directed out through other mechanisms like heat sinks. One other
partial solution could be to refresh the electron beam after a number
of cycles.

4.3. Summary

Relativistic free-electron-based emitters offer ideal sources of coherent
radiation by virtue of the tunability, short pulse length, synchronize
operation, bandwidth and beam quality. These sources are capable
of operating over the entire electromagnetic spectrum. FEL is an
ideal choice for researchers when there is a need for tunability, high
repetition rates and frequency-modulated pulses.

The intention throughout this work has been to exploit the wide-
bandwidth and tunable potentials of a scheme based on similar physics
for electro-optical data applications. This is not an easy task and
many aspects (practical in particular) should be investigated and
possibly revisited. Nevertheless, the goal has been to initiate such
considerations and respective discussions. On this basis, a theoretical
study is done and a feasibility evaluation is performed with the FEL
technology as reference frame due to similarity of basic physics and
practical challenges. Reported advances of FELs in various dimensions
[1, 15–29] such as higher beam and radiation quality, wider tunable
range and bandwidth, better pulse format control, migration towards
compact and bench top structures further support the feasibility and
significance of such electro-optical couplers.

APPENDIX A.

We define the dimensionless variables as:

τ =
1
r0

ct

2π
(A1)

ξ =

(
φ− 1

r0
ct

)
nNΛφR

(A2)

µ = 4πnNΛ
γ − γrn

γrn
(A3)
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ζ =
8π2r0gΛenNΛ

γ2
rnmc

2

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]
E (A4)

je =
(2π)3r2

0g
2
ΛenNΛ

ε0γ3
rnmc

3

[
J (n−1)

2

(nς) − J (n+1)
2

(nς)
]2

Je (A5)

Dropping the subscripts associated with the mean motion, equations
of motions and the Maxwell’s equation are respectively given by:

dµ

dτ
= Re[jζ exp(jΦ)] (A6)

dΦ
dτ

= µ (A7)

dξ

dτ
= = −1 (A8)

dζ

dτ
= jje 〈exp(−jΦ)〉 (A9)

The energy conservation, gain and refractive index equations are
expressed in terms of the dimensionless variables as:

d

dτ
(2je 〈µ〉 + |ζ|2) = 0 (A10)

dG

dτ
=

2je
|ζ| 〈sin(Φ + ΦL)〉 (A11)

n− 1
n

=
je

2πKφR|ζ|
〈cos(Φ + ΦL)〉 (A12)

Solving the equations of motion (A6)–(A8) in the small-signal regime
by expanding µ, Φ and ξ in power series of ζL, we find to the orders of
ζL (� 1):

dG

dτ
=

je
α2

[sin(ατ) − ατ cos(ατ)] (A13)

n− 1
n

= − je
4πKφRα2

[1 − cos(ατ) − ατ sin(ατ)] (A14)

with

α = 2πnNΛ

[
2
γ − γrn

γrn
− kφ −KφR

KφR

]
(A15)

In the present formulations, the optical field is presented as:

EL =
√

2EL sin(kφφ− ωt+ ψ0)r̂ (A16)
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where kφ = r0
ω
c is the optical wavenumber and, ψ0 is the initial phase

of electrons entering the interaction.
Integrating (A13)–(A14) from the beginning to the end of

interaction τ = 0 to τ = 1, one obtains the overall gain and the total
phase shift during the interaction as follows:

G− 1 = 2jef(α) (A17)

∆Ψ = KφR

2π∫
0

(n− 1)dφ

≈ 2πKφR

1∫
0

n− 1
n

dτ = jeq(α) (A18)

Mathematical expressions for f(α) and q(α) are given by:

f(α) = − d

dα




sin
(
α

2

)
α




2

(A19)

q(α) =
1
α3

[
sin(α) − α

2
(1 + cos(α))

]
(A20)
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